
Intro to Database
Systems (15-445/645)

SPRING 2024 Prof. Jignesh Patel

Lecture #04

Database
Storage
Part 2

15-445/645 (Spring 2024)

Homework #1 is due February 2nd @ 11:59pm.

Project #1 is due February 18th @ 11:59pm.

Please sign the Course Collaboration Policy on
Gradescope if you haven’t done so yet.

A D M I N I S T R I V I A

2

15-445/645 (Spring 2024)

We presented a disk-oriented architecture where the
DBMS assumes that the primary storage location of the
database is on non-volatile disk.

We then discussed a page-oriented storage scheme for
organizing tuples across heap files.

L A S T C L A S S

3

15-445/645 (Spring 2024)

Insert a new tuple:

→ Check page directory to find a page with a free slot.

→ Retrieve the page from disk (if not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:

→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).

→ Find offset in page using slot array.
→ If new data fits, overwrite existing data.

Otherwise, mark the existing tuple as deleted and insert a
new version on a different page.

T U P L E - O R I E N T E D S TO R AG E

4

15-445/645 (Spring 2024)

Problem #1: Fragmentation

→ Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/O

→ DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O

→ Worse case scenario when updating multiple tuples is that each
tuple is on a separate page.

What if the DBMS cannot overwrite data in pages

and can only create new pages?

→ Examples: Some object stores, HDFS

T U P L E - O R I E N T E D S TO R AG E

5

15-445/645 (Spring 2024)

Log-Structured Storage

Index-Organized Storage

Data Representation

TO DAY ’ S AG E N DA

6

15-445/645 (Spring 2024)

T R E E S I N DATA B A S E S TO R AG E
B-tree: Ubiquitous in database systems
→ Balanced tree. Node = page.
→ Same page size (KBs) in size across the tree.
→ O(log(n)) for search, insert, delete.
→ Entries: key-value (KV) pairs.
→ Values could be record id, or tuple.
→ Pointers across nodes across the levels.
→ Writes may update multiple pages.

Root

Level 1

Level 2

Level k

Log-structured Storage: Based on Log-Structured File System
(LSFS) by Rosenblum & Ousterhout’92 and Log-structured
Merge Trees (LSM Tree) by O’Neil, Cheng, & Gawlick’96
→ Write to a sequentially-growing log rather an update in-place.
→ Flush logs to SSTs (many MBs in size). Merge logs periodically.
→ Entries: key-value pairs. Values are records.
→ No pointers across SSTs. SST size grows as the levels increase.
→ Writes are fast, but reads may be slow.

sorted

In-memory log: organized a skip list, trie, …
This level is called a MemTable.

A Level = sequence of SSTs

Larger SSTs at lower levels.sorted

sorted

sorted

Level 0

Level k

Level 1

Level 2

7

15-445/645 (Spring 2024)

LO G S T RU C T U R E D S TO R AG E

Level 0

Level k

Level 1

Level 2

Memory

Disk

8

15-445/645 (Spring 2024)

LO G S T RU C T U R E D S TO R AG E

Level 0

Level k

Level 1

Level 2

Memory

Disk

Write: (k1, v1)Write: (k2, v2)

Memtable is full

New
Memtable

flush

compaction

compaction

compaction

Compaction method: Leveling

Other compaction method: Tiering

Summary Table:
→ Min-max range of each SST
→ Bloom filter for each level

Read: (k1)

If not found

If not found

Read: (k11)

What happens if one searches for a key that is not present?

→ May have to search all the levels one-by-one. Expensive!

→ Summary table info can help. Skip the levels that don’t hit in the corresponding bloom filter.

9

15-445/645 (Spring 2024)

Three ops: GET, PUT, DELETE.
→ GET: go through the levels to find the key

For PUTand DELETE ops:
→ Log changes to a record as appends
→ Each log entry represents a tuple

PUT/DELETE operation.

→ DELETEs are added as a “tombstone” entry.
Not in-place update.

