
Intro to Database
Systems (15-445/645)

SPRING 2024  Prof. Jignesh Patel

Lecture #03

Database 
Storage
Part 1



15-445/645 (Spring 2024)

A D M I N I S T R I V I A

Homework #1 is due February 2nd@ 11:59pm

Project #0 is due January 28th @ 11:59pm

Project #1 will be released on February 5th

2



15-445/645 (Spring 2024)

L A S T  C L A S S

We now understand what a database looks like at a 
logical level and how to write queries to 
read/write data (e.g., using SQL).

We will next learn how to build software that 
manages a database (i.e., a DBMS).

3



15-445/645 (Spring 2024)

Relational Databases
Storage
Execution
Concurrency Control
Recovery
Distributed Databases
Potpourri

C O U R S E  O U T L I N E

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

4

Application

SQL



15-445/645 (Spring 2024)

D I S K- B A S E D  A RC H I T E C T U R E

The DBMS assumes that the primary storage 
location of the database is on non-volatile disk.

The DBMS’s components manage the movement 
of data between non-volatile and volatile storage.

5



15-445/645 (Spring 2024)

6

S TO R AG E  H I E R A RC H Y

CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller
Expensive

Slower
Larger
Cheaper

Volatile
Random Access

Byte-Addressable

Non-Volatile
Sequential Access
Block-Addressable



15-445/645 (Spring 2024)

7

S TO R AG E  H I E R A RC H Y

Memory

Disk

CPU
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller
Expensive

Slower
Larger
Cheaper



15-445/645 (Spring 2024)

8

S TO R AG E  H I E R A RC H Y

Memory

Disk

CPU
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller
Expensive

Slower
Larger
Cheaper

Fast Network Storage



15-445/645 (Spring 2024)

HARDWARE TRENDS
9

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

• Transistor growth 
continues.

• The question is how to use 
this hardware for higher 
application performance.

• Individual cores are not 
becoming faster, but there 
are more cores.

• Every processor is now a 
“parallel” data machine, 
and the degree of 
parallelism is increasing.



15-445/645 (Spring 2024)

10

https://blog.bytebytego.com/p/ep22-latency-numbers-you-should-know

Jeff Dean

Every 
programmer 
must know these 
numbers.



15-445/645 (Spring 2024)

Random access on non-volatile storage is almost 
always much slower than sequential access.

DBMS will want to maximize sequential access.
→ Algorithms try to reduce number of writes to random pages 

so that data is stored in contiguous blocks.

→ Allocating multiple pages at the same time is called an extent.

S E Q U E N T I A L  V S .  R A N D O M  AC C E S S

11



15-445/645 (Spring 2024)

Allow the DBMS to manage databases that exceed the amount of 
memory available.

Reading/writing to disk is expensive, so it must be managed 
carefully to avoid large stalls and performance degradation.

Random access on disk is usually much slower than sequential 
access, so the DBMS will want to maximize sequential access.

S Y S T E M  D E S I G N  G OA L S

12



15-445/645 (Spring 2024)

D I S K- O R I E N T E D  D B M S

Disk

Memory

D
a

t
a

b
a

s
e

 
F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

 
P

o
o

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Interpret Page #2 layout

Pointer to Page #2

Lectures #3-5

Lecture #6

Lectures #13-14

Execution

Engine

13

Update Page #2

Lecture #6



15-445/645 (Spring 2024)

W H Y  N OT  U S E  T H E  O S ?

The DBMS can use memory mapping 
(mmap) to store the contents of a file 
into the address space of a program.

OS is responsible for moving file pages 
in and out of memory, so the DBMS 
doesn’t need to worry about it.

12

page1 page2 page3 page4

On-Disk File

Virtual

Memory

page1

page2

page3

page4

Physical

Memory

page1page1



15-445/645 (Spring 2024)

W H Y  N OT  U S E  T H E  O S ?

The DBMS can use memory mapping 
(mmap) to store the contents of a file 
into the address space of a program.

OS is responsible for moving file pages 
in and out of memory, so the DBMS 
doesn’t need to worry about it.

12

page1 page2 page3 page4

On-Disk File

Virtual

Memory

page1

page2

page3

page4

Physical

Memory

page1

page3

page1



15-445/645 (Spring 2024)

W H Y  N OT  U S E  T H E  O S ?

