Homework #5 (by Alexis Schlomer & Lan Lou)
Due: Saturday Apr 20, 2024 @ 11:59pm

IMPORTANT:
• Enter all of your answers into Gradescope by 11:59pm on Saturday Apr 20, 2024.
• Plagiarism: Homework may be discussed with other students, but all homework is to be completed individually.
• You have to use this PDF for all of your answers.

For your information:
• Graded out of 100 points; 4 questions total

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIES</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Two-Phase Commit</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Distributed Query Plan</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Question 1: ARIES ... [28 points]

RusTub uses ARIES recovery with fuzzy checkpoints. It also has a background thread that may arbitrarily flush a dirty bufferpool page to disk at any time.

For this question, assume objects A, B, C reside in three different pages A, B, C, respectively.

<table>
<thead>
<tr>
<th>LSN</th>
<th>WAL Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><T1, BEGIN></td>
</tr>
<tr>
<td>2</td>
<td><T1, UPDATE, prev=1, B, 20→30></td>
</tr>
<tr>
<td>3</td>
<td><T2, BEGIN></td>
</tr>
<tr>
<td>4</td>
<td><T3, BEGIN></td>
</tr>
<tr>
<td>5</td>
<td><T3, UPDATE, prev=4, C, 30→40></td>
</tr>
<tr>
<td>6</td>
<td><T2, UPDATE, prev=3, A, 10→20></td>
</tr>
<tr>
<td>7</td>
<td><T2, COMMIT, prev=6></td>
</tr>
<tr>
<td>8</td>
<td><CHECKPOINT BEGIN></td>
</tr>
<tr>
<td>9</td>
<td><T1, UPDATE, prev=2, A, 20→30></td>
</tr>
<tr>
<td>10</td>
<td><CHECKPOINT END, ATT={T1, T2, T3}, DPT={C}></td>
</tr>
<tr>
<td>11</td>
<td><T3, UPDATE, prev=5, C, 40→50></td>
</tr>
<tr>
<td>12</td>
<td><T2, TXN-END></td>
</tr>
<tr>
<td>13</td>
<td><CHECKPOINT BEGIN></td>
</tr>
<tr>
<td>14</td>
<td><T1, COMMIT, prev=9></td>
</tr>
<tr>
<td>15</td>
<td><T4, BEGIN></td>
</tr>
<tr>
<td>16</td>
<td><CHECKPOINT END, ATT={T1, T3}, DPT={?}></td>
</tr>
<tr>
<td>17</td>
<td><T4, UPDATE, prev=15, B, 30→20></td>
</tr>
<tr>
<td>18</td>
<td><T4, UPDATE, prev=17, A, 30→20></td>
</tr>
<tr>
<td>19</td>
<td><T4, ABORT, prev=18></td>
</tr>
<tr>
<td>20</td>
<td><T4, CLR, prev=19, A, 20→30, undoNext=17></td>
</tr>
</tbody>
</table>

Figure 1: WAL

(a) Suppose the system crashes and, when it recovers, the WAL contains the first 10 records (up to <CHECKPOINT END, ATT={T1, T2, T3}, DPT={C}>). Of the object states below, which states are possibly stored on disk before recovery starts? Select all that apply.

i. [4 points] □ A=10 □ A=20 □ A=30

ii. [4 points] □ B=20 □ B=30

iii. [4 points] □ C=30 □ C=40

(b) [4 points] Select all possible values of DPT in record 16.

□ A □ B □ C □ A, B □ A, C □ B, C □ A, B, C □ None of them

(c) [4 points] For next 3 questions, assume that the database restarts and finds all log records up to LSN 20 in the WAL. Also assume the DPT is {C} for LSN 16. According to the lecture, which pages the analysis phase may select to be redone? Select all that apply.

□ A □ B □ C □ None of them

(d) [4 points] Select all transactions that should be undone during recovery.

□ T1 □ T2 □ T3 □ T4 □ None of them

Question 1 continues...
(e) [4 points] How many new CLR records will be appended to the WAL after the database fully recovers?

☐ 0 ☐ 1 ☐ 2 ☐ 3 ☐ 4 ☐ 5 ☐ 6
Question 2: Two-Phase Commit [24 points]

Consider a distributed transaction T operating under the two-phase commit protocol with the
early acknowledgement optimization. Let N_0 be the *coordinator* node, and N_1, N_2, N_3 be the
participant nodes. Let the C be the client application issuing the transaction request. Assume
that the client communicates directly with the coordinator node.

The following messages have been sent:

<table>
<thead>
<tr>
<th>time</th>
<th>message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C to N_0: “REQUEST:COMMIT”</td>
</tr>
<tr>
<td>2</td>
<td>N_0 to N_2: “Phase1:PREPARE”</td>
</tr>
<tr>
<td>3</td>
<td>N_0 to N_3: “Phase1:PREPARE”</td>
</tr>
<tr>
<td>4</td>
<td>N_2 to N_0: “OK”</td>
</tr>
<tr>
<td>5</td>
<td>N_0 to N_1: “Phase1:PREPARE”</td>
</tr>
<tr>
<td>6</td>
<td>N_1 to N_0: “OK”</td>
</tr>
<tr>
<td>7</td>
<td>N_3 to N_0: “OK”</td>
</tr>
</tbody>
</table>

