—
jamegie  |ntro to Database

University Systems (15-445/645)

Lecture #0171

Relational
Model &
Algebra

SPRING 2024 )) Prof. Jignesh Patel




COURSE LOGISTICS

Course Policies + Schedule: Course Web Page

Discussion + Announcements: Piazza

Homeworks + Projects: Gradescope

Final Grades: Canvas

Do not post your solutions on Github.

Do not email instructors / TAs for help.

$ZCMU-DB

15-445/645 (Spring 2024 )


https://15445.courses.cs.cmu.edu/spring2024/
https://piazza.com/class?nid=lph5an72faw2s
https://www.gradescope.com/courses/674039
https://canvas.cmu.edu/courses/38864

$ZCMU-DB

WAITLIST

We do not control the waitlist.

Admins will move students off the waitlist as spots
become available.

This class will be offered in Fall'24 too!

15-445/645 (Spring 2024 )




LECTURE RULES

Do interrupt for the following reasons:
— I'm speaking too fast.

— You don’t understand what I'm talking about.

['ll will not answer questions about the lecture
immediately after class.

$ZCMU-DB

15-445/645 (Spring 2024 )



g
<& C++ REQUIREMENT

N
>
\\o\’ All the projects are in C++ .... If you are new to C++, you must pick it up quickly... If you

V4

<
& $°

can take and get all the questions on the following quizzes right, you are all set:

Scoping: https://www.learncpp.com/cpp-tutorial/chapter-7-summary-and-quiz/

Type Conversion: https://www.learncpp.com/cpp-tutorial/chapter-10-summary-and-quiz/

lvalues/rvalues: https://www.learncpp.com/cpp-tutorial/chapter-12-summary-and-quiz/

Stack and heap: https://www.learncpp.com/cpp-tutorial/chapter-20-summary-and-quiz/

Move Semantics: https://www.learncpp.com/cpp-tutorial/chapter-22-summary-and-quiz/

Templates: https://www.learncpp.com/cpp-tutorial/chapter-26-summary-and-quiz/

... take it upon yourself to catch up ...

... also https://db.in.tum.de/teaching/ss23/c++praktikum/slides/lecture-10.2.pdf?lang=en

C++ Bootcamp: This Friday 1/19 from 3:30pm-4:30pm in GHC 6115
£=CMU-DB

15-445/645 (Spring 2024)


https://www.learncpp.com/cpp-tutorial/chapter-7-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-10-summary-and-quiz/lvalues/rvalues
https://www.learncpp.com/cpp-tutorial/chapter-12-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-20-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-22-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-26-summary-and-quiz/
https://db.in.tum.de/teaching/ss23/c++praktikum/slides/lecture-10.2.pdf?lang=en

PROJECT 0: GOALS

— Get you started on C++, so you are not surprised later.
— Get you thinking about algorithms and concurrency.

— PO is about Conflict-Free Replicated Data Type (CRDT) -
a distributed data structure that coordinates changes and

produces an “eventually” consistent state.

— Will connect to PO with the last few topics in the class that
is all about transactions)

— | wanted an excuse to introduce CRDT's. As members of

(That is you by}
the end of this -

semester. | If you can’t score 100% on PO, you can’t stay in this class.

————————————————

the data tribe, we should all know about this concept.

I
1
1
1
1
\

$ZCMU-DB

15-445/645 (Spring 2024)



TODAY'’S AGENDA

Database Systems Background

Relational Model
Relational Algebra
Alternative Data Models

C3CMU -DB



DATABASE

Organized collection of inter-related data that models
some aspect of the real-world.

Databases are the core component of most computer
applications.

$ZCMU-DB

15-445/645 (Spring 2024)



DATABASE EXAMPLE

Create a database that models a digital music store to

keep track of artists and albums.