LO G - S T RU C T U R E D S TO R AG E : D E TA I L S

N
e
w
e
s
t
←
O
l
d
e
s
t

PUT #103 {val=a1}

PUT #104 {val=b1}

DEL #102

PUT #105 {val=c1}

PUT #103 {val=a3}

PUT #103 {val=a2}

10

15-445/645 (Spring 2024)

Compaction = Merge two SSTs to create a larger SST
→ Recall: SSTs are files on disk, so are variable length
→ Uses a sort-merge algorithm
→ Only keep the “latest” values for each key (aka. compacts)

C O M PAC T I O N

Page #1 Page #2

+

PUT #103 {val=a3}

PUT #104 {val=b2}

PUT #105 {val=c3}

11

15-445/645 (Spring 2024)

Many different ways to do
compaction while preserving
the overall LSM property
→ Search level-by-level, with newer

data at the top levels

Compaction strategies tradeoff:
→ Write amplification
→ Read amplification
→ Space amplification

C O M PA C T I O N A LG O R I T H M S

https://smalldatum.blogspot.com/2018/08/name-that-compaction-algorithm.html

12

https://smalldatum.blogspot.com/2018/08/name-that-compaction-algorithm.html

15-445/645 (Spring 2024)

Log-structured storage managers are more
common today. This is partly due to the
proliferation of RocksDB.

What are some downsides of this approach?

→ Reads may be slower.

→ Write amplification.

→ Compaction is expensive.

D I S C U S S I O N

13

15-445/645 (Spring 2024)

The two table storage approaches we’ve discussed so
far rely on indexes to find individual tuples.
→ Such indexes are necessary because the tables are inherently

unsorted.

But what if the DBMS could keep tuples sorted
automatically using an index?

O B S E R VAT I O N

14

15-445/645 (Spring 2024)

Header key→
offset

Tuple #2 Tuple #6Tuple #3

key→
offset

key→
offset

DBMS stores a table’s tuples as the value of an index
data structure.
→ Still use a page layout that looks like a slotted page.

Tuples are typically sorted in a page based on a key.

I N D E X- O RG A N I Z E D S TO R AG E

Inner

Nodes

Leaf

Nodes

Tuples are now sorted in key-order on the page.

15

15-445/645 (Spring 2024)

A tuple is essentially a sequence of bytes.

It is the job of the DBMS to interpret those bytes into
attribute types and values.

The DBMS’s catalogs contain the schema information
about tables that the system uses to figure out the
tuple’s layout.

T U P L E S TO R AG E

16

15-445/645 (Spring 2024)

DATA L AYO U T

17

CREATE TABLE AndySux (
 id INT PRIMARY KEY,
 value BIGINT
);

header id value

char[]

reinterpret_cast<int32_t*>(address)

15-445/645 (Spring 2024)

All attributes in a tuple must be word aligned to enable the CPU
to access it without any unexpected behavior or additional work.

W O R D -A L I G N E D T U P L E S

18

CREATE TABLE foo (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits

64-bits

16-bits

32-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

char[]

In the old days, the DBMS programmer had to worry about
“unaligned word memory reference.”
Today: Processors handle it. It will read multiple words
from memory, so it may have a performance impact.

15-445/645 (Spring 2024)

Add empty bits after attributes to ensure that tuple is word
aligned.

W O R D -A L I G N M E N T: PA D D I N G

19

id cdate zipc
00000000
00000000
00000000
00000000

00000
000
00000
000c

CREATE TABLE foo (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits

64-bits

16-bits

32-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

15-445/645 (Spring 2024)

Switch the order of attributes in the tuples’ physical
layout to ensure they are aligned.
→ May still have to use padding.

W O R D -A L I G N M E N T: R E O R D E R I N G

20

CREATE TABLE foo (
 id INT PRIMARY KEY,
 cdate TIMESTAMP,
 color CHAR(2),
 zipcode INT
);

32-bits

64-bits

16-bits

32-bits

id cdate c zipc

64-bit Word 64-bit Word 64-bit Word64-bit Word

000000000000
000000000000
000000000000
000000000000

15-445/645 (Spring 2024)

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes OR pointer to

another page/offset with data.
→ Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
→ 32/64-bit integer of (micro/milli)-seconds since Unix epoch

(January 1st, 1970).

DATA R E P R E S E N TAT I O N

21

15-445/645 (Spring 2024)

Inexact, variable-precision numeric type that uses
the “native” C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision
numbers because CPU ISA’s (Xeon, Arm) have
instructions / registers to support them.

