—
jamegie |ntro to Database

University Systems (15-445/645)

Lecture #04

Database

Storage
Part 2

SPRING 2024)) Prof. Jignesh Patel

C3CMU -DB

ADMINISTRIVIA
Homework #1 is due February 2™ @ 11:59pm.
Project #1 is due February 18®" @ 11:59pm.

Please sign the Course Collaboration Policy on
Gradescope if you haven’t done so yet.

$ZCMU-DB

LAST CLASS

We presented a disk-oriented architecture where the
DBMS assumes that the primary storage location of the
database is on non-volatile disk.

We then discussed a page-oriented storage scheme for
organizing tuples across heap files.

15-445/645 (Spring 2024)

TUPLE-ORIENTED STORAGE

Insert a new tuple:
— Check page directory to find a page with a free slot.
— Retrieve the page from disk (if not in memory).

— Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
— Check page directory to find location of page.
Retrieve the page from disk (if not in memory).

Find offset in page using slot array.

Lol

If new data fits, overwrite existing data.
Otherwise, mark the existing tuple as deleted and insert a

new version on a different page.

$ZCMU-DB

15-445/645 (Spring 2024)

TUPLE-ORIENTED STORAGE

Problem #1: Fragmentation

— Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/0

— DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O

— Worse case scenario when updating multiple tuples is that each

tuple is on a separate page.

What if the DBMS cannot overwrite data in pages
and can only create new pages?
— Examples: Some object stores, HDFS

$ZCMU-DB

15-445/645 (Spring 2024)

TODAY'’S AGENDA

Log-Structured Storage
Index-Organized Storage

Data Representation

TREES IN DATABASE STORAGE

B-tree: Ubiquitous in database systems

O(log(n)) for search, insert, delete. N
Entries: key-value (KV) pairs.
Values could be record id, or tuple.

Pointers across nodes across the levels.

VLl

Ll

Writes may update multiple pages.

Root

sorted

Level 1

qjc@ujooo ooo
/ sorted >
Level 2 f E
[mmmooo] [mmmooi] coo l (] oool
sorted >
Level k
[mmmooo][mmmooo]ooo [mmmooo][mmmooo]
sorted >
£CMU-DB

15-445/645 (Spring 2024)

Write to a sequentially-growing log rather an update in-place.
Flush logs to SSTs (many MBs in size). Merge logs periodically.
Entries: key-value pairs. Values are records.

No pointers across SSTs. SST size grows as the levels increase.
Writes are fast, but reads may be slow.

Level O In-memory log: organized a skip list, trie, ...

I DD CDeeo l This level is called a MemTable.

Level 1

Log-structured Storage: Based on Log-Structured File System
Balanced tree. Node = page. (LSFS) by Rosenblum & Ousterhout’92 and Log-structured
Same page size (KBs) in size across the tree. Merge Trees (LSM Tree) by O'Neil, Cheng, & Gawlick’96

[m s [CDCDCDOOOIALevel:sequenceofSSTs

>

Level 2 Larger SSTs at lower levels.

(DO MmmmMm oo | eco |[DDMDMOMOIO

[eXeXe]

3
>

000

Level k

OO D 0o | coo

Memory

LOG STRUCTURED STORAGE

Level 0 (DD D 00|

Disk

£CMU-DB

15-445/645 (Spring 2024)

Level 1 [mmmooo] coo [mmmooo]

Level 2 [(DMMIMODOD oo |ooo ((DMMMIMOD oo |

Level k |CE D OO OO0 MO0 MO OO O ED €0 | |OM MO OO oo J °°°

L9
LOG STRUCTURED STORAGE

Compaction method: Leveling “ RocksDB
| Read: (k1) >

Summary Table: v Newbl
t
B egja e Other compaction method: Tiering £&& cassandra
— Bloom filter for each level
If not found Memory
Level 1 ooo [mmmooo] DISk
If not fou dl compaction ”
Read: (k11) l> Level 2 (DD MMM ©oo00 | oo [((DMIMOIMDMEMOD occo |
lcompaction
o
°
compaction

Level k |CE D OO OO0 MO0 MO OO O ED €0 | |OM MO OO oo J °°°

What happens if one searches for a key that is not present?

