—
jamegie |ntro to Database

University Systems (15-445/645)

Lecture #05

Storage
Models &

Compression

SPRING 2024)) Prof. Jignesh Patel

ADMINISTRIVIA
Homework #1 is due February 2™ @ 11:59pm.

Project #1 is due February 18®" @ 11:59pm.

C3CMU -DB

$ZCMU-DB

LAST CLASS

We discussed alternatives to tuple-oriented storage scheme.
— Log-structured storage

— Index-organized storage

These approaches are ideal for write-heavy
(INSERT/UPDATE/DELETE) workloads.

But the most important consideration for many

applications is the read (SELECT) performance...

15-445/645 (Spring 2024)

DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)

— Fast operations that only read/update a small amount of data each
time.

On-Line Analytical Processing (OLAP)

— Complex queries that read a lot of data to compute aggregates.

Hybrid Transaction + Analytical Processing
— OLTP + OLAP together on the same database instance

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

DATABASE WORKLOADS

"? Complex

>

—

s LAP

S

g Jim Gray
5 OLTP

g_ Simple |

O Write-Heavy Read-Heavy

Workload Focus

Source: Mike Stonebraker

15-445/645 (Spring 2024)

http://cacm.acm.org/magazines/2011/6/108651

WIKIPEDIA EXAMPLE

CREATE TABLE useracct (CREATE TABLE pages (
userID INT PRIMARY KEY, pageID INT PRIMARY KEY,
userName VARCHAR UNIQUE, title VARCHAR UNIQUE,
s latest INT
); —® REFERENCES revisions (revID),
A);

A

CREATE TABLE revisions (

revID INT PRIMARY KEY,
@ userID INT REFERENCES useracct (userlID),
pageID INT REFERENCES pages (pagelD)®
content TEXT,

updated DATETIME

);

$ZCMU-DB

15-445/645 (Spring 2024)

OBSERVATION

The relational model does not specify that the DBMS
must store all of a tuple’s attributes together on a single

page.

This may not actually be the best layout for some

workloads...

C3CMU -DB

OLTP

On-line Transaction Processing:

— Simple queries that read/update a
small amount of data related to a
single entity in the database.

This is usually the kind of

application that people build
first.

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT
FROM
INNER
ON
WHERE

P.*, R.x*

pages AS P

JOIN revisions AS R
P.latest = R.revID
P.pagelID = ?

UPDATE
SET

WHERE

useracct

lastLogin = NOW(),
hostname = ?
userID = ?

INSERT

INTO revisions VALUES

(?7,2..,7)

OLAP

On-line Analytical Processing: [seLect count(u.1astiogin),

: EXTRACT (month FROM
— Complex queries that read large U.lastlogin) AS month

. . FROM useracct AS U
portions of the database spanning | wiere u.hostname LIKE '%.gov'

ltipl Giti GROUP BY
mullipie entities. EXTRACT (month FROM U.lastlLogin)

You execute these workloads

on the data collected from your
OLTP application(s).

$ZCMU-DB

15-445/645 (Spring 2024)

STORAGE MODELS

A DBMS’s storage model specifies how it physically

organizes tuples on disk and in memory.

— Can have different performance characteristics based on the
target workload (OLTP vs. OLAP).

— Influences the design choices of the rest of the DBMS.

Choice #1: N-ary Storage Model (NSM)
Choice #2: Decomposition Storage Model (DSM)
Choice #3: Hybrid Storage Model (PAX)

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

N-ARY STORAGE MODEL (NSM)

The DBMS stores (almost) all attributes for a single tuple
contiguously in a single page.

— Also known as a “row store’.

I[deal for OLTP workloads where queries are more likely to
access individual entities and execute write-heavy workloads.

NSM database page sizes are typically some constant multiple
of 4 KB hardware pages.
— Oracle (4 KB), Postgres (8 KB), MySQL (16 KB)

$ZCMU-DB

15-445/645 (Spring 2024)

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system
stores a tuple’s fixed-length and
variable-length attributes
contiguously in a single slotted

page.

The tuple’s record id (page#,
slot#) is how the DBMS uniquely
identifies a physical tuple.

Row #0 m
Row #1 (I
Row #2 [IEP
Row #3 -
Row #4 (0NN

row #5 (IS (IEE

Database Page

ColC

header

!
Slot Array

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system
stores a tuple’s fixed-length and
variable-length attributes
contiguously in a single slotted

page.

The tuple’s record id (page#,
slot#) is how the DBMS uniquely
identifies a physical tuple.

