—
jamegie |ntro to Database

University Systems (15-445/645)

Lecture #02
Modern

SQL

SPRING 2024)) Prof. Jignesh Patel

LAST CLASS

We introduced the Relational Model as the superior
data model for databases.

We then showed how Relational Algebra is the
building blocks that will allow us to query and modify a
relational database.

C3CMU -DB

SQL HISTORY

In 1971, IBM created its first relational
query language called SQUARE.

IBM then created “SEQUEL” in 1972
for IBM System R prototype DBMS.
— Structured English Query Language

IBM releases commercial
SQL-based DBMSs:

— System/38 (1979), SQL/DS (1981),
and DB2 (1983).

$ZCMU-DB

15-445/645 (Spring 2024)

Q2. Find the average salary of employees in the Shoe Department.

AVG (EMP’ (‘SHOE"))
SAL DEPT

Mappings may be composed by applying one mapping
to the result of another, as illustrated by Q3.

Q3. Find those items sold by departments on the second floor.

SALES ° LOC (2)
ITEM DEPT DEPT FLOOR

The floor 2’ is first mapped to the departments located
there, and then to the items which they sell. The range
of the inner mapping must be compatible with the
domain of the outer mapping, but they need not be
identical, as illustrated by Q4.

https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R

SQL HISTORY
ANSI Standard in 1986. ISO in 1987

— Structured Query Language

Current standard is SQL:2023

— SQL:2023 — Property Graph Queries, Muti-Dim. Arrays
— SQL:2016 — JSON, Polymorphic tables

SQL:2011 - Temporal DBs, Pipelined DML

SQL:2008 — Truncation, Fancy Sorting

SQL:2003 - XML, Windows, Sequences, Auto-Gen IDs.
SQL:1999 — Regex, Triggers, OO

Lol

The minimum language syntax a system needs to

say that it supports SQL is SQL-92.

$CMU-DB

15-445/645 (Spring 2024)

Thé Rise of SQL >It’s become the

second programming language everyone
needs to know

SHARE THIS STORY

SQL dominated the jobs ranking in IEEE Spectrum’s interactive rankings of the top
B¢ v fin programming languages this year. Normally, the top position is occupied by Python

or other mainstays, such as C, C++, Java, and JavaScript, but the sheer number of

times employers said they wanted developers with SQL skills, albeit in addition to a
more general-purpose language, boosted it to No. 1.

) Gagan Biyani il

SQL is going to die at the hands of an Al. I'm serious.

is already doing this. Takes your company’s data and
ingests it into ChatGPT. Then, you can create a chatbot for the data and s
just ask it questions using natural language. it at

This video demoes the output.

S @ Jo Kristian Bergum

Tensor and vector databases will replace most legacy databases in this
decade. A disruption fueled by natural language interfaces and deep
neural representations. In other words:

Natural query languages (NQL) replace the Istructured query language
(SQL).

177.2K

330

https://db.cs.cmu.edu/files/sql/sql1992.txt

RELATIONAL LANGUAGES

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:
— View definition
— Integrity & Referential Constraints

— Transactions

Important: SQL is based on bags (duplicates) not sets (no
duplicates).

$ZCMU-DB

15-445/645 (Spring 2024)

C3CMU -DB

TODAY'S AGENDA

Aggregations + Group By
String / Date / Time Operations
Output Control + Redirection
Window Functions

Nested Queries

Lateral Joins

Common Table Expressions

student(sid,name, login, gpa)

EXAMPLE DATABASE

enrolled(sid,cid, grade)

sid cid grade
53666 15-445 C
53688 15-721 A
53688 15-826 B
53655 15-445 B
53666 15-721 C

sid name login age gpa

53666 | RZA rza@cs 44 (4.0

53688 [Bieber jbieber@cs 27 13.9

53655 | Tupac shakur@cs 25 |3.5
course(cid, name)

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-799 Special Topics in Databases

$CMU-DB

15-445/645 (Spring 2024)

AGGREGATES

Functions that return a single value from a
bag of tuples:

AVG(col)— Return the average col value.
MIN(col)— Return minimum col value.
MAX(col)— Return maximum col value.
SUM(col)— Return sum of values in col.

