
Lecture #23: Distributed OLAP Databases
15-445/645 Database Systems (Spring 2024)

https://15445.courses.cs.cmu.edu/spring2024/
Carnegie Mellon University

Jignesh Patel

1 Decision Support Systems
For a read-only OLAP database, it is common to have a bifurcated environment, where there are multiple
instances of OLTP databases that ingest information from the outside world which is then fed into the
back-end OLAP database, sometimes called a data warehouse. There is an intermediate step called ETL, or
Extract, Transform, and Load, which combines the OLTP databases into a universal schema for the data
warehouse.
A current, modern trend (rather than ETL) is ELT, or Extract, Load, and Transform. Once the raw data is
loaded into the OLAP database, the transform is done on the OLAP database itself.
Decision support systems (DSS) are applications that serve the management, operations, and planning levels
of an organization to help people make decisions about future issues and problems by analyzing historical
data stored in a data warehouse.
The two approaches for modeling an analytical database are star schemas and snowflake schemas.

Star Schema
Star schemas contain two types of tables: fact tables and dimension tables. The fact table contains multiple
“events” that occur in the application. It will contain the minimal unique information per event, and then
the rest of the attributes will be foreign key references to outer dimension tables. The dimension tables
contain redundant information that is reused acrossmultiple events. In a star schema, there can only be one
dimension-level out from the fact table. Since the data can only have one level of dimension tables, it can
have redundant information. Denormalized data models may incur integrity and consistency violations, so
replication must be handled accordingly. Queries on star schemas will (usually) be faster than a snowflake
schema because there are fewer joins. An example of a star schema is shown in Figure 1.

Snowflake Schema
Snowflake schemas are similar to star schemas except that they allow for more than one dimension out
from the fact table and sometimes contain multiple fact tables. As a result of less redundancy, they take up
less storage space, but they require more joins to get the data needed for a query. For this reason, queries
on star schemas are usually faster. An example of a snowflake schema is shown in Figure 2.

2 Execution Models
A distributed DBMS’s execution model specifies how it will communicate between nodes during query
execution. Two approaches to executing a query are pushing and pulling.

https://15445.courses.cs.cmu.edu/spring2024/
https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #23 Distributed OLAP Databases

Figure 1: Star Schema – The center of the schema is the SALES fact table that con-
tains key references to outer dimension tables. Because star schemas are only one-
dimensional, the outer dimensional tables cannot point to other dimension tables.

Pushing aQuery to Data
For the first approach, the DBMS sends the query (or a portion of it) to the node that contains the data.
It then performs as much filtering and processing as possible where data resides before transmitting over
network, in order to minimize costly data transmission. The result is then sent back to where the query is
being executed, which uses local data and the data sent to it, to complete the query. This is more common
in a shared nothing system.

Pulling Data toQuery
For the second approach, the DBMS brings the data to the node that is executing a query that needs it for
processing. In other words, nodes detect which partitions of the data they can do computation on and pull
from storage accordingly. Then, the local operations are propagated to one node, which does the operation
on all the intermediary results. This is normally what a shared disk system would do. The problem with
this is that the size of the data relative to the size of the query could be very different. A filter can also be
sent to only retrieve the data needed from disk.

Query Fault Tolerance
The data that a node receives from remote sources are cached in the buffer pool. This allows the DBMS
to support intermediate results that are larger than the amount of memory available. Ephemeral pages,
however, are not persisted after a restart. Therefore, a distributed DBMS must consider what happens to a
long-running OLAP query if a node crashes during execution.
Most shared-nothing distributed OLAP DBMSs are designed to assume that nodes do not fail during query
execution. If one node fails during query execution, then the whole query fails, which forces the entire
query to re-execute from the start. This can be expensive, as some OLAP queries can take days to execute.
The DBMS could take a snapshot of the intermediate results for a query during execution to allow it to
recover if nodes fail. This operation is expensive, however, because writing data to disk is slow.

15-445/645 Database Systems
Page 2 of 6

https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #23 Distributed OLAP Databases

Figure 2: Snowflake Schema –The category information in the product dimension
table can be broken out in the snowflake table.

3 Query Planning
All the optimizations that we talked about before are still applicable in a distributed environment, including
predicate pushdown, early projections, and optimal join orderings. Distributed query optimization is even
harder because it must consider the physical location of data in the cluster and data movement costs.

Query Plan Fragments
One approach is to generate a single global query plan and then distribute physical operators to nodes,
breaking it up into partition-specific fragments. Most systems implement this approach.
Another approach is to take the SQL query and rewrite the original query into partition-specific queries.
This allows for local optimization at each node. SingleStore and Vitess are examples of systems that use
this approach.

4 Distributed Join Algorithms
For analytical workloads, the majority of the time is spent doing joins and reading from disk, showing
the importance of this topic. The efficiency of a distributed join depends on the target tables’ partitioning
schemes.
One approach is to put entire tables on a single node and then perform the join. However, the DBMS
loses the parallelism of a distributed DBMS, which defeats the purpose of having a distributed DBMS. This
option also entails costly data transfer over the network.
To join tables R and S, the DBMS needs to get the proper tuples on the same node. Once there, it then
executes the same join algorithms discussed earlier in the semester. One should always send the minimal
amount needed to compute the join, sometimes entailing entire tuples.
There are four scenarios for distributed join algorithms.