The DBMS can use memory mapping 
(mmap) to store the contents of a file 
into the address space of a program.

OS is responsible for moving file pages 
in and out of memory, so the DBMS 
doesn’t need to worry about it.

12

page1 page2 page3 page4

On-Disk File

Virtual

Memory

page1

page2

page3

page4

Physical

Memory

page1

page3

page1

page3



15-445/645 (Spring 2024)

W H Y  N OT  U S E  T H E  O S ?

The DBMS can use memory mapping 
(mmap) to store the contents of a file 
into the address space of a program.

OS is responsible for moving file pages 
in and out of memory, so the DBMS 
doesn’t need to worry about it.

12

page1 page2 page3 page4

On-Disk File

Virtual

Memory

page1

page2

page3

page4

Physical

Memory

page1

page3???
page1

page3



15-445/645 (Spring 2024)

W H Y  N OT  U S E  T H E  O S ?

What if we allow multiple threads to access the 
mmap files to hide page fault stalls?

This works reasonably well for read-only access.
It is complicated when there are multiple writers…

18



15-445/645 (Spring 2024)

Problem #1: Transaction Safety

→ OS can flush dirty pages at any time.

Problem #2: I/O Stalls

→ DBMS doesn’t know which pages are in memory. The OS will stall a thread on page 
fault.

Problem #3: Error Handling

→ Difficult to validate pages. Any access can cause a SIGBUS that the DBMS must handle.

Problem #4: Performance Issues

→ OS data structure contention. TLB shootdowns.

M E M O R Y  M A P P E D  I /O  P RO B L E M S

19

Interrupts are like unwelcomed guests that 
can arrive at the worst possible times.



15-445/645 (Spring 2024)

There are some solutions to some of 
these problems:
→ madvise: Tell the OS how you expect to 

read certain pages.
→ mlock: Tell the OS that memory ranges 

cannot be paged out.
→ msync: Tell the OS to flush memory 

ranges out to disk.

Using these syscalls to get the OS to 
behave correctly is just as onerous as 
managing memory yourself.

W H Y  N OT  U S E  T H E  O S ?

Full Usage

Partial Usage

20



15-445/645 (Spring 2024)

21

DBMS (almost) always wants to 
control things itself and can do 
a better job than the OS.
→ Flushing dirty pages to disk in the 

correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

The OS is not your friend.

W H Y  N OT  U S E  T H E  O S ?

https://db.cs.cmu.edu/mmap-cidr2022 

https://db.cs.cmu.edu/mmap-cidr2022


15-445/645 (Spring 2024)

Problem #1: How the DBMS represents 
the database in files on disk.

Problem #2: How the DBMS manages its 
memory and moves data back-and-forth 
from disk.

DATA B A S E  S TO R AG E

← Today

22



15-445/645 (Spring 2024)

File Storage

Page Layout

Tuple Layout

TO DAY ’ S  AG E N DA

23



15-445/645 (Spring 2024)

The DBMS stores a database as one or more files on disk 
typically in a proprietary format.
→ The OS doesn’t know anything about the contents of these files.
→ We will discuss portable file formats next week…

Early systems in the 1980s used custom filesystems on raw 
block storage.
→ Some “enterprise” DBMSs still support this.
→ Most newer DBMSs do not do this.

F I L E  S TO R AG E

24



15-445/645 (Spring 2024)

The storage manager is responsible for maintaining a database’s files.
→ Some do their own scheduling for reads and writes to improve spatial and 

temporal locality of pages.

It organizes the files as a collection of pages.
→ Tracks data read/written to pages.
→ Tracks the available space.

Assume that if there is replication (for fault tolerance), it happens 
outside the core storage manager function.

S TO R AG E  M A N AG E R

25



15-445/645 (Spring 2024)

A page is a fixed-size block of data.
→ It can contain tuples, meta-data, indexes, log records…

→Most systems do not mix page types.

→ Some systems require a page to be self-contained.

Each page is given a unique identifier.
→ The DBMS uses an indirection layer to map page IDs to 

physical locations.

DATA B A S E  PAG E S

26



15-445/645 (Spring 2024)

Default DB Page SizesThere are three different notions of 
“pages” in a DBMS:
→ Hardware Page (usually 4KB)
→ OS Page (usually 4KB, x64 2MB/1GB)
→ Database Page (512B-32KB)

A hardware page is the largest block 
of data that the storage device can 
guarantee failsafe writes.