COUNT (col)— Return # of values for col.

$ZCMU-DB

15-445/645 (Spring 2024)

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a ‘@cs” login:

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2024)

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a ‘@cs” login:
SELECT COUNT(logln) AS cnt

ANE N - L T V3 B W.YF-Y

SELECT COUNT(*) AS cnt
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2024)

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a ‘@cs” login:
SELECT COUNT(logln) AS cnt

TET TV .| L T V3 B W.YF-Y

SELECT COUNT(*) AS cnt

A - o | [A V4. Los 1
= _ ALL L=

SELECT COUNT(1) AS cnt
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2024)

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a ‘@cs” login:
SELECT COUNT(logln) AS cnt

TET TV .| L T V3 B W.YF-Y

SELECT COUNT(*) AS cnt

A - o | [A V4. Los 1
= _ ALL L=

SELECT COUNT(1) AS cnt

SELECT COUNT(1+1+1) AS cnt
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2024)

MULTIPLE AGGREGATES

Get the number of students and their average GPA that have
a ‘@cs” login.

AVG(gpa) COUNT(sid)

SELECT AVG(gpa), COUNT(sid) 3.8 3
FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2024)

DISTINCT AGGREGATES

COUNT, SUM, AVG support DISTINCT modifier.
— Caveat: COUNT(*) does not support the DISTINCT modifier.

Get the number of unique students that have an “@cs” login.

SELECT COUNT(DISTINCT login) 3

FROM student WHERE login LIKE '%@cs'

$ZCMU-DB

15-445/645 (Spring 2024)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

AVG(s.gpa) e.cid

e d
FROM enrolled ASX% student AS s

SELECT AVG(s.gpa), 3.86 222
ON e.sid = s.sid

$ZCMU-DB

15-445/645 (Spring 2024)

Project tuples into subsets

GROUP BY

and calculate aggregates

against each subset.

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

GROUP BY e.cid

e.sid s.sid s.gpa e.cid

53435 53435 | 2.25 |15-721
53439 53439 2.70 15-721 2.46 15-721

56023 56023 | 2.75 |15-826 # 3 39 15-826

59439 59439 | 3.90 |15-826 1.89 |15-445

53961 53961 | 3.50 |15-826

58345 58345 | 1.89 |15-445

$ZCMU-DB

15-445/645 (Spring 2024)

Non-aggregated values in SELECT output clause must

GROUP BY

appear in GROUP BY clause.

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT AVG(s.gpa), e.cid,

S.name

FROM enrolled AS e, stuo
WHERE e.sid = s.sid

GROUP BY e.cid

ent AS s

Non-aggregated values in SELECT output clause must

GROUP BY

appear in GROUP BY clause.

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT AVG(s.gpa), e.cid,
FROM enrolled AS e, stude W S

WHERE e.sid = s.sid

GROUP BY e.cid

Non-aggregated values in SELECT output clause must

GROUP BY

appear in GROUP BY clause.

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT AVG(s.gpa), e.cid, s.name

FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

GROUP BY e.cid, s.name

HAVING

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid

FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

AND avg_gpa > 3.9

GROUP BY e.cid

$ZCMU-DB

15-445/645 (Spring 2024)

X

HAVING

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

AND avg_gpa > 3.9
GROUP BY e.cid

$ZCMU-DB

15-445/645 (Spring 2024)

Filters results based on aggregation computation.

HAVING

Like a WHERE clause for a GROUP BY

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid
HAVING avg_gpa > 3.9;

Filters results based on aggregation computation.

HAVING

Like a WHERE clause for a GROUP BY

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid
HAVING avg_gpa > 3.9; x

Filters results based on aggregation computation.

HAVING

Like a WHERE clause for a GROUP BY

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid
HAVING avg_gpa > 3.9;

Filters results based on aggregation computation.