Things we need for our store:

— Information about Artists

— What Albums those Artists released

$ZCMU-DB

15-445/645 (Spring 2024)



FLAT FILE STRAWMAN
Store our database as comma-separated value (CSV)
files that we manage ourselves in our application code.

— Use a separate file per entity.
— The application must parse the files each time they want to
read/update records.

Artist(name, year, country) Album(name, artist, year)

"Wu-Tang Clan",1992, "USA" "Enter the Wu-Tang","Wu-Tang Clan",1993
"St.Ides Mix Tape","Wu-Tang Clan",1994

"Notorious BIG",1992, "USA"
"Liquid Swords", "GZA",1990

"GZA",1990, "USA"

$ZCMU-DB

15-445/645 (Spring 2024)



https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

FLAT FILE STRAWMAN

Example: Get the year that GZA went solo.

Artist(name, year, country)

"Wu-Tang Clan", 1992, "USA"
"Notorious BIG",1992, "USA"

"GZA",1990, "USA"

$ZCMU-DB

15-445/645 (Spring 2024)

»

for line in file.readlines():
record = parse(line)
if record[0] == "GZA":
print(int(record[1]))




FLAT FILES: DATA INTEGRITY

How do we ensure that the artist is the same for each
album entry?

What if somebody overwrites the album year with an
invalid string?

What if there are multiple artists on an album?

What happens if we delete an artist that has albums?

C3CMU -DB



FLAT FILES: IMPLEMENTATION

How do you find a particular record?

What if we now want to create a new application that
uses the same database? What if that application is

running on a different machine?

What if two threads try to write to the same file at the

same time?

$ZCMU-DB

15-445/645 (Spring 2024)



C3CMU -DB

FLAT FILES: DURABILITY

What if the machine crashes while our program is
updating a record?

What if we want to replicate the database on multiple
machines for high availability?




C3CMU -DB

DATABASE MANAGEMENT SYSTEM

A database management system (DBMS) is software

that allows applications to store and analyze

information in a database.

A general-purpose DBMS supports the definition,
creation, querying, update, and administration of
databases in accordance with some data model.




DATA MODELS

A data model is a collection of concepts for describing

the data in a database.

A schema is a description of a particular collection of

data, using a given data model.

Preview of the relational model

CREATE TABLE Artist(name VARCHAR, year DATE, country CHAR(60));
CREATE TABLE Album(Albumid INTEGER, name VARCHAR, year DATE);

$ZCMU-DB

15-445/645 (Spring 2024)




DATA MODELS

Relational

Key/Value

Graph

Document / XML / Object
Wide-Column / Column-family
Array / Matrix / Vectors
Hierarchical

Network

Multi-Value

$ZCMU-DB

15-445/645 (Spring 2024 )



DATA MODELS

Key/Value

Graph

Document / XML / Object
Wide-Column / Column-family
Array / Matrix / Vectors
Hierarchical

Network

Multi-Value

$ZCMU-DB

15-445/645 (Spring 2024 )



DATA MODELS

Relational
Key/Value

Graph
tap — NoSQL

Document / XML / Object
Wide-Column / Column-family
Array / Matrix / Vectors
Hierarchical

Network

Multi-Value

$ZCMU-DB

15-445/645 (Spring 2024 )



DATA MODELS

Relational

Key/Value

Graph

Document / XML / Object

Wide-Column / Column-family

«— Machine Learning
Hierarchical

Network

Multi-Value

$ZCMU-DB

15-445/645 (Spring 2024 )



DATA MODELS

Relational

Key/Value

Graph

Document / XML / Object
Wide-Column / Column-family
Array / Matrix / Vectors
Hierarchical

Network «— Obsolete / Legacy / Rare
Multi-Value

$ZCMU-DB

15-445/645 (Spring 2024 )



DATA MODELS

Relational

Key/Value

Graph

Document / XML / Object
Wide-Column / Column-family
Array / Matrix / Vectors
Hierarchical

Network

Multi-Value

$ZCMU-DB

15-445/645 (Spring 2024 )



DATA MODELS
«— This Course

Key/Value

Graph

Document / XML / Object
Wide-Column / Column-family
Array / Matrix / Vectors
Hierarchical

Network

Multi-Value

$ZCMU-DB

15-445/645 (Spring 2024 )



$ZCMU-DB

EARLY DBMSS

Early database applications were difficult to build and
maintain on available DBMSs in the 1960s.