— May have to search all the levels one-by-one. Expensive!

— Summary table info can help. Skip the levels that don't hit in the corresponding bloom filter.

£CMU-DB

15-445/645 (Spring 2024)

LOG-STRUCTURED STORAGE: DETAILS

Three ops: GET, PUT, DELETE.
— GET: go through the levels to find the key

PUT #103 {val=a;}
PUT #104 {val=b,}
DEL #102

PUT #103 {val=a,}
PUT #105 {val=c,}
PUT #103 {val=a;}

For PUTand DELETE ops:

— Log changes to a record as appends

g
3
-
X
g
S
>

— FEach log entry represents a tuple
PUT/DELETE operation.

— DELETEs are added as a “tombstone” entry.

Not in-place update.

$ZCMU-DB

15-445/645 (Spring 2024)

COMPACTION

Compaction = Merge two SST's to create a larger SST
— Recall: SSTs are files on disk, so are variable length

— Uses a sort-merge algorithm

— Only keep the “latest” values for each key (aka. compacts)

Page #1

PUT #103 {val=a,}

PUT #104 {val=b,}

DEL #102

PUT #103 {val=a,}

PUT #105 {val=c,}

PUT #103 {val=a,}

$ZCMU-DB

15-445/645 (Spring 2024)

==

Page #2

PUT #104 {val=b,}

PUT #105 {val=c,}

PUT #102 {val=d,}

DEL #101

DEL #102

PUT #105 {val=c.}

Y

PUT #103 {val=a;3}

PUT #104 {val=b,}

PUT #105 {val=c;}

£CMU-DB

COMPACTION ALGORITHMS

Many different ways to do
compaction while preserving
the overall LSM property

— Search level-by-level, with newer
data at the top levels

Compaction strategies tradeoft:
— Write amplification
— Read amplification

— Space amplification

15-445/645 (Spring 2024)

Small Datum

Thursday, August 30, 2018
Name that compaction algorithm

First there was leveled compaction and it was a great paper. Then tiered compaction arrived in BigTable,
HBase and Cassandra. Eventually LevelDB arrived with leveled compaction and RocksDB emerged from
that. Along the way a few interesting optimizations have been added including support for time series data.
My summary is missing a few details because it is a summary.

Compaction algorithms constrain the LSM iree shape. They determine which sorted runs can be merged by
it and which sorted runs need to be accessed for a read operation. | am not sure whether they have been
formally defined, but | hope there can be agreement on the basics. | will try to do that now for a few -
leveled, tiered, tiered+leveled, leveled-N and time-series. There are two new names on this list —
tiered+leveled and leveled-N.

LSM tree used to imply leveled compaction. | prefer to expand the LSM tree definition to include leveled,
tiered and more.

| reference several papers below. All of them are awesome, even when not perfect — they are major
contributions to write-optimized databases and worth reading. One of the best things about my job is getling
time to read papers like this and then speak with the authors.

There are many interesting details in academic papers and existing systems (RocksDB, Cassandra, HBase,
ScyllaB) that | ignore. | don't want to get lost in the details.

Leveled
Leveled compaction minimizes space amplification at the cost of read and write amplification.

The LSM tree is a sequence of levels. Each level is one sorted run that can be range partitioned into many
files. Each level is many times larger than the previous level. The size ratio of adjacent levels is sometimes
called the fanout and write amplification is minimized when the same fanout is used between all levels.
Compaction into level N (Ln) merges data from Ln-1 into Ln. Compaction into Ln rewrites data that was
previously merged into Ln. The per-level write amplification is equal to the fanout in the worst case, but it
tends to be less than the fanout in practice as explained in this paper by Hyeontaek Lim et al. Compaction
in the original LSM paper was all-to-all - all data from Ln-1 is merged with all data from Ln. It is some-to-
some for LevelDB and RocksDB - some data from Ln-1 is merged with some (the overtapping) data in Ln.