HAVING

Like a WHERE clause for a GROUP BY

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

HAVING AVG(s.gpa) > 3.9;

Filters results based on aggregation computation.

HAVING

Like a WHERE clause for a GROUP BY

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;

AVG(s.gpa) e.cid

3.75 15-415
3.950000 |15-721
3.900000 | 15-826

HAVING

Filters results based on aggregation computation.

Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid

GROUP BY e.cid

HAVING AVG(s.gpa) > 3.9;

$ZCMU-DB

15-445/645 (Spring 2024)

AVG(s.gpa) e.cid

3.75 15-415 avg_gpa e.cid
3.950000 | 15-721 # 3.950000 | 15-721

3.900000 | 15-826

STRING OPERATIONS

String Case String Quotes
SQL-92 Sensitive Single Only
Postgres Sensitive Single Only
MySQL Insensitive Single/Double
SQLite Sensitive Single/Double
MSSQL Sensitive Single Only
Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('TuPaC') SQL-92

WHERE name = "TuPaC"

MySQL

$ZCMU-DB

15-445/645 (Spring 2024)

STRING OPERATIONS

LIKE is used for string
matching.

String-matching operators

— '%' Matches any substring

(including empty strings).

— ' _' Match any one character

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT * FROM enrolled AS e
WHERE e.cid LIKE '15-%'

SELECT * FROM student AS s
WHERE s.login LIKE '%@c_'

STRING OPERATIONS

SQL-92 defines string functions.

— Many DBMSs also have their own unique functions

Can be used in either output and predicates:

SELECT SUBSTRING(name,1,5) AS abbrv_name
FROM student WHERE sid = 53688

SELECT * FROM student AS s
WHERE UPPER(s.name) LIKE 'KAN%'

$ZCMU-DB

15-445/645 (Spring 2024)

STRING OPERATIONS

SQL standard defines the | | operator for

concatenating two or more strings together.

SELECT
WHERE

SELECT
WHERE

SELECT
WHERE

$ZCMU-DB

15-445/645 (Spring 2024)

name FROM student SQL-92

LOWER(name) ||

name FROM student MSSQL

LOWER(name) + '@cs'

name FROM student
login = CONCAT(LOWER(name),

'@cs')

DATE/TIME OPERATIONS

Operations to manipulate and modify patabase saL
. SELECT CAST(julianday(CURRENT_TIMESTAMP)
DATE/ TIME attributes. SQLite3 - julianday ('2024-01-01') AS INT) AS

DaysSinceYearStart;

— Can be used in both output and

SELECT DATEDIFF(CURRENT_TIMESTAMP,

. MySQL
predlcates 12024-01-01') AS DaysSinceYearStart;
) . SELECT EXTRACT(DAY FROM
—> Support/ syntax varies Wlldly .. PostgreSQL CURRENT_TIMESTAMP — '2024-01-01') AS
DaysSinceYearStart;

SELECT (CURRENT_DATE - '2024-01-
01'::DATE) AS DaysSinceYearStart;

Demo: Get the # of days since owios
the beginning of the year.

$ZCMU-DB

15-445/645 (Spring 2024)

OUTPUT REDIRECTION

Store query results in another table:
— Table must not already be defined.

— Table will have the same # of columns with the same types as the input.

SELECT DISTINCT cid INTO Courselds SQL-92
FROM enrolled;

CREATE TABLE Courselds (MysSQL
SELECT DISTINCT cid FROM enrolled);

$ZCMU-DB

15-445/645 (Spring 2024)

OUTPUT REDIRECTION

Store query results in another table:
— Table must not already be defined.

— Table will have the same # of columns with the same types as the input.

SELECT DISTINCT cid INTO Courselds SQL-92

FROM sELECT DISTINCT cid Postgres
INTO TEMPORARY Courselds
CREATE| FROM enrolled;

SELECT DISTINCT cid FROM enrolled);

$ZCMU-DB

15-445/645 (Spring 2024)

OUTPUT REDIRECTION

Insert tuples from query into another table:
— Inner SELECT must generate the same columns as the target table.

