
Lecture #13: Query Processing I
15-445/645 Database Systems (Spring 2024)

https://15445.courses.cs.cmu.edu/spring2024/
Carnegie Mellon University

Jignesh Patel

1 Query Plan
The DBMS converts a SQL statement into a query plan. Operators in the query plan are arranged in a tree.
Data flows from the leaves of this tree towards the root. The output of the root node in the tree is the
result of the query. Typically operators are binary (1–2 children). The same query plan can be executed in
multiple ways.

2 Hardware Trends
Since 2005, hardware advancements have diverged significantly due to the constraints posed by the end
of Dennard scaling. Dennard’s law, established in the 1970s, suggested that as transistors shrink, their
power density stays constant, allowing for smaller, faster, and more efficient chips without increased heat.
However, this principle faltered as miniaturization reached physical limits. Reducing transistor size no
longer led to proportional decreases in power consumption, halting frequency increases in single-core
processors to avoid overheating risks.
In response, the shift towards multi-core processor designs emerged to improve performance through par-
allelism, not higher frequencies. This transformation requires that database management systems (DBMSs)
evolve, adopting strategies that harness multi-core parallelism effectively. Modern DBMSs must rethink
architecture and query execution to execute multiple tasks concurrently, leveraging multi-core designs to
enhance throughput and reduce response times.

3 Processing Models
A DBMS processing model defines how the system executes a query plan. It specifies things like the di-
rection in which the query plan is evaluated and what kind of data is passed between operators along the
way. There are different models of processing models that have various trade-offs for different workloads.
Thesemodels can also be implemented to invoke the operators either from top-to-bottom or from bottom-
to-top. Although the top-to-bottom approach is much more common, the bottom-to-top approach can
allow for tighter control of caches/registers in pipelines.
The three execution models that we consider are:

• Iterator Model
• Materialization Model
• Vectorized / Batch Model

Iterator Model
The iterator model, also known as the Volcano or Pipeline model, is the most common processing model
and is used by almost every (row-based) DBMS.

https://15445.courses.cs.cmu.edu/spring2024/
https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #13 Query Processing I

The iterator model works by implementing a Next function for every operator in the database. Each node
in the query plan calls Next on its children until the leaf nodes are reached, which start emitting tuples
up to their parent nodes for processing. Each tuple is then processed up the plan as far as possible before
the next tuple is retrieved. This is useful in disk-based systems because it allows us to fully use each tuple
in memory before the next tuple or page is accessed. A sample diagram of the iterator model is shown in
Figure 1.
Query plan operators in an iterator model are highly composible and easy to reason about because each
operator can be implemented independent from their parent or child operators in the query plan tree so
long as it implements a Next function as follows:

• On each call to Next, the operator returns either a single tuple or a null marker if there are no more
tuples to emit.

• The operator implements a loop that calls Next on its children to retrieve their tuples and then
process them. In this way, calling Next on a parent calls Next on its children. In response, the child
node will return the next tuple that the parent must process.

The iterator model allows for pipelining where the DBMS can process a tuple through as many operators
as possible before having to retrieve the next tuple. The series of tasks performed for a given tuple in the
query plan is called a pipeline.
Some operators will block until children emit all of their tuples. Examples of such operators include joins,
subqueries, and ordering (ORDER BY). Such operators are known as pipeline breakers.
Output control works easily with this approach (LIMIT) because an operator can stop invoking Next on
its child (or children) operator(s) once it has all the tuples that it requires.

Figure 1: Iterator Model Example – Pseudo code of the different Next functions
for each of the operators. The Next functions are essentially for-loops that iterate
over the output of their child operator. For example, the root node calls Next on its
child, the join operator, which is an access method that loops over the relation R and
emits a tuple up that is then operated on. After all tuples have been processed, a null
pointer (or another indicator) is sent that lets the parent nodes know to move on.

Materialization Model
The materialization model is a specialization of the iterator model where each operator processes its input
all at once and then emits its output all at once. Instead of having a next function that returns a single
tuple, each operator returns all of its tuples every time it is reached. To avoid scanning too many tuples,
the DBMS can propagate down information about how many tuples are needed to subsequent operators

15-445/645 Database Systems
Page 2 of 7

https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #13 Query Processing I

(e.g. LIMIT). The operator “materializes” its output as a single result. The output can be either a whole
tuple (NSM) or a subset of columns (DSM). A diagram of the materialization model is shown in Figure 2.
Every query plan operator implements an Output function:

• The operator processes all the tuples from its children at once.
• The return result of this function is all the tuples that operator will ever emit. When the operator
finishes executing, the DBMS never needs to return to it to retrieve more data.