— Examples: IDS, IMS, CODASYL

— Computers were expensive, humans were cheap.

Tight coupling between logical and physical layers.

Programmers had to (roughly) know what queries the
application would execute before they could deploy the
database.

15-445/645 (Spring 2024 )



https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL

£2CMU-DB
15-445/645 (Spri

EARLY DBMSS

Ted Codd was a mathematician at
IBM Research in the late 1960s.

Codd saw IBM’s developers rewriting
database programs every time the

database’s schema or layout changed.

Devised the relational model in 1969.

ng 2024)




£CMU-DB

15-445/645 (Spring 2024)

DERIVABILITY, REDUNDANCY AND CONSISTENCY OF RELATIONS
STORED IN LARGE DATA BANKS

E. F. Codd
Research Division
San Jose, California

ABSTRACT: The large, integrated data banks of the future will
contain many relations of various degrees in stored form. It will
not be unusual for this set of stored relations to be redundant.
Two types of redundancy are defined and discussed. One type may be
employed to improve accessibility of certain kinds of information
which happen to be in great demand. When either type of redundancy
exists, those responsible for control of the data bank should know
about it and have some means of detecting any "logical”
inconsistencies in the total set of stored relations. Consistency
checking might be helpful in tracking down unauthorized (and
possibly fraudulent) changes in the data bank contents.

R] 599(it 12343) August 19, 1969

LIMITED DISTRIBUTION NOTICE - This report has been submitted for
publication elsewhere and has been issued as a Research Report for early
dissemination of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of outside
publication.

Copies may be requested from I8N Thonas ). Watson Research Center, Post Office Box 213,
Yorktown Heights, New York 10598

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Cobp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having fo know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application progroms should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external

‘The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structum only—that is, without supenm
posing any addi for machine
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for tm(:mg denvnluhty, xedunda.ncy,
and i of relati d in Section
2. The network model, on the other hand, has spawned a
number of oonfuswnu, not the least of which is mistaking

are changed. Changes in data representation will offen be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.
Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, @ normal
form for data base relations, and the concept of a universal
data sublanguage are introduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user's model.
KEY WORDS AND PHRASES: data bank, dota base, dota structure, data
organization, hierarchies of data, networks of data, relations, derivability,
redundancy, consistency, composition, foin, retrieval language, predicate
calculus, security, data integrity
CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29

1. Relational Model and Normal Form

L1. INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data. Except for a paper
by Childs (1], the principal application of relations to data
systems has been to deductive question-answering systems.
Levein and Maron [2] provide numerous references to work
in this area.

the deri of ions for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).
Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data aymms, and Also the relative merits (from a logical
) of ions of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.
1.2. DaTA DEPENDENCIES IN PRESENT SYsTEMS
The provision of data description tables in recently de-
veloped information systems represents a major advance
toward the goal of data independence [5, 6, 7). Such tables
facilitate changing certain characteristics of the data repre-
sentation stored in a data bank. However, the variety of
data representation eh.nruuxuuu which can be elnnged
without logically impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another.
12.1. Ordering Dependence. Elements of data in a
data bank may be stored in a variety of ways, some involv-
ing no concern for ordering, some permitting each element
to participate in ane ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be mred in at least one wm oxden.ng which is
closely iated with the hard: oldermg