While write amplification is usually worse with leveled than with tiered there are a few cases where leveled
is competitive. The first is key-order inserts and a RocksDB optimization greatly reduces write-amp in that
case. The second one is skewed writes where only a small fraction of the keys are likely to be updated.
With the right value for compaction priority in RocksDB compaction should stop at the smallest level that is
large enough to capture the write working set — it won't go all the way to the max level. When leveled

ion is X then ion is only done for the slices of the LSM tree that overlap the
written keys, which can generate less write amplification than all-to-all compaction.

Tiered

Tiered compaction minimizes write amplification at the cost of read and space amplification.

About Me

B} Mark Callaghan

Learn more at
https:/ismalldatum.github.io/

View my complete profile

Search This Blog

Search

Blog Archive

«vvVvVYVYVYVY

2024 (16)
2023 (131)
2022 (46)
2021 (36)
2020 (60)
2019 (62)
2018 (36)
» December (4)
» November (2)
» October (4)
> September (4)
v August (4)
Name that compaction algorithm

Review of "Concurrent Log-Structured
Memory" from ...

Default configuration benchmarks
Lock elision, pthreads and MySQL

> July (5)

> June (1)

> May (2)

> April (3)

» March (2)

» February (1)

» January (4)

» 2017 (84)
» 2016 (36)
» 2015 (51)
» 2014 (55)

https://smalldatum.blogspot.com/2018/08/name-that-compaction-algorithm.html

https://smalldatum.blogspot.com/2018/08/name-that-compaction-algorithm.html

DISCUSSION

Log-structured storage managers are more “*~ RocksDB
common today. This is partly due to the @ levelbs
proliferation of RocksDB. ceoc e

g yugabyteDB

What are some downsides of this approach? Y fauna
— Reads may be slower. ¢) Dgraph
— Write amplification. 0 TiDB
— Compaction is expensive. © CockroachDB

ZETE cassandra

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

OBSERVATION

The two table storage approaches we've discussed so
far rely on indexes to find individual tuples.

— Such indexes are necessary because the tables are inherently
unsorted.

But what if the DBMS could keep tuples sorted

automatically using an index?

15-445/645 (Spring 2024)

INDEX-ORGANIZED STORAGE

DBMS stores a table’s tuples as the value of an index

data structure.

— Still use a page layout that looks like a slotted page.

Tuples are typically sorted in a page based on a key.

Inner
Nodes

Leaf
Nodes

$ZCMU-DB

15-445/645 (Spring 2024)

WSQLite

“\.MysaL.
ORACLE

Microsoft®
ZSQL Server

Tuples are now sorted in key-order on the page. |

key~» key~» key~»
Header offset | offset | offset »
« Tuple #3 | Tuple #2 | Tuple #6

C3CMU -DB

TUPLE STORAGE

A tuple is essentially a sequence of bytes.

[t is the job of the DBMS to interpret those bytes into
attribute types and values.

The DBMS'’s catalogs contain the schema information

about tables that the system uses to figure out the
tuple’s layout.

DATA LAYOUT

CREATE TABLE AndySux (¥ char[]

»id INT PRIMARY KEY, header id
value BIGINT

Ik

reinterpret_cast<int32_t*>(address)

£CMU-DB

15-445/645 (Spring 2024)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to enable the CPU
to access it without any unexpected behavior or additional work.

CREATE TABLE foo (
sy20% id INT PRIMARY KEY,
(ZZ75 cdate TIMESTAMP,
18718 color CHAR(2),
kY21 zipcode INT

);

$ZCMU-DB

15-445/645 (Spring 2024)

JL char[]

id cdate c zipc

WW

64-bit Word 64-bit Word 64-bit Word 64-bit Word

In the old days, the DBMS programmer had to worry about

“unaligned word memory reference.”
Today: Processors handle it. It will read multiple words

from memory, so it may have a performance impact.

WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple is word
aligned.