Figure 2: Materialization Model Example – Starting at the root, the
child.Output() function is called, which invokes the operators below, which re-
turns all tuples back up.

This approach is better for OLTP workloads because queries typically only access a small number of tuples
at a time. Thus, there are fewer function calls to retrieve tuples. The materialization model is not suited
for OLAP queries with large intermediate results because the DBMS may have to spill those results to disk
between operators.

Vectorization Model
Like the iterator model, each operator in the vectorization model implements a Next function. However,
each operator emits a batch (i.e. vector) of data instead of a single tuple. The operator’s internal loop
implementation is optimized for processing batches of data instead of a single item at a time. The size of
the batch can vary based on hardware or query properties. See Figure 3 for an example of the vectorization
model.
The vectorization model approach is ideal for OLAP queries that have to scan a large number of tuples
because there are fewer invocations of the Next function.
The vectorization model allows operators to more easily use vectorized (SIMD) instructions to process
batches of tuples.

Processing Direction
• Approach #1: Top-to-Bottom

– Start with the root and “pull” data from children to parents
– Tuples are always passed with function calls

• Approach #2: Bottom-to-Top
– Start with leaf nodes and “push” data from children to parents
– Allows for tighter control of caches / registers in operator pipelines

15-445/645 Database Systems
Page 3 of 7

https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #13 Query Processing I

Figure 3: Vectorization Model Example –The vectorization model is very similar
to the iterator model except at every operator, an output buffer is compared to the
desired emission size. If the buffer is larger, then a tuple batch is sent up.

4 Access Methods
An access method is how the DBMS accesses the data stored in a table. In general, there are two approaches
to access models; data is either read from a table or from an index with a sequential scan.

Sequential Scan
The sequential scan operator iterates over every page in the table and retrieves it from the buffer pool. As
the scan iterates over all the tuples on each page, it evaluates the predicate to decide whether or not to
emit the tuple to the next operator.
The DBMS maintains an internal cursor that tracks the last page/slot that it examined.
A sequential table scan is almost always the least efficient method by which a DBMS may execute a query.
There are a number of optimizations available to help make sequential scans faster:

• Prefetching: Fetch the next few pages in advance so that the DBMS does not have to block on
storage I/O when accessing each page.

• Buffer Pool Bypass: The scan operator stores pages that it fetches from disk in its local memory
instead of the buffer pool in order to avoid sequential flooding.

• Parallelization: Execute the scan using multiple threads/processes in parallel.
• Late Materialization: DSM DBMSs can delay stitching together tuples until the upper parts of the
query plan. This allows each operator to pass the minimal amount of information needed to the next
operator (e.g. record ID, offset to record in column). This is only useful in column-store systems.

• HeapClustering: Tuples are stored in the heap pages using an order specified by a clustering index.
• ApproximateQueries (Lossy Data Skipping): Execute queries on a sampled subset of the entire
table to produce approximate results. This is typically done for computing aggregations in a scenario
that allow a low error to produce a nearly accurate answer.

• Zone Map (Lossless Data Skipping): Pre-compute aggregations for each tuple attribute in a page.
The DBMS can then decide whether it needs to access a page by checking its Zone Map first. The
Zone Maps for each page are stored in separate pages and there are typically multiple entries in each
Zone Map page. Thus, it is possible to reduce the total number of pages examined in a sequential
scan. Zone maps are particularly valuable in the cloud database systems where data transfer over a
network incurs a bigger cost. See Figure 4 for an example of a Zone Map.

The limitations of the sequential model include function overhead and lack of parallelization (e.g. not able

15-445/645 Database Systems
Page 4 of 7

https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #13 Query Processing I

Figure 4: Zone Map Example – The zone map stores pre-computed aggregates for
values in a page. In the example above, the select query realizes from the zone map
that the max value in the original data is only 400. Then, instead of having to iterate
through every tuple in the page, the query can avoid accessing the page at all since
none of the values will be greater than 600.

to take advantage of vector operations)

Index Scan
In an index scan, the DBMS picks an index to find the tuples that a query needs.