In contrast, the problems treated here are those of data
independ, the independ. of applicati

and terminal activities from growth in data types and
changes in data representation—and certain kinds of data
wwoumtmcy which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

of add For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377




Next Next

Parent

Prior Prior

I st chid J_D"?EL Direct nth chid
Next . o *

Prior Prior | Next

|

|

2nd child Diect |

|

|

Next
A closed chain of records in a navigational database model (e.g. CODASYL), with

next poil , prior poil and direct poi provided by keys in the various records.
Next
Parent
Prior
Empty set
lllustration of an empty set
Customer - order Customer -order
t2

[owri]  [owers] [omers ] * setiype

Customer-order
t1
-

Expanded diagram
(longhand representation)

Bachman diagram
(shorthand representation)

lllustration of a set type using a Bachman diagram

The record set, basic structure of navigational (e.g. CODASYL) databse model. A set consists
of one parent record (also called "the owner"), and n child records (also called members records)

sZCMU-DB

15-445/645 (Spring 2024)

CODASYL

COBOL/CODASYL camp:

1. The relational model is too mathematical. No
mere mortal programmer will be able to under-
stand your newfangled languages.

2. Even if you can get programmers to learn your
new languages, you won’t be able to build an
efficient implementation of them.

3. On-line transactiontprocessing applications want
to do record-oriented operations.

Relational camp:

1. Nothing as complicated as the DBTG proposal can
possibly be the right way to do data management.

2. Any set-oriented query is too hard to program
using the DBTG data manipulation language.

3. The CODASYL model has no formal underpin-
ning with which to define the semantics of the
complex operations in the model.

The great debate:

“The Differences and
Similarities Between the Data
Base Set and Relational Views
of Data.”

ACM SIGFIDET Workshop
on Data Description, Access,
and Control in Ann Arbor,
Michigan, held 1-3 May 1974



$ZCMU-DB

RELATIONAL MODEL

The relational model defines a database abstraction
based on relations to avoid maintenance overhead.

Key tenets:

— Store database in simple data structures (relations).

— Physical storage left up to the DBMS implementation.

— Access data through high-level language, DBMS figures out

best execution strategy.

15-445/645 (Spring 2024 )




$ZCMU-DB

RELATIONAL MODEL

Structure: The definition of the database’s relations
and their contents.

Integrity: Ensure the database’s contents satisfy
constraints.

Manipulation: Programming interface for accessing
and modifying a database's contents.

15-445/645 (Spring 2024)




KEY CONCEPT: DATA INDEPENDENCE (DI)
[ Application ] [ Application ]

[solate the
user/application from low

[ External Schema ] [ External Schema ] Views

level data representation. (SQL)
Logical DI

— The user only worries about

application logic. Logical Schema

.. SQL
— Database can optimize the Physical Dlt (SQL)
layout (and re-optimize as [ Physical Schema ] Pages, Files, B-trees, ...
the workload changes). ; (DB system internal)
‘ Disk |

$ZCMU-DB

15-445/645 (Spring 2024)

Schema, constraints, ...



RELATIONAL MODEL

A relation is an unordered set that
contain the relationship of attributes

Artist(name, year, country)

that represent entities. name year _ country
Wu-Tang Clan 1992 |USA

A tuple is a set of attribute values Notorious BIG 1992 |USA

(also known as its domain) in the G2 1990 |UsA

relation. n-ary Relation

— Values are (normally) atomic/scalar. =

— The special value NULL is a member of Table with n columns

every domain (if allowed).

$ZCMU-DB

15-445/645 (Spring 2024)



RELATIONAL MODEL: PRIMARY KEYS

A relation’s primary key uniquely

identifies a single tuple. Arkcst§tdnamemeyesearcountinyy)
Some DBMSs automatically create an i country
internal primary key if a table does not  }101 Jwu-Tang clan 1992 |USA
define one. 102 [Notorious BIG 1992 |USA

103 fczA 1990  |USA

DBMS can auto-generation unique
primary keys via an identity column:
IDENTITY (SQL Standard)

SEQUENCE (PostgreSQL / Oracle)
AUTO_INCREMENT (MySQL)

$ZCMU-DB

15-445/645 (Spring 2024)


https://en.wikipedia.org/wiki/List_of_SQL_reserved_words

RELATIONAL MODEL: FOREIGN KEYS

A foreign key specifies that an attribute from one

relation maps to a tuple in another relation.