$ZCMU-DB

15-445/645 (Spring 2024)

ColA ColB ColC

row #0 [T Y 7]
Row #1
Row #2
Row #3
Row #4
Row #5

Database Page

| header REURMNVIN 1| header I

b1

cl

header

!
Slot Array

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system ColA ColB ColC
4 vov 0 [N

stores a tuple’s fixed-length and Row #1 |
: : Row #2
variable-length attributes N\,

contiguously in a single slotted Row #4
Row #5
page.

Database Page
a0 bo WNCE al

o) cl

The tuple’s record id (page#,
slot#) is how the DBMS uniquely
identifies a physical tuple. EEEETTe] feader

!
<2CMU-DB Slot Array

15-445/645 (Spring 2024)

£CMU-DB

15-445/645 (Spring 2024)

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system
stores a tuple’s fixed-length and
variable-length attributes
contiguously in a single slotted

page.

The tuple’s record id (page#,
slot#) is how the DBMS uniquely
identifies a physical tuple.

Row #0
Row #1
Row #2
Row #3
Row #4

Row #5 IECH] PR [T |

Database Page

| header REUIMNIN =5 header Y

b1 cl a2 b2 c2

header (S BIE T header REY

b4 c4 a5 bb c5

] header

!
Slot Array

Disk

$ZCMU-DB

15-445/645 (Spring 2024)

NSM: OLTP EXAMPLE

SELECT * FROM useracct
WHERE userName = ?

AND userPass = ?

Database File

I

Index

L

NSM Disk Page
header | userID JuserNamejuserPass|hostname| lastlLogin
header | userID fuserNamefuserPass|hostname| lastlLogin
header | userID JuserNamejuserPassjhostname| lastLogin
header = = = - -

Disk

$ZCMU-DB

15-445/645 (Spring 2024)

NSM: OLTP EXAMPLE

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

INSERT INTO useracct
VALUES (?7,7,..7)

»

Index

L

NSM Disk Page

header | userID JuserNamejuserPass|hostname| lastlLogin
';\) header | userID JuserNameluserPass|hostname| lastlLogin
‘e
% header | userID JuserNamejuserPassjhostname| lastLogin
S
) header = = = = =
S
S

Disk

$ZCMU-DB

15-445/645 (Spring 2024)

NSM: OLTP EXAMPLE

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

INSERT INTO useracct
VALUES (?7,7,..7)

»

Index

L

NSM Disk Page

header | userID JuserNamejuserPass|hostname| lastlLogin
& header | userID JuserNamejuserPassjhostname| lastLogin
‘=
% header | userID JuserName|userPass|hostname| lastlLogin
S
-~ header | userID fuserName|userPass|hostname| lastlLogin
S
S

NSM: OLAP EXAMPLE

SELECT COUNT(U.lastlLogin),

EXTRACT(month FROM U.lastlLogin) AS month

FROM useracct AS U

WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

1l NSM Disk Page

header

userID

userName

userPass

hostname

Database File

header

userID

userName

userPass

hostname

header

userID

userName

userPass

hostname

header

userID

userName

userPass

hostname

$ZCMU-DB

15-445/645 (Spring 2024)

NSM: OLAP EXAMPLE

SELECT COUNT(U.lastlLogin),
EXTRACT(month FROM U.lastLogin) AS

FROM useracct AS U

WHERE |U.hostname| LIKE '%.gov'

GROUP BY EXTRACT(month FROM U.lastlLogin)

1 NSM Disk Page

header

userID

userPass

hostname

Database File

header

userID

userPass

hostname

header

userID

userPass

hostname

header

userID

userPass

hostname

$ZCMU-DB

15-445/645 (Spring 2024)

NSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin,

EXTRACT (month FROM

FROM useracct AS U

U.lastLoginb AS month
WHERE |U.hostname| LIKE '%.gov'

GROUP BY EXTRACT(month FROM |U.lastLogin)

1l NSM Disk Page

header

userID

userName

userPass

hostname

Database File

header

userID

userName

userPass

hostname

header

userID

userName

userPass

hostname

header

userID

userName

userPass

hostname

$ZCMU-DB

15-445/645 (Spring 2024)

NSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT (month FROM [U.lastLogin|) AS

FROM useracct AS U

WHERE |U.hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin)

1 NSM Disk Page

header @ userID JuserName sghostname

Database File

header B userID JuserName shostname

header B userID JuserName sghostname

header B userID JuserName S@hostname

$ZCMU-DB

15-445/645 (Spring 2024)

Useless Data

$ZCMU-DB

15-445/645 (Spring 2024)

NSM: SUMMARY

Advantages
— Fast inserts, updates, and deletes.

— Good for queries that need the entire tuple (OLTP).

— Can use index-oriented physical storage for clustering.