DATA B A S E  PAG E S

16KB

8KB

27

4KB



15-445/645 (Spring 2024)

Different DBMSs manage pages in files on disk in 
different ways.
→ Heap File Organization
→ Tree File Organization
→ Sequential / Sorted File Organization (ISAM)
→ Hashing File Organization

At this point in the hierarchy we don’t need to 
know anything about what is inside of the pages.

PAG E  S TO R AG E  A RC H I T E C T U R E

28



15-445/645 (Spring 2024)

A heap file is an unordered collection of pages with tuples stored in random 
order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

It is easy to find pages if there is only a single file.

Need meta-data to track what pages exist in multiple files and which ones 
have free space.

H E A P  F I L E

D
a

t
a

b
a

s
e

 
F

i
l
e

Page0 Page1 Page2 Page3 Page4

…

Offset = Page# × PageSize

Get Page #2

29



15-445/645 (Spring 2024)

A heap file is an unordered collection of pages with tuples stored in random 
order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

It is easy to find pages if there is only a single file.

Need meta-data to track what pages exist in multiple files and which ones 
have free space.

H E A P  F I L E

Get Page #2

30



15-445/645 (Spring 2024)

A heap file is an unordered collection of pages with tuples stored in random 
order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

It is easy to find pages if there is only a single file.

Need meta-data to track what pages exist in multiple files and which ones 
have free space.

H E A P  F I L E

31



15-445/645 (Spring 2024)

The DBMS maintains special pages that 
tracks the location of data pages in the 
database files.
→ Must make sure that the directory pages are in 

sync with the data pages.

The directory also records meta-data about 
available space:
→ The number of free slots per page.
→ List of free / empty pages.

H E A P  F I L E :  PAG E  D I R E C TO R Y

Directory

…

Page0

Data

Page1

Data

Page100

Data

…
32



15-445/645 (Spring 2024)

File Storage

Page Layout

Tuple Layout

TO DAY ’ S  AG E N DA

34



15-445/645 (Spring 2024)

Every page contains a header of meta-data about the 
page’s contents.
→ Page Size
→ Checksum
→ DBMS Version
→ Transaction Visibility
→ Compression / Encoding Meta-data
→ Schema Information
→ Data Summary / Sketches

Some systems require pages to be self-contained
(e.g., Oracle).

PAG E  H E A D E R

Data

Page

Header

35



15-445/645 (Spring 2024)

For any page storage architecture, we now need to 
decide how to organize the data inside of the page.
→We are still assuming that we are only storing tuples in 

a row-oriented storage model.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage

PAG E  L AYO U T

36

Lecture #5

Lecture #4

← Today



15-445/645 (Spring 2024)

How to store tuples in a page?

Strawman Idea: Keep track of the 

number of tuples in a page and then 
just append a new tuple to the end.
→What happens if we delete a tuple?

→What happens if we have a variable-
length attribute?

T U P L E - O R I E N T E D  S TO R AG E

Page

Num Tuples = 0

Tuple #1

Tuple #2

Tuple #3

Tuple #4

Num Tuples = 3Num Tuples = 2

37



15-445/645 (Spring 2024)

The most common layout 
scheme is called slotted pages.

The slot array maps “slots” to the 
tuples’ starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of 

the last slot used.

S LOT T E D  PAG E S

38

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

1234567

M
em

or
y 

ad
dr

es
s



15-445/645 (Spring 2024)

The most common layout 
scheme is called slotted pages.

The slot array maps “slots” to the 
tuples’ starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of 

the last slot used.

S LOT T E D  PAG E S

39

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

1234567

M
em

or
y 

ad
dr

es
s



15-445/645 (Spring 2024)

The most common layout 
scheme is called slotted pages.

The slot array maps “slots” to the 
tuples’ starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of 

the last slot used.

S LOT T E D  PAG E S

40

Header

Tuple #4

Tuple #2Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

1234567

M
em

or
y 

ad
dr

es
s



15-445/645 (Spring 2024)

The most common layout 
scheme is called slotted pages.

The slot array maps “slots” to the 
tuples’ starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of 

the last slot used.