— DBMSs have different options/syntax on what to do with integrity

violations (e.g., invalid duplicates).

INSERT INTO Courselds SQL-92
(SELECT DISTINCT cid FROM enrolled);

$ZCMU-DB

15-445/645 (Spring 2024)

OUTPUT CONTROL
ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of their columns.

SELECT sid, grade FROM enrolled
WHERE cid = '15-721"' 53334 | A
ORDER BY grade 53650 | B

53666 | D

$ZCMU-DB

15-445/645 (Spring 2024)

OUTPUT CONTROL
ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of their columns.

SELECT sid, grade FROM enrolled
WHERE cid = '15-721"'
ORDER BY grade

$ZCMU-DB

15-445/645 (Spring 2024)

OUTPUT CONTROL
ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of their columns.

SELECT sid, grade FROM enrolled
WESELECT sid, grade FROM enrolled
OF WHERE cid = '15-721'

ORDER BY 2

$ZCMU-DB

15-445/645 (Spring 2024)

OUTPUT CONTROL
ORDER BY <column*> [ASC|DESC]

— Order the output tuples by the values in one or more of their columns.

SELECT sid, grade FROM enrolled
WESELECT sid, grade FROM enrolled
OF WHERE cid = '15-721"'

ORDER BY 2
SELECT sid FROM enrolled %_
WHERE cid = '15-721" 53650
ORDER BY grade DESC, sid ASC 53123

53334 [—

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

OUTPUT CONTROL
FETCH {FIRST|NEXT} <count> ROWS

OFFSET <count> ROWS

— Limit the # of tuples

returned in output.

— Can set an offset to return

6« »
a ‘range

SELECT sid, name FROM student
WHERE login LIKE '¥%@cs'
FETCH FIRST 10 ROWS ONLY;

SELECT sid, name FROM student
WHERE login LIKE '¥%@cs'
ORDER BY gpa

OFFSET 10 ROWS

FETCH FIRST 10 ROWSIWITH TIES;I

WINDOW FUNCTIONS

Conceptual execution: Partition data => sort each partition = for each
record create a window => compute an answer for each window.

I |en

el el bse] ,S
Table
|| ~
=] =] 2=l i Al i

R Partition 1 | [g[8|$| Partition 2 el Partition k
|| (s [~ [% é é é

Mo _ .)
Sort Sort l l l l . Sort | >

Current

' Output an aggregate value computed

Window =» ds in the wind
S2CMU-DB over records in the window.

15-445/645 (Spring 2024)

WINDOW FUNCTIONS

Conceptual execution: Partition data => sorts each partition = for each
record, creates a window => computes an answer for each window.

Table

Record 1
Record 2
Record 3
Record n

Partition k

(Sort } >

Partition 1 Partition 2

Record
Record
Record
Record
Record
Record
Record 1
Record 2
Record 3

Result Table

Agor. 1
Ager. 2
Agor. 3
Aggr. n

$ZCMU-DB

15-445/645 (Spring 2024)

WINDOW FUNCTIONS

Aggregation functions:

] _ _ sid cid grade row_num
— Anything that we discussed earlier 53666 | 15-445 . ”
53688 15-721 A
1 - : . 53688 15-826 B 3
Special window functions: e Troae o T
— ROW_NUMBER()— # of the current row 23666 | 157721 ¢ 5

— RANK()— Order position of the current row.

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled

$ZCMU-DB

15-445/645 (Spring 2024)

WINDOW FUNCTIONS

The OVER keyword specifies how P sid row_number

to group together tuples when 12232 23222 ;
15-721 53688 1
15-721 53666 2
15-826 |53688 |1

computing the window function.

Use PARTITION BY to specify

group. SELECT cid, sid,

ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid

$ZCMU-DB

15-445/645 (Spring 2024)

WINDOW FUNCTIONS

You can also include an ORDER BY in the window

grouping to sort entries in each group.