![Figure 2: Two-Phase Commit messages for transaction T](image)

(a) [6 points] Who should send message(s) next at time 8 in Figure 2? Select *all* the possible answers.
- C
- N_0
- N_1
- N_2
- N_3
- It is not possible to determine

(b) [6 points] To whom? Again, select *all* the possible answers.
- C
- N_0
- N_1
- N_2
- N_3
- It is not possible to determine

(c) [6 points] Suppose that N_0 received the “ABORT” response from N_3 at time 7 in Figure 2. What should happen under the two-phase commit protocol in this scenario?
- N_0 resends “Phase1:PREPARE” to N_2
- N_1 resends “OK” to N_0
- N_0 sends “Phase2:COMMIT” all of the participant nodes
- N_0 sends “ABORT” all of the participant nodes
- N_0 resends “Phase1:PREPARE” to all of the participant nodes
- It is not possible to determine

(d) [6 points] Suppose that N_0 successfully receives all of the “OK” messages from the participants from the first phase. It then sends the “Phase2:COMMIT” message to all of the
participants but N_1 and N_3 crash before they receive this message. What is the status of the transaction T when N_1 comes back on-line?

- T’s status is **aborted**
- T’s status is **committed**
- It is not possible to determine
Question 3: Distributed Query Plan [18 points]

The CMU-DB team is optimizing distributed databases for aggregations and joins in their new project, AutoLoo. This project aims to enable efficient computation of distributed joins followed by aggregations.

Given the following schema:

```
CREATE TABLE cust(PRIMARY KEY cust_id int, name VARCHAR, loc_id int);
CREATE TABLE txn(PRIMARY KEY txn_id int, cust_id int, amount DECIMAL, year int);
CREATE TABLE loc(PRIMARY KEY loc_id int, region_name VARCHAR);
```

AutoLoo partitions these tables across nodes based on the partition key. Consider the query for analyzing total spending per customer region for the year 2024:

```
SELECT l.region_name, SUM(t.amount) AS total_spending
FROM txn t
JOIN cust c ON t.cust_id = c.cust_id
JOIN loc l ON c.loc_id = l.loc_id
WHERE t.year = 2024
GROUP BY l.region_name;
```

You can make the following assumptions:

1. There are 5 nodes in the system.
2. The customer table contains 20,000 rows.
3. The transaction table contains 50,000 rows for the year 2024.
4. The location table contains 500 rows.

(a) [5 points] Which data distribution strategy minimizes the total network data transfer for the given query?

- A) Partition customer and transaction tables by customer_id range, and replicate location table across all nodes.
- B) Partition transaction table by transaction_id range, and customer and location tables by location_id range.
- C) Replicate customer and location tables across all nodes, and partition transaction table by customer_id.
- D) Partition all tables randomly without any specific range or replication strategy.

(b) [5 points] Assuming the selected strategy from question (a) is implemented, what is the estimated total data transferred over the network for the join operation? Hint: Only the central node can perform aggregations.

- A) Less than 5,000 rows

Question 3 continues...
(c) [5 points] If AutoLoo introduces a feature that allows for intermediate aggregation results to be computed on each node before being sent to a central node for final aggregation, how will this impact the total network data transfer?

- A) Less than 5,000 rows
- B) Between 5,001 to 25,000 rows
- C) Between 25,001 to 100,000 rows
- D) More than 100,000 rows

(d) [3 points] What are the primary drawbacks of implementing a feature that allows for intermediate aggregation results to be computed on each node before sending these results to a central node for final aggregation? Consider the impact on system resources. Select all that apply.

- A) It significantly increases the amount of data transferred over the network.
- B) It increases the computational load on each node.
- C) It increases the memory usage on each node due to the storage of intermediate results.
- D) It decreases the overall system performance.
Question 4: Miscellaneous ... [30 points]

(a) [3 points] A distributed DBMS can commit transactions and automatically compensate for network partitioning without any loss of data consistency.
 □ True
 □ False

(b) [3 points] ARIES employs a single pass of the log during the recovery process to handle both redo and undo operations.
 □ True
 □ False

(c) [3 points] The CAP theorem implies that a distributed system cannot simultaneously guarantee consistency, availability, and partition tolerance.
 □ True
 □ False

(d) [3 points] In ARIES, only transactions that commit will have an associated “TXN-END” record in the log.
 □ True
 □ False

(e) [3 points] In the context of distributed DBMS, data replication increases availability but can lead to challenges in maintaining data consistency across nodes.
 □ True
 □ False

(f) [3 points] Both PAXOS and Two-Phase Commit protocols can be used to implement distributed transactions.
 □ True
 □ False

(g) [3 points] In reference to recovery algorithms that use a write-ahead log (WAL). Under NO-STEAL + FORCE policy, a DBMS will have to undo the changes of an aborted transaction during recovery.
 □ True
 □ False

Question 4 continues…
(h) [3 points] Fuzzy checkpoints need to block the execution of all transactions while a consistent snapshot is written to disk.
 - True
 - False

(i) [3 points] With consistent hashing, if a node fails then all keys must be reshuffled among the remaining nodes.
 - True
 - False

(j) [3 points] In a system with strong consistency requirements, it is best for the DBMS to implement active-passive replication with asynchronous replication and continuous log streaming.
 - True
 - False