$2CMU-DB

15-445/645 (Spring 2024 )



RELATIONAL MODEL: FOREIGN KEYS

Artist(id, name, year, country)

id name year country
101 |Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA

Album(id, name, artists, year)

id name artists year
11 [Enter the Wu-Tang 101 1993
22 |St.Ides Mix Tape 2777 1994
33 [Liquid Swords 103 1995

$ZCMU-DB

15-445/645 (Spring 2024)


https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

RELATIONAL MODEL: FOREIGN KEYS

Artist(id, name, year, country)

id name year country
101 |Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA

Album(id, name, artists, year)

id name artists year
11 [Enter the Wu-Tang 101 1993
22 |St.Ides Mix Tape 2777 1994
33 [Liquid Swords 103 1995

$ZCMU-DB

15-445/645 (Spring 2024)


https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

ArtistAlbum(artist_id, album_id)

artist_id album_id

$CMU-DB

15-445/645 (Spring 2024)

RELATIONAL MODEL: FOREIGN KEYS

101

11

101 22
103 22
102 22

Artist(id, name, year, country)

id name year country
101 |Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA

Album(id, name, artists, year)

id name artists
11 |Enter the Wu-Tang 101
22 |St.Ides Mix Tape 2777
33 |Liquid Swords 103

year
1993
1994
1995



https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

ArtistAlbum(artist_id, album_id)

artist_id album_id

$CMU-DB

15-445/645 (Spring 2024)

RELATIONAL MODEL: FOREIGN KEYS

101 11
101 22
103 22
102 22

Artist(id, name, year, country)

id name year country
101 |Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA
Album(id, name, year)
id name year
11 [Enter the Wu-Tang 1993
22 |St.Ides Mix Tape 1994
33 |Liquid Swords 1995



https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

RELATIONAL MODEL: FOREIGN KEYS

ArtistAlbum(artist_id, album_id)

artist_id album_id

101

11

101 22
103 22
102 22

$ZCMU-DB

15-445/645 (Spring 2024)

Artist(id, name, year, country)

id name year country
101 |Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA
Album(id, name, year)
id name year
11 [Enter the Wu-Tang 1993
22 |St.Ides Mix Tape 1994
33 |Liquid Swords 1995



https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

RELATIONAL MODEL: CONSTRAINTS

User-defined conditions that must Artist(id, name, year, country)
hold for any instance of the database. id  name year  country
— Can validate data within a single tuple 101 |Wu-Tang Clan 1992 |USA
or across entire relation(s). 102 |Notorious BIG 1992  |USA
— DBMS prevents modifications that 103 |GZA 1990 |USA
violate any constraint. CREATE TABLE Artist(

. . name VARCHAR NOT NULL,
Unique key and referential (fkey) |year DATE,

constraints are the most common. [country CHAR(60),
CHECK (date_trunc('year', year) =year));

SQL:92 supports global asserts but CREATE ASSERTION myAssert
these are rarely used (too slow). CHECK ( <SQL> );

$ZCMU-DB

15-445/645 (Spring 2024)



DATA MANIPULATION LANGUAGES (DML)

Methods to store and retrieve information from a database.

Procedural: «— Relational
. . Algebra
The query specifies the (high-level) strategy
to find the desired result based on sets / bags.
Non-Procedural (Declarative): < Relational
' Calculus

The query specifies only what data is wanted

and not how to find it.

$ZCMU-DB

15-445/645 (Spring 2024)



RELATIONAL ALGEBRA

Fundamental operations to retrieve
and manipulate tuples in a relation.