15-445/645 Database Systems
Page 3 of 6

https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #23 Distributed OLAP Databases

Scenario 1
One of the tables is replicated at every node and the other table is partitioned across nodes. Each node
joins its local data in parallel and then sends their results to a coordinating node.

Scenario 2
Both tables are partitioned on the join attribute, with IDs matching on each node. Each node performs the
join on local data and then sends to a node for coalescing.

Scenario 3
Both tables are partitioned on different keys. If one of the tables is small, then the DBMS broadcasts that
table to all nodes. This takes us back to Scenario 1. Local joins are computed and then those joins are sent
to a common node to operate the final join. This is known as a broadcast join.

Scenario 4
This is the worst case scenario. Both tables are not partitioned on the join key. The DBMS copies the tables
by reshuffling them across nodes. Local joins are computed and then the results are sent to a common
node for the final join. If there isn’t enough disk space, a failure is unavoidable. This is called a shuffle join.

Semi-Join
A semi-join is a join operator where the result only contains columns from the left table. Distributed DBMSs
use semi-join to minimize the amount of data sent during joins.
It is like a natural join, except that the attributes on the right table that are not used to compute the join
are restricted.

5 Cloud Systems
Vendors provide database-as-a-service (DBaaS) offerings that are managed DBMS environments.
Newer systems are starting to blur the lines between shared-nothing and shared-disk. For example, Ama-
zon S3 allows for simple filtering before copying data to compute nodes. There are two types of cloud
systems, managed or cloud-native DBMSs.

Managed DBMSs
In a managed DBMS, there is no significant modification to the DBMS to make it ”aware” that it is running
in a cloud environment. It provides a way to abstract away all the backup and recovery for the client. This
approach is deployed in most vendors.

Cloud-Native DBMS
A cloud-native system is designed explicitly to run in a cloud environment. This is usually based on a
shared-disk architecture. This approach is used in Snowflake, Google BigQuery, Amazon Redshift,
andMicrosoft SQL Azure.

Serverless Databases
Rather than always maintaining compute resources for each customer, a serverless DBMS evicts tenants
when they become idle, checkpointing the current progress in the system to disk. Now, a user is only

15-445/645 Database Systems
Page 4 of 6

https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #23 Distributed OLAP Databases

Figure 3: Serverless Database –When the application server becomes idle, the user
must pay for resources in the node that are not being used. In a serverless database,
when the application server stops, the DBMS takes a snapshot of pages in the buffer
pool and writes it out to shared disk so that the computation can be stopped. When
the application server returns, the buffer pool page table restores the previous state
in the node.

paying for storage when not actively querying. A diagram of this is shown in Figure 3.

Data Lakes
A Data Lake is a centralized repository for storing large amounts of structured, semi-structured, and un-
structured data without having to define a schema or ingest the data into proprietary internal formats.
Data lakes are usually faster at ingesting data, as they do not require transformation right away. They do
require the user to write their own transformation piplines.

6 OLAP Commoditization
One recent trend of the last decade is the breakout OLAP engine sub-systems into standalone open-source
components. This is typically done by organizations not in the business of selling DBMS software. These
components are generally system catalogs, query optimizers, file format/access libraries, and executions
engines.

System Catalogs
A DBMS tracks a database’s schema (table, columns) and data files in its catalog. If the DBMS is on the
data ingestion path, then it can maintain the catalog incrementally. If an external process adds data files,
then it also needs to update the catalog so that the DBMS is aware of them. Notable examples include
HCatalog, Google Data Catalog, and Amazon Glue Data Catalog.

Query Optimizers
Extendible search engine framework for heuristic-based and cost-based query optimization. DBMS pro-
vides transformation rules and cost estimates. Framework returns either logical or physical query plan.
This is the hardest part to build in any DBMS. Notable examples include Greenplum Orca and Apache

15-445/645 Database Systems
Page 5 of 6

https://15445.courses.cs.cmu.edu/spring2024/


Spring 2024 – Lecture #23 Distributed OLAP Databases

Calcite.

Data File Formats
Most DBMSs use a proprietary on-disk binary file format for their databases. The only way to share data
between systems is to convert data into a common text-based format, including CSV, JSON, and XML.
There are new open-source binary file formats, which cloud vendors and distributed database systems
support, that make it easier to access data across systems. Writing a custom file format would give way to
better compression and performance, but this gives way to better interoperability.
Notable examples include:

• Apache Parquet: Compressed columnar storage from Cloudera/Twitter.
• Apache ORC: Compressed columnar storage from Apache Hive.
• Apache CarbonData: Compressed columnar storage with indexes from Huawei.
• Apache Iceberg: Flexible data format that supports schema evolution from Netflix.
• HDF5: Multi-dimensional arrays for scientific workloads.
• Apache Arrow: In-memory compressed columnar storage from Pandas/Dremio.

Execution Engines
Standalone libraries for executing vectorized query operators on columnar data. The input is a directed,
acyclic graph of physical operators. They require external scheduling and orchestration. Notable examples
include Velox, DataFusion, and Intel OAP.

15-445/645 Database Systems
Page 6 of 6

https://15445.courses.cs.cmu.edu/spring2024/

	Decision Support Systems
	Execution Models
	Query Planning
	Distributed Join Algorithms
	Cloud Systems
	OLAP Commoditization