But they do not guarantee exact values…

VA R I A B L E P R E C I S I O N N U M B E R S

22

https://en.wikipedia.org/wiki/IEEE-754

15-445/645 (Spring 2024)

VA R I A B L E P R E C I S I O N N U M B E R S

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %f\n", x+y);
 printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %.20f\n", x+y);
 printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890

23

15-445/645 (Spring 2024)

Numeric data types with (potentially)

arbitrary precision and scale. Used when

rounding errors are unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.

→ Example: Store in an exact, variable-length

binary representation with additional metadata.

F I X E D P R E C I S I O N N U M B E R S

24

15-445/645 (Spring 2024)

P O S TG R E S : N U M E R I C

typedef unsigned char NumericDigit;
typedef struct {
 int ndigits;
 int weight;
 int scale;
 int sign;
 NumericDigit *digits;
} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

25

15-445/645 (Spring 2024)

M Y S Q L : N U M E R I C

typedef int32 decimal_digit_t;
struct decimal_t {
 int intg, frac, len;
 bool sign;
 decimal_digit_t *buf;
};

of Digits Before Point

of Digits After Point

Length (Bytes)

Positive/Negative

Digit Storage

26

15-445/645 (Spring 2024)

Choice #1: Null Column Bitmap Header

→ Store a bitmap in a centralized header that specifies what attributes
are null.
This is the most common approach.

Choice #2: Special Values

→ Designate a value to represent NULL for a data type (e.g., INT32_MIN).

Choice #3: Per Attribute Null Flag

→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this messes up with

word alignment.

N U L L DATA T Y P E S

27

15-445/645 (Spring 2024)

Most DBMSs don’t allow a tuple
to exceed the size of a single page.

To store values that are larger than
a page, the DBMS uses separate
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

L A RG E VA L U E S

Overflow Page

VARCHAR DATA

Tuple

Header a b c d e

28

15-445/645 (Spring 2024)

Some systems allow you to store a large
value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.
→ No durability protections.
→ No transaction protections.

E X T E R N A L VA L U E S TO R AG E

Data

Header a b c d e

External File

Tuple

29

15-445/645 (Spring 2024)

A DBMS stores meta-data about databases in
its internal catalogs.
→ Tables, columns, indexes, views
→ Users, permissions
→ Internal statistics

Almost every DBMS stores the database’s
catalog inside itself (i.e., as tables).
→ Wrap object abstraction around tuples.
→ Specialized code for “bootstrapping” catalog tables.

S Y S T E M C ATA LO G S

30

Postgres

15-445/645 (Spring 2024)

You can query the DBMS’s internal
INFORMATION_SCHEMA catalog to get info about the
database.
→ ANSI standard set of read-only views that provide info about

all the tables, views, columns, and procedures in a database

DBMSs also have non-standard shortcuts to retrieve
this information.

S Y S T E M C ATA LO G S

31

15-445/645 (Spring 2024)

List all the tables in the current database:

AC C E S S I N G TA B L E S C H E M A

SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_catalog = '<db name>';

SQL-92

\d; Postgres

SHOW TABLES; MySQL

.tables SQLite

32

15-445/645 (Spring 2024)

List all the tables in the student table:

AC C E S S I N G TA B L E S C H E M A

SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_name = 'student'

SQL-92

\d student; Postgres

DESCRIBE student; MySQL

.schema student SQLite

33

15-445/645 (Spring 2024)

CREATE INDEX:
→ Scan the entire table and populate the index.
→ Have to record changes made by txns that modified the table while another

txn was building the index.
→ When the scan completes, lock the table and resolve changes that were missed

after the scan started.

DROP INDEX:
→ Just drop the index logically from the catalog.
→ It only becomes “invisible” when the txn that dropped it commits. All existing

txns will still have to update it.

I N D E X E S

34

15-445/645 (Spring 2024)

Log-structured storage is an alternative
approach to the page-oriented architecture.
→ Ideal for write-heavy workloads because it

maximizes sequential disk I/O.

The storage manager is not entirely
independent from the rest of the DBMS.

C O N C L U S I O N

35