— Based on set algebra (unordered lists with
no duplicates).

2 C 4 a

Each operator takes one or more
relations as its inputs and outputs a
new relation.

— We can “chain” operators together to

create more compleX operations.

$ZCMU-DB

15-445/645 (Spring 2024)

Select
Projection
Union
Intersection
Difference
Product
Join




RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from R(a_id,b_id)
a relation that satisfies a selection
predicate. o

— Predicate acts as a filter to retain only :i 122

tuples that fulfill its qualifying Oaicear(R) O sacimp'n b iaoran(R)—
requirement. a_id b_id
: : : 2 [1e2
— Can combine multiple predicates :2 123 2182

using conjunctions / disjunctions.

SELECT * FROM R
WHERE a_id="'a2' AND b_id>102

SyntaX: cp redicate ( R )

$ZCMU-DB

15-445/645 (Spring 2024)



RELATIONAL ALGEBRA: PROJECTION

Generate a relation with tuples that R>
a_l -1
contains only the specified attributes. a1 |01
a2 102
— Rearrange attributes’ ordering. a2 [103
a3 104

— Remove unwanted attributes.

— Manipulate values to create derived

attributes.

Syntax: Iy x2,.,an(R)

$ZCMU-DB

15-445/645 (Spring 2024)

Iy id-100,a_id(Fa_id="a2' (R))

b_id-100 a_id

2 a2
3 a2

SELECT b_id-100, a_id
FROM R WHERE a_id = 'a2’';




RELATIONAL ALGEBRA: UNION

: R(a_id,b_id)  S(a_id,b_id)
Generate a relation that
contains all tuples that appear in ~ jai__Jio a3 [103
a2 102 a4 104
either only one or both input a3 [r03 a5 [105
relations. (R U S)
al 101
SyntaX: (R U S) a2 102
(SELECT * FROM R) | [a3  [103
UNION a4 104
(SELECT * FROM S); a5 |105

$ZCMU-DB

15-445/645 (Spring 2024)



RELATIONAL ALGEBRA: INTERSECTION

R(a_id,b_id) S(a_id,b_id)

Generate a relation that contains

only the tuples that appear in 2ol =10
both of the input relations. a3 [r03 a5 105
(R N S)
Syntax: (R N S) a_id b_id
a3 103

(SELECT * FROM R)
INTERSECT
(SELECT * FROM S);

$ZCMU-DB

15-445/645 (Spring 2024)



RELATIONAL ALGEBRA: DIFFERENCE

R(a_id,b_id) S(a_id,b_id)

Generate a relation that contains

only the tuples that appear in the ~ t_po 1o
first and not the second of the a3 [re3 as__ 105
input relations. (R - S)
al 101
Syntax: (R - S) a2 [102
(SELECT * FROM R)
EXCEPT

(SELECT * FROM S);

$ZCMU-DB

15-445/645 (Spring 2024)



RELATIONAL ALGEBRA: PRODUCT

: : R(a_id,b_id)  S(a_id,b_id)
Generate a relation that contains

all possible combinations of tuples [1__fi@ a3 [103
a2 102 a4 104
from the input relations. a3 [103 a5 105
(R x S)
S R S R.a_id R.b_id S.a_id S.b_id
ntax: X al 101 a3 103
y ( ) al 101 ad 104
al 101 ad 105
SELECT * FROM R CROSS JOIN S; 22 102 [a3 o3
a2 102 a4 104
a2 102 ab 105
SELECT * FROM R, S; 23 [1o3  [a3  [i03
a3 103 a4 104
a3 103 ab 105

$ZCMU-DB

15-445/645 (Spring 2024)



RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all

tup!
tup!
wit]

les that are a combination of two
es (one from each input relation)

h a common value(s) for one or

more attributes.