CREATE TABLE foo (
i . 00000000 00000
EYR7'Y id INT PRIMARY KEY, id % cdate c | zipc o

00000000

(2844 cdate TIMESTAMP, ~—_—
[R5 color CHAR(2), 64-bit Word 64-bitWord 64-bit Word 64-bit Word

kyRi1] zipcode INT
);

$ZCMU-DB

15-445/645 (Spring 2024)

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples’ physical
layout to ensure they are aligned.
— May still have to use padding.

CREATE TABLE foo (

32-bits id INT PRIMARY KEY,] 000000000000

000000000000

000000000000

64-bits cdate TIMESTAMP, 000000000000

(87 color CHAR(2), N ~ ~ v
P 2ipcode INT 64-bit Word 64-bit Word 64-bit Word 64-bit Word

);

$ZCMU-DB

15-445/645 (Spring 2024)

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
— [EEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB

— Header with length, followed by data bytes OR pointer to
another page/offset with data.

— Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL

— 32/64-bit integer of (micro/milli)-seconds since Unix epoch
(January 1%, 1970).

$ZCMU-DB

15-445/645 (Spring 2024)

VARIABLE PRECISION NUMBERS

[nexact, variable-precision numeric type that uses
the “native” C/C++ types.

Store directly as specified by IEEE-754.
— Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision
numbers because CPU ISA’s (Xeon, Arm) have
instructions / registers to support them.

But they do not guarantee exact values...

$ZCMU-DB

15-445/645 (Spring 2024)

https://en.wikipedia.org/wiki/IEEE-754

VARIABLE PRECISION NUMBERS

Rounding Example Output

#include <stdio.h> x+y = 0.300000
0.3 = 0.300000

#include <stdio.h>

in

0.30000001192092895508
0.29999999999999998890

X+
int main(int argc, charx argv[l) { ||, g

float x = 0.1;
float y = 0.2;
) printf("x+ty = %.20f\n", xty);
printf("0.3 = %.20f\n", 0.3);

$ZCMU-DB

15-445/645 (Spring 2024)

FIXED PRECISION NUMBERS

Numeric data types with (potentially)
arbitrary precision and scale. Used when

rounding errors are unacceptable.

— Example: NUMERIC, DECIMAL

Many different implementations.

— Example: Store in an exact, variable-length

binary representation with additional metadata.

$ZCMU-DB

15-445/645 (Spring 2024)

add_var() -

Lt might point to one of the operands too without danger.

Full version of add functionality on variable level (handling signs).
resu

PGTYPESnumeric7add(numeric *varl, numeric *var2, numeric *result)
{

/lk
* Decide on the signs of the two variables what to do
*

1f (varl-s>sign == NUMERIC POS)
{

%f (var2->sign == NUMERIC POS)

/* & > g .
* Both are positive result = +(ABS(varl) + ABS(var2)) ume rlCDl 1 t
=/
if (addiabs(varl, var2, result) I= g)
return -1;

} result->sign = NUMERIC_POS;
else
{

. /*
\x /elght Of * varl is positive, var2 is negative Must compare absolute values
/A

iw;tch (cmp abs(varl, var2))

case 0:

* ABS(varl) == ABS(var2)
* result = ZERo
*

Sca G

zero var(result);

result-s>rscale = Max(var1->rscale, var2->rscale);
gesult->dscale = Max(var1->dsca1e, var2->dscale);
reak;
case 1:
x o ___ 5 .
L T ABS(varl) > ABS(var2))
POSltlve ega * result = +(ABS(var1l) - ABS(var2))
¥ oo ___
*
if (sub,abs(varl, var2, result) I= g)
return -1;
result->sign = NUMERIC POS;
. break;
Dl case -1:
/% e [
* ABS(varl) < ABS(var2)

$ZCMU-DB

15-445/645 (Spring 2024)

* result =
x

-(ABS(var2) - ABS(var1l))

*fromz,

c int do_add(const decimal_t *from1, const decimal_t
decimal_t *to) {

int intgl = ROUND_UP(from1->intg), intg2 = ROUND_UP(from2->intg),

fracl = ROUND_UP(from1—>frac), frac2 ROUND_UP(from2->frac),

fraco = std: :max(fracl, frac2), intgo = std::max(intgl, intg2), error;

dec1l *bhufl, *puf2, *buf@, *stop, *stopZ, X carry;

stati

sanity(to);