Figure 5: Index Scan Example – Consider a single table with 100 tuples and two
indexes: age and department. In the first scenario, it is better to use the department
index in the scan because it only has two tuples to match. Choosing the age index
would not be much better than a simple sequential scan. In the second scenario, the
age index would eliminate more unnecessary scans and is the optimal choice.

There are many factors involved in the DBMSs’ index selection process, including:
• What attributes the index contains
• What attributes the query references
• The attribute’s value domains
• Predicate composition
• Whether the index has unique or non-unique keys

A simple example of an index scan is shown in Figure 5.
More advanced DBMSs support multi-index scans. When using multiple indexes for a query, the DBMS
computes sets of record IDs using each matching index, combines these sets based on the query’s pred-
icates, and retrieves the records and apply any predicates that may remain. The DBMS can use bitmaps,
hash tables, or Bloom filters to compute record IDs through set intersection. See Figure 6 for an example
that makes use of a multi-index scan.

15-445/645 Database Systems
Page 5 of 7

https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #13 Query Processing I

Figure 6: Multi-Index Scan Example – Consider the same table in Figure 5. With
multi-index scan support, we first compute the sets of record IDs satisfying the predi-
cate for age and dept, respectively, using the corresponding index. We then compute
the intersection of the two sets, fetch the corresponding records, and apply the re-
maining predicate country=’US’.

5 ModificationQueries
Operators that modify the database (INSERT, UPDATE, DELETE) are responsible for checking constraints
and updating indexes. For UPDATE/DELETE, child operators pass Record IDs for target tuples and must
keep track of previously seen tuples.
There are two implementation choices on how to handle INSERT operators:

• Choice #1: Materialize tuples inside of the operator.
• Choice #2: Operator inserts any tuple passed in from child operators.

Halloween Problem
The Halloween Problem is an anomaly in which an update operation changes the physical location of a
tuple, causing a scan operator to visit the tuple multiple times. This can occur on clustered tables or index
scans.
This phenomenon was originally discovered by IBM researchers while building System R on Halloween
day in 1976. The solution to this problem is to keep track of the modified record IDs for each query.

6 Expression Evaluation
The DBMS represents a WHERE clause as an expression tree (see Figure 7 for an example). The nodes in the
tree represent different expression types.
Some examples of expression types that can be stored in tree nodes:

• Comparisons (=, <, >, !=)
• Conjunction (AND), Disjunction (OR)
• Arithmetic Operators (+, -, *, /, %)
• Constant and Parameter Values
• Tuple Attribute References

To evaluate an expression tree at runtime, the DBMS maintains a context handle that contains metadata
for the execution, such as the current tuple, the parameters, and the table schema. The DBMS then walks
the tree to evaluate its operators and produce a result.

15-445/645 Database Systems
Page 6 of 7

https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #13 Query Processing I

Figure 7: Expression Evaluation Example – A WHERE clause and a diagram of its
corresponding expression.

Evaluating predicates in this manner is slow because the DBMS must traverse the entire tree and deter-
mine the correct action to take for each operator. A better approach is to just evaluate the expression
directly (think JIT compilation). Based on a internal cost model, the DBMS would determine whether code
generation will be adopted to accelerate a query.

Scheduler
The above query processing models give a clear description of data flow while the control flow is rather
implicit. Scheduler has a clean separation of data flow and control flow. It works well in batch mode,
especially the vectorization model. The scheduler creates scheduling components (work orders), instead
of calling the operator tree from top to bottom, it walks through the tree and puts scheduling works into
scheduling queue. The worker threads then fetch requests from the queue and execute them.

Figure 8: Comparison of Scheduler and TraditionalQuery Processing Model

In general, it has cleaner abstraction, dynamic optimzation, in-built query suspension, better p9x perfor-
mance and better manageability and debug-ability.

15-445/645 Database Systems
Page 7 of 7

https://15445.courses.cs.cmu.edu/spring2024/

	Query Plan
	Hardware Trends
	Processing Models
	Access Methods
	Modification Queries
	Expression Evaluation