SELECT *,
ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled
ORDER BY cid

$ZCMU-DB

15-445/645 (Spring 2024)

WINDOW FUNCTIONS

Find the student with the second highest grade for each

course.

Group tuples by cid
Then sort by grade

SELECT * FROM (/
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking
WHERE ranking.rank = 2

$ZCMU-DB

15-445/645 (Spring 2024)

WINDOW FUNCTIONS

Find the student with the second highest grade for each

course.

Group tuples by cid
Then sort by grade

SELECT * FROM (/
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS_rank

FROM enrolled) ﬁz—égﬂkigg__———?
WHERE |ranking. rank

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED QUERIES

Invoke a query inside of another query to compose

more complex computations.

— They are often difficult to optimize for the DBMS to optimize

due to correlations.

— Inner queries can appear (almost) anywhere in query.

Outer Query ===p|SELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled) Inner Query

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED QUERIES

Get the names of students in ‘15-445

SELECT name FROM student
WHERE ...

I

sid in the set of people that take 15-445

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED QUERIES

Get the names of students in ‘15-445

SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445'

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED QUERIES

Get the names of students in ‘15-445

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445'

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED QUERIES

Get the names of students in ‘15-445

SELECT nameﬂlgwstudent
WHERE| sid (
SELECT|sid |FRéM»enrolled
WHERE cid = '15-445'

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

NESTED QUERIES

ALL— Must satisfy expression for all rows in the sub-query.

ANY— Must satisfy expression for at least one row in the
sub-query.

IN— Equivalent to '=ANY ().

EXISTS— At least one row is returned without comparing it
to an attribute in the outer query.

15-445/645 (Spring 2024)

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE sid = ANY(
SELECT sid FROM enrolled
WHERE cid = '15-445'

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED QUERIES

Find student record with the highest id that is enrolled in at

least one course.

SELECT MAX(e.sid), s.name
FROM enrolled AS e, student AS s

WHERE e.sid = s.sid;

This won't work in SQL-92. It runs in SQLite, but not
Postgres or MySQL (v8 with strict mode).

£2CMU-DB
15-445/645 (Spri

ng 2024)

NESTED QUERIES

Find student record with the highest id that is enrolled in at

least one course.

SELECT sid, name FROM student
WHERE ...

“Is the highest enrolled sid”

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED QUERIES

Find student record with the highest id that is enrolled in at

least one course.

SELECT sid, name FROM student m
WHERE sid = 53688 |Bieber

(SELECT MAX(sid) FROM enrolled)

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED QUERIES

Find student record with the highest id that is enrolled in at

least one course.

SELECT sid, name FROM student
WHERE sid =
(SELECT MAX(sid) FROM enrolled)

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE ...

“with no tuples in the enrolled table”

cid name

15-445 Database Systems

15-721 Advanced Database Systems
15-826 Data Mining

15-799 Special Topics in Databases

$ZCMU-DB

15-445/645 (Spring 2024)

sid cid

53666 [15-445
53688 |15-721
53688 [15-826
53655 |15-445
53666 |15-721

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

‘15—799 ‘Special Topics in Databases \

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTA(
SELECT * FROW enrolled
WHERE |course.cid|= enrolled.cid

‘15—799 ‘Special Topics in Databases \

$ZCMU-DB

15-445/645 (Spring 2024)

LATERAL JOINS

The LATERAL operator allows a nested query to reference

attributes in other nested queries that precede it.

— You can think of it like a for loop that allows you to invoke another query

for each tuple in a table.