/* is there a need for extra word hecause of carry ? */

x = intgl > intg2
? from1->buf[0] (j
. intg2 > intol ? from2->buf[0] @ fromi->buf[0] + from2->buf[0];
if (unlikely(x > DIG_MAX - 1)) /* yes, there is */
{
intgO++;
to->buf[0] = ©; /* safety */
}

FIX_INTG_FRAC_ERROR(to->len, intge, fraco, error);
if (unlikely(error == E_DEC_OVERFLOW)) {
max_decimal(to->1en * pIG_PER_DECI, 0, to);

return error;

buf@ = to->buf + intgd + fraco;

to->sign = froml->sign;
to->frac = std::max(from1->frac, from2->frac);
. ~Tr DER DEC1:

£CMU-DB

15-445/645 (Spring 2024)

NULL DATA TYPES

Choice #1: Null Column Bitmap Header

— Store a bitmap in a centralized header that specifies what attributes

are null.

This is the most common approach.

Choice #2: Special Values
— Designate a value to represent NULL for a data type (e.g., INT32_MIN).

Choice #3: Per Attribute Null Flag

— Store a flag that marks that a value is null.
— Must use more space than just a single bit because this messes up with

word alignment.

$ZCMU-DB

15-445/645 (Spring 2024)

LARGE VALUES

Most DBMSs don't allow a tuple Tuple
to exceed the size of a single page. |Header| a | b | c | d |e
To store values that are larger than I

a page, the DBMS uses separate L Overflow Page
overflow storage pages.

— Postgres: TOAST (>2KB)
— MySQL: Overflow (> size of page)

VARCHAR DATA o—>

— SQL Server: Overflow (>size of page)

$ZCMU-DB

15-445/645 (Spring 2024)

EXTERNAL VALUE |

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?

Russell Sears’, Catharine van Ingen', Jim Gray'

1: Microsoft Research, 2: University of California ot Berkeley
sears@cs.berkeley.edu, vanl icrosoft.com, gray ft.com
MSR-TR-2006-45
April 2006 Revised June 2006

rge
SOme SYStemS allOW you to Store d la g Abstract 1. Introduction

Application designers must decide whether to store Application data obj
large objects (BLOBS) in a filesystem o in a databgee. media becomes

jects are getting larger as digital

ubiquitous. Furthermore, the

- this decis sed o Cystem PCTeSSing popularity of web services and oty

b }(na 1 e application simplicity or manageability. Often, systen network applications means that systems that onee
e 1 aIl e er Y performance affects these fuctors. managed static archives of “finished” objects now

V a Il Folklore tells us that databases efficiently handie manage frequently modifid versions of spphecioe,

large numbers of small objects, while filesystems are data as it is being created and updated. Rather than
more efficient for large objects. Where is the updating these

objects, the archive either stores

break-even point? When is accessing a BLOB stored multiple versions of the objects (the V of WebDAY
B t e . as a file cheaper than accessing a BLOB stored 2 a stands for “versioning”), or simply does wholowal
re ate aS a database record? replacement (as in SharcPoint Team Seryjon
Of course, this depends on the particular [SharePoint]).

filesystem, database system, and workload in question. Application designers have the choice of storing
This study shows that when comparing the NTFS file large objects as files in the filesystem, as BLOBs
system and SQL Server 2005 database system on g (binary large objects) in a database, or me .

1 . B F I L E ata type create, {read, replace* = delete combination of both. Only folklore i availabls
—_—> rac e . workload, BLOBs smaller than 256KB are more regarding the tradeoffs - often the design decision i
cfficiently handled by SQL Server, while NIFS 36 boced on which technology the designer knows best,
more efficient BLOBS larger than IMB. Of COUISe Mot designers will tell you that a database is probably

t e s Dreak-even point will vary among difforen best for small binary objects and that that files are o,
. o E STRE A ata yp database sysiems, ilesystems, and workloads, for large objects. But, what s the break-eyen point?
Cro S O t By measuring the performance of a storage server What are the tradeoffs?