S LOT T E D  PAG E S

41

Header

Tuple #4

Tuple #2Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

1234567

M
em

or
y 

ad
dr

es
s



15-445/645 (Spring 2024)

The DBMS assigns each logical tuple a 
unique record identifier representing its 
physical location in the database.
→ File Id, Page Id, Slot #
→ Most DBMSs do not store IDs in tuples.

→ SQLite uses ROWID as the true primary key 
and stores it as a hidden attribute.

Applications should never rely on these 
IDs to mean anything.

R E C O R D  I D S

CTID (6-bytes)

ROWID (10-bytes)

ROWID (8-bytes)

42

%%physloc%% (8-bytes)

https://www.sqlite.org/rowidtable.html


15-445/645 (Spring 2024)

File Storage

Page Layout

Tuple Layout

TO DAY ’ S  AG E N DA

43



15-445/645 (Spring 2024)

A tuple is essentially a sequence of bytes.

It’s the job of the DBMS to interpret those 
bytes into attribute types and values.

T U P L E  L AYO U T

44



15-445/645 (Spring 2024)

TupleEach tuple is prefixed with a 
header that contains meta-data 
about it.
→ Visibility info (concurrency control)
→ Bit Map for NULL values.

We do not need to store meta-
data about the schema.

T U P L E  H E A D E R

Header Attribute Data

45



15-445/645 (Spring 2024)

Attributes are typically stored in the 
order specified in the DDL used to 
create the table.

This is done for software engineering 
reasons (i.e., simplicity).

However, it might be more efficient 
to lay them out differently.

T U P L E  DATA

Tuple

Header a b c d e

CREATE TABLE foo (
  a INT PRIMARY KEY,
  b INT NOT NULL,
  c INT,
  d DOUBLE,
  e FLOAT
);

46



15-445/645 (Spring 2024)

DBMS can physically denormalize (e.g., 
“pre-join”) related tuples and store them 
together in the same page.
→ Potentially reduces the amount of I/O for 

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without 

calling it physical denormalization.

D E N O R M A L I Z E D  T U P L E  DATA

CREATE TABLE foo (
  a INT PRIMARY KEY,
  b INT NOT NULL,
); CREATE TABLE bar (

  c INT PRIMARY KEY,
  a INT 
  �REFERENCES foo (a),
);

47



15-445/645 (Spring 2024)

DBMS can physically denormalize (e.g., 
“pre-join”) related tuples and store them 
together in the same page.
→ Potentially reduces the amount of I/O for 

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without 

calling it physical denormalization.

D E N O R M A L I Z E D  T U P L E  DATA

foo

Header c a

Header c a

Header c a

bar

Header a b

48

SELECT * FROM foo JOIN bar
    ON foo.a = bar.a;



15-445/645 (Spring 2024)

DBMS can physically denormalize (e.g., 
“pre-join”) related tuples and store them 
together in the same page.
→ Potentially reduces the amount of I/O for 

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without 

calling it physical denormalization.

D E N O R M A L I Z E D  T U P L E  DATA

foo

c c c …
foo bar

Header a b

49

SELECT * FROM foo JOIN bar
    ON foo.a = bar.a;



15-445/645 (Spring 2024)

DBMS can physically denormalize (e.g., 
“pre-join”) related tuples and store them 
together in the same page.
→ Potentially reduces the amount of I/O for 

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without 

calling it physical denormalization.

D E N O R M A L I Z E D  T U P L E  DATA

foo

c c c …
foo bar

Header a b

50



15-445/645 (Spring 2024)

Database is organized in pages.

Different ways to track pages.

Different ways to store pages.

Different ways to store tuples.

C O N C L U S I O N

52



15-445/645 (Spring 2024)

N E W  F O R M AT S :  T H E  S E A R C H  C O N T I N U E S  …

53
Bonus

The gift of Moore’s Law is ending

Seagate/IDC: 

Data Age 2025

Data growth: exponential path

Notes

Data growth is 
exponential. 

Historical hardware 
performance doubled 
exponentially too, 
providing a “way out.”

The free lunch is over.

The current solution of 
“scaling out” is not 
sustainable. Need to 
“scale-in” to the 
hardware layers.

Demand

Supply

is more than

Jignesh Patel



15-445/645 (Spring 2024)

A  P O T E N T I A L  S O L U T I O N :  D O  M O R E  W I T H  L E S S

A unit of memory (a word)
An array of bits

int32: a

int32: b

1 cycle to add two numbers

1 cycle to operate on 32 bits = 32-way intra-cycle 
parallelisma+b

There is untapped parallelism in most computing substrate, and lots of it. 