Syntax: (R ™ S)

$ZCMU-DB

15-445/645 (Spring 2024)

R(a_id,b_id) S(a_id,b_id,val)

al

101

a3

103

XXX

a_id b_id val

a2

102

a4

104

YYY

a3

103

ab

105

77




=
RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all  R¢a_id,b_id) S(a_id,b_id,val)

tuples that are a combination of two  [;7 The: 23 103 |xxx
tuples (one from each input relation) [2[192 o4 o4 vy

. a3 103 ab 105 |(ZZ7Z
with a common value(s) for one or X 00 5

more attributes. R.a_id R.b_id S.a_id S.b_id S.val a_id b_id val

a3 [103 [XXX

-

Syntax: (R ™4 S)

$ZCMU-DB

15-445/645 (Spring 2024)



RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all  R¢a_id,b_id) S(a_id,b_id,val)

tuples that are a combination of two  [;7 The: 23 103 |xxx
tuples (one from each input relation) [2[192 o4 o4 vy

. a3 103 ab 105 |(ZZ7Z
with a common value(s) for one or X 00 5

a_id b_id val

more attributes. R.a_id R.b_id S'a<.d $'5.d S.val
: a3 |13 [xxx

-

Syntax: (R ™4 S)

$ZCMU-DB

15-445/645 (Spring 2024)



RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all

tup!
tup!
wit]

les that are a combination of two
es (one from each input relation)

h a common value(s) for one or

more attributes.

Syntax: (R ™4 S)

$ZCMU-DB

15-445/645 (Spring 2024)

R(a_id,b_id) S(a_id,b_id,val)

al

101

a3

103

XXX

a_id b_id val

a2

102

a4

104

YYY

a3

103

ab

105

77

a_id b_id val

a3 [103 [XXX

(R @ S)

SELECT * FROM R NATURAL JOIN S;

SELECT * FROM R JOIN S USING (a_id, b_id);

SELECT * FROM R JOIN S
ON R.a_id = S.a_id AND R.b_id = S.b_id;




RELATIONAL ALGEBRA: EXTRA OPERATORS 7
Rename (p)
Assignment (Re€S)
Duplicate Elimination (8)
Aggregation (Y)
Sorting (T)
Division (R+S)

C3CMU -DB



OBSERVATION

Relational algebra defines an ordering of the high-level
steps of how to compute a query.

— Example: O_jg=19,(RXS) vs. (RX(O},_;4-102(S))

A better approach is to state the high-level answer that
you want the DBMS to compute.

— Example: Retrieve the joined tuples from R and S where b_id
equals 102.

$ZCMU-DB

15-445/645 (Spring 2024 )



RELATIONAL MODEL: QUERIES

The relational model is independent of any query

language implementation.

SQL is the de facto standard (many dialects).

for line in file.readlines():
record = parse(line)
if record[0] == "GZA":
print(int(record[1]))

SELECT year FROM artists
WHERE name = 'GZA';

$ZCMU-DB

15-445/645 (Spring 2024)




DATA MODELS

Relational
Key/Value

Graph
Document / XML / Object |« Leading Alternative

Wide-Column / Column-family

Array / Matrix — Hot these days
Hierarchical

Network

Multi-Value

$ZCMU-DB

15-445/645 (Spring 2024 )



DOCUMENT DATA MODEL

A collection of record documents containing a hierarchy of

named field/value pairs.

— A field’s value can be either a scalar type, an array of values, or another document.

— Modern implementations use JSON. Older systems use XML or custom object
representations.
Avoid “relational-object impedance mismatch” by tightly

coupling objects and database.

0 MongoDB. RAVENDB fimazon,» 2! Firebase

$2CMU-DB Q Couchbase "MarkLogiC® )’ fauna

15-445/645 (Spring 2024)




DOCUMENT DATA MODEL

Artist = R,(id,..)
| <
ArtistAlbum | ™ R,(artist_id,album_id)
| D
Album ® R;(id,..)