—> M 1 ° workload typical of web applications which use get/put
protocols such as WebDAV [WebDAV], we found that abstracted write-i
the break-even point depends on many factors. with relatively
However, our experiments suggest that Storage age, the
jatio of bytes in deleted or replaced objects to bytes in
five objects, is dominant. ~As storage age incresses.

database to
store large objects, while the other version stores the

s 1 ag objects as files in the filesystem. We measure how
fragmentation tends to increase. The filesystem we performance changes

t e study has better fragmentation control “than ~ the fragmented. The article concludes by describing and

a I l 1 u database we used, suggesting the database system quantifying the factors that a designer should consider

‘ :a I l Wwould benefit from incorporating ideas from filesystem [picking a storage system, I ajon suggests

e architecture. Conversely, filesystem performance may filesystem and database improvements for large object

be improved by using database techniques to handl,
small files

support,

A One surprising (to us at least) conclusion of our

 Surprisingly, for these studies, when average that storage fragmentation is the main

Xter I I a 1 e ° object size is | stant, the distribution of object determinant of the break-cven point in the tradeoff.
O nt e I] t S O an sizes did not significantly affect performance, We s Therefore, much of our work and much of s oo
C ! ceeispa focuses on storage fragmentation issues. In essence,
filesystems seem to have better fragmentation handling
than databases and this drives the break.eyen point

_) NO durability protectlons. down from about IMB to about 256KB.

— No transaction protections.

$ZCMU-DB

15-445/645 (Spring 2024)

£CMU-DB

A DBMS stores meta-data about databases in

SYSTEM CATALOGS

Catalog Name Description Postgres

itS internal Catalogs. pg_database databases

— Tables, columns, indexes, views

pg_class tables

pg_attribute table columns

— Users, permissions pg_index indexes
I t 1 t t. t. pg_proc procedures/functions
—ECTREIIAUES pg_type data types (both base and complex)
pg_operator operators
Almost every DBMS stores the database’s Pg_aggregate aggregate functions
. . o . pg_am access methods
catalog inside itself (i.e., as tables). e acoess metiod operaton
— Wrap object abstraction around tuples. pg_amproc access method support functions

— Specialized code for “bootstrapping” catalog tables.

15-445/645 (Spring 2024)

pg_opclass access method operator classes

$ZCMU-DB

SYSTEM CATALOGS

You can query the DBMS's internal
INFORMATION_SCHEMA catalog to get info about the
database.

— ANSI standard set of read-only views that provide info about
all the tables, views, columns, and procedures in a database

DBMS:s also have non-standard shortcuts to retrieve
this information.

15-445/645 (Spring 2024)

ACCESSING TABLE SCHEMA

List all the tables in the current database:

SELECT * SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_catalog = '<db name>';

\d; Postgres
SHOW TABLES; MySQL
.tables SQLite

$ZCMU-DB

15-445/645 (Spring 2024)

ACCESSING TABLE SCHEMA

List all the tables in the student table:

SELECT = sSQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name = 'student'

\d student; Postgres

DESCRIBE student; MysQL

.schema student SQlLite

$ZCMU-DB

15-445/645 (Spring 2024)

INDEXES

CREATE INDEX:

— Scan the entire table and populate the index.

— Have to record changes made by txns that modified the table while another
txn was building the index.

— When the scan completes, lock the table and resolve changes that were missed

after the scan started.

DROP INDEX:
— Just drop the index logically from the catalog.

— It only becomes “invisible” when the txn that dropped it commits. All existing

txns will still have to update it.

$ZCMU-DB

15-445/645 (Spring 2024)

CONCLUSION

Log-structured storage is an alternative
approach to the page-oriented architecture.

— Ideal for write-heavy workloads because it
maximizes sequential disk I/0O.

The storage manager is not entirely
independent from the rest of the DBMS.

$ZCMU-DB

15-445/645 (Spring 2024)