Can we exploit this for data processing?

Jignesh Patel

Bonus



15-445/645 (Spring 2024)

I N T U I T I O N

• 6708, 6881, 8554, 1878, 5362, 1930, 5677, 6650, 5149, 4716

Consider the list of numbers below:

• The usual approach is to scan the list left to right, and check if it's under 
2000.

Task: Identify numbers below 2000.

• This simple scan is often the most data-hungry operation in analytic queries.

How much data must be examined for this task?

Jignesh Patel

Bonus



15-445/645 (Spring 2024)

6 7 0 8 6 8 8 1 8 5 5 4 1 8 7 8 5 3 6 2 1 9 3 0 5 6 7 7 6 6 5 0 5 1 4 9 4 7 1 6
40 cells

Data: 6708, 6881, 8554, 1878, 5362, 1930, 5677, 6650, 5149, 4716
Task: Identify numbers below 2000I N T U I T I O NBonus



15-445/645 (Spring 2024)

6 6 8 1 5 1 5 6 5 4 7 8 5 8 3 9 6 6 1 7 0 8 5 7 6 3 7 5 4 1 8 1 4 8 2 0 7 0 9 6

Data: 6708, 6881, 8554, 1878, 5362, 1930, 5677, 6650, 5149, 4716
Task: Identify numbers below 2000

6 6 8 1 5 1 5 6 5 4

10 cells

I N T U I T I O NBonus



15-445/645 (Spring 2024)

B I T W E AV I N G / V

4-
bi

t c
ol

um
n

First batch of Processor Words
(batch size = code size in bits)

Next batch of 
processor words

MSB of the first column MSB of the second column MSB of the 
64th column

4th bit/LSB of the first column

1 0 1 0

Column 1, 
Value: 10

Details: SIGMOD’13, VLDB’14, SIGMOD’15, SIGMOD’24 (to appear)

Bonus



15-445/645 (Spring 2024)

1

0

1

0

1

1

0

0

0

0

1

1

0

1

1

0

1

0

0

1

0

1

1

1

0

0

0

1

0

0

0

0

✕  ✕  ?  ? ✕  ?  ?  ?

✕  ✕  ✓  ?  ✕  ?  ✓  ✓

✕  ✕  ✓  ✕  ✕  ✕  ✓ 
✓

✕  ✕  ✓  ✕  ✕  ✕  ✓ 
✓

10 12 3 6 9 7 1 0
Column Codes:

0  0  1  0  0  0  1  1
Result Bit Vector

Predicate
colValue < 5

0

1

0

1

Constant
5

Early Pruning: skip the last check

B I T W E AV I N G / V:  E A R LY  P RU N I N GBonus



15-445/645 (Spring 2024)

Segment size: 64 codes, code size: 32 bits

0%

20%

40%

60%

80%

100%

0 4 8 12 16 20 24 28 32Ea
rly

 P
ru

ni
ng

 P
ro

ba
bi

lit
y 

P(
b)

Bit Position b

Notes

The algorithmic 
advantage arises 
from the intrinsic 
properties of the 
encoding, leading to 
fewer bits that need 
to be examined.

Early pruning 
probability: ~80% 
at bit position 8

Bonus



15-445/645 (Spring 2024)

0

2

4

6

8

10

0 4 8 12 16 20 24 28 32

C
y

c
l
e

s
 
/

 
c

o
d

e

Size of the code (# bits)

E VA L UAT I O N

Column Store

SIMD

BitWeaving/V

Intel Xeon X5650; 24GB DRAM; COUNT(*) query on synthetic data with 1B tuples. S
I
G

M

O

D

 2
0
2
4

Bonus



15-445/645 (Spring 2024)

T O WA R D S  B I T- PA R A L L E L  D ATA  P L AT F O R M S

Notes

A true co-design 
approach with changes 
on both the algorithm 
and hardware sides. 

Past work has largely 
tried to “fit” existing 
algorithms to new 
hardware.  

Architecture AlgorithmsData 
platforms

Bonus



15-445/645 (Spring 2024)

Log-Structured Storage

Index-Organized Storage

Value Representation

Catalogs

N E X T  C L A S S

63