SELECT * FROM ‘ 1 ‘2 ‘

(SELECT 1 AS x) AS t1,
LATERAL (SELECT t1.x+1 AS y) AS t2;

$ZCMU-DB

15-445/645 (Spring 2024)

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

SELECT * FROM course AS c,
For each course:
» Compute the # of enrolled students

For each course:
» Compute the average gpa of enrolled students

$ZCMU-DB

15-445/645 (Spring 2024)

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

SELECT * FROM course AS c,

LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid
WHERE e.cid = c.cid) AS t2;

$ZCMU-DB

15-445/645 (Spring 2024)

e.sid

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

SELECT * FROM course AS c,

LATERAL (SELECT COUNT(*) AS cnt FROM egrolled

WHERE enrolled.cid =
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s

C.Cl1 S t1,

JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2;

$ZCMU-DB

15-445/645 (Spring 2024)

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(F) AS cnt FROM enrolled
WHERE enrollpd.cid = c.cid) AS t1,

LATERAL (SELECT AVG(gpa) A$§ avg FROM student AS s

JOIN enrolled A§ e ON s.sid = e.sid
WHERE e.cid = id) AS t2;

$ZCMU-DB

15-445/645 (Spring 2024)

LATERAL JOIN

Calculate the number of students enrolled in each course and

the average GPA. Sort by enrollment count in descending order.

cid name cnt avg

15-445 |Database Systems 2 3.75

15-721 [Advanced Database Systems 2 3.95

SELECT * FROM course AS C, [75.326 |pata Mining] 39
LATERAL (SELECT COUNT() {15-799 |Special Topics in Databases |@ null

WHERE enrollpd.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) A$§ avg FROM student AS s
JOIN enrolled A§ e ON s.sid = e.sid
WHERE e.cid =] AS t2;

$ZCMU-DB

15-445/645 (Spring 2024)

COMMON TABLE EXPRESSIONS

Provides a way to write auxiliary statements for use in a
larger query.
— A table variable with the lifespan for just that query.

Alternative to nested queries and views.

— Makes long queries modular

WITH |[cteName |AS (
SELECT 1

)
SELECT * FROM|cteName

$ZCMU-DB

15-445/645 (Spring 2024)

COMMON TABLE EXPRESSIONS

You can bind/alias output columns to names before the
AS keyword.

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName

$ZCMU-DB

15-445/645 (Spring 2024)

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled in at

least one course.

WITH cteSource (maxId) AS (
SELECT MAX(sid) FROM enrolled

)
SELECT name FROM student,|cteSource

WHERE student.sid = cteSource.maxId

$ZCMU-DB

15-445/645 (Spring 2024)

OTHER NOTES ABOUT SQL

e
Standards Sectors About us News Taking part Store Search Q

. | —) ISO/IEC 9075-2:2023 Format _Language
names) are case-insensitivity. Makes it information technology v e

Database languages SQL

harder for applications that care about rerzroudaion satreundaion o 2710

case (e.g. use CamelCased names). | e - @ ‘‘‘‘‘‘

Identifiers (e.g. table and column

— One often sees quotes around names, e.g.
SELECT “ArtistList.firstName”. Ugly!

General information

Status : Published == & Read sample
Publication date : 2023-06 s Preview this
Stage : International Standard published [60.60] ST standard in our

The standard itself is behind a paywall ... | o

Number of pages : 1715

Technical Committee : ISO/IEC JTC 1/SC 32
ICS : 35.060

$ZCMU-DB

15-445/645 (Spring 2024)

CONCLUSION

SQL is “hot” language. Top Programming Languages 2023

Click a button to see a differently weighted ranking

— Lots of NL2SQL tools, but writing
SQL is not going away. Spectrun Trending

— These tools can aid in writing SQL.

SQL
Python

Java

You should (almost) always

C++

strive to compute your o
: :
answer as a single SQL
statement. sas
TypeScript IEEE Spectrum 2023

$ZCMU-DB

15-445/645 (Spring 2024)

HOMEWORK #1

Write SQL queries to perform basic data analysis.

Write the queries locally using SQLite + DuckDB.
Submit them to Gradescope

You can submit multiple times and use your best score.

Due: Feb 02, 2024 @ 11:59pm

https://15445.courses.cs.cmu.edu/spring2024/homeworkl

$ZCMU-DB

15-445/645 (Spring 2024)

https://15445.courses.cs.cmu.edu/spring2024/homework1

NEXT CLASS

Storage Management

£CMU-DB

15-445/645 (Spring 2024)