$ZCMU-DB

15-445/645 (Spring 2024 )



DOCUMENT DATA MODEL

Artist » R,(id,..)
P
m R,(artist_id,album_id)
P
Album = R;(id,..)

$ZCMU-DB

15-445/645 (Spring 2024 )



DOCUMENT DATA MODEL

Application Code

Artist

Album

£CMU-DB

15-445/645 (Spring 2024)

"name": "GZA",
"year": 1990,
"albums": [
{
"name": "Liquid Swords",
"year": 1995
}7
{
"name": "Beneath the Surface",
"year": 1999
}




VECTOR DATA MODEL

One-dimensional arrays used for nearest-neighbor search (exact or

approximate).

— Used for semantic search on embeddings generated by ML-trained transformer

models (think ChatGPT).
— Native integration with modern ML tools and APIs (e.g., LangChain, OpenAl).

At their core, these systems use specialized indexes to perform NN

searches quickly.

{3Pinecone (g Weaviate &) milvus erant
S2CMU'DB ﬂmqrqo I LanceDB {eature{orm

15-445/645 (Spring 2024)



VECTOR DATA MODEL

Album(id, name, year)

id name year
11 |Enter the Wu-Tang 1993
22 |St.Ides Mix Tape 1994
33 |Liquid Swords 1995

Query

Find albums similar

to|"Liquid Swords'—

$ZCMU-DB

15-445/645 (Spring 2024)

@ OpenAl (¥ HuggingFace

» »

Embeddings
I1d1 » [0.32, 0.78, 0.30, ...
Id2 » [0.99, 0.19, 0.81, ...
1d3 » [0.01, 0.18, 0.85, ...

[0.02, 0.10, 0.24, |}...

Ranked List of Ids «

HNSW, IVFFlat
Meta Faiss, Spotify Annoy



https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

$ZCMU-DB

CONCLUSION

Databases are ubiquitous.

Relational algebra defines the primitives for processing
queries on a relational database.

We will see relational algebra again when we talk

about query optimization + execution.

15-445/645 (Spring 2024)




PO: CONFLICT-FREE REPLICATED DATA TYPE (CRDT)

6:022 05 & @@

Problem: We want a distributed data g vuromesmm

E_ @StatModeling

structure (many copies) that allows

A feedback loop can destroy correlation:
This idea comes up in many places.
statmodeling.stat.columbia.edu/

local updates to be made ooy

8:11AM - 1/15/24 - 49K Views

independently and the states

59 Likes 53 Bookmarks

eventually converge. o v o o e

£CMU-DB

15-445/645 (Spring 2024)



Large communication overhead

Does not allow for disconnected operations

Another user

O )

Yet another user

$ZCMU-DB

15-445/645 (Spring 2024)



Another user

Yet another user

$ZCMU-DB

15-445/645 (Spring 2024)



Simple example: A “global” counter that each node can independently increment.
Nodes can gossip, anytime, and exchange their state.
Want each node to “eventually” have the same real global value.

Still 2!

£CMU-DB

15-445/645 (Spring 2024)



Magic: Merge() function
— Commutative

— Associative

— |dempotent

Merge() : myCounter[i] = MAX (myCounter][i], incomingCounterl[i]) i = 0 ... sizeof(myCounter)

Value() : SUM (myCounter[i] i =0 ... sizeof(myCounter))

£CMU-DB

15-445/645 (Spring 2024)



&
PO: CONFLICT-FREE REPLICATED DATA TYPE (CRDT)

Problem: We want a distributed data structure (many
copies) that allows local updates to be made
independently and the states eventually converge.

For PO the data structure is a set.

Homework #1 is due Jan 28% @ 11:59pm.

£2CMU-DB
15-445/645 (Spri

ng 2024)



NEXT CLASS
Modern SQL

Make sure you understand basic SQL before the lecture.

$ZCMU-DB

15-445/645 (Spring 2024 )