Disadvantages

— Not good for scanning large portions of the table and/or a
subset of the attributes.

— Terrible memory locality for OLAP access patterns.

— Not ideal for compression because of multiple value

domains within a single page.

DECOMPOSITION STORAGE MODEL (DSM)

The DBMS stores a single attribute for all
tuples contiguously in a block of data.

— Also known as a “column store”.

I[deal for OLAP workloads where read-only
queries perform large scans over a subset of

the table’s attributes.

DBMS is responsible for combining/splittin
a tuple’s attributes when reading/writing.

$ZCMU-DB

15-445/645 (Spring 2024)

A DECOMPOSITION STORAGE MODEL

George P Copeland
Setrag N Khoshafian

Computer

9430 Research Blvd
Austin, Texas 78759

Abstract

This report examines the relative advantages
of a storage model based on decomposition (of
:onunlty view relations into binary relations

ontad a surrogate and one attribute) over
Convent lonal n-ary storage models

There seems to be a general consensus among
the database community that the n-ary approach is
better This conclusion is nlunlly based on a

1de on of only one or fons of a
stem The purpose of m- report is not
to claim that decomposition is better Instead, we
clain that the consensus opinion is not well
rwndod lnd that neither {s clearly better until a
s made along dimensions
of a d-ubue systen The purpose of this report
is to move further in both scope and depth toward
such 1 We examine such dimensions as
simplicity, generality, storage requirements,
update performance and retrieval performance

1 INTRODUCTION

Most databa: storage
model (NSM) for a se pproach
stores data as seen in the conceptlnl schema
Also, various inverted file or cluster indexes
might be added for improved access speeds The key
concept in the NSM {s that all attributes of a
conceptual schema record are stored together For
the conceptual schema relation

R|sur
81	vii	vei	vai
2	vi2	v2z	vaz
831 v13	v23	v33	

contains a surrogate for record identity and three

attributes per record The NSM would store si,
vii, v2i and v31 together for each record i

Permission to copy without fee all or part of this matcrial 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the ttle of the
publication and its date appear, and notce 15 given that copying is by
permussion of the Association for Computing Machinery To copy
otherwse, or to republish, requires a fee and/or specific permission

© 1985 ACM 0-89791-160-1/85/005/0268 $00 75

Some Gatabasssystenn use &' fully trasapaned
storage model, for example, RM (Lorie and
1971), 10D (Wiederhold et al 1975), RAPID (Turner
et al 1979), ALDS (Burnett and Thomas 1981), D'ltl
(Shibayama et al 1982) and (Tanaka 1983)
approach stores all values of the sane attribate of
a conceptual schema relation together Several
studies have compared the performance of transposed
storage models with the NSM (Hoffer 1976, Batory
1979, March and Severance 1977, March and Scudder
1984) In this report, we describe the advantages
of & fully decomposed storage model (DSM), which is
a transposed storage model with surrogates
Ancluded The DSM pairs each attribute value with
the surrogate of its conceptual schema record in &
binary r r example, the above relation
would be stored as

allsur| val| a2|sur| val| a3|sur| val

?

| s1| vii] | si| v21] | s1] v31|
[s2| viz| | s2] va2| | s2| va2|
|83 v13| | s3] ve3 33| v33]

In addition, the DSM stores two copies of each
attribute relation One copy is clustered on the
value while the other is clustered on the
surrogate These statements apply only to base
(e, extensional) data To support the
relational model, intermediate and final results
need an n-ary representation I a richer data
model than normalized relations 1s supported, then
intermediate and final results need a
correspondingly richer representation

This report compares these two storage models
based on several criteria Section 2 compares the
relative complexity and generality of the two
Section 3 compares their storage
requirements Section 4 compares their update
performance Section 5 compares their retrieval
performance Finally, Section 6 provides a summary
and suggests some refinements for the DSM

2 SIMPLICITY AND GENERALITY

This Section compares the two storage models
to illustrate their relative simplicity and
generality Others (Abrial 1974, Deliyanni and
Kowalski 1977, Kowalski 1978, Codd 1979) have
argued for the semantic clarity and generality of
representing basic fact individually within
the conceptual schema as the DSM does within the
storage schema

DSM: PHYSICAL ORGANIZATION

ColB ColC

Store attributes and metadata (e.g.,

p Row #0 co
nulls) in separate arrays of fixed-

Row #1 C
length values. Row #2 2
. . . . Row #3 c3
— Most systems identify unique physical o 82 =
tuples using offsets into these arrays. Row #5 c5

— Need to handle variable-length values...

header null bitmap

File #1

a0 al a2 a3 a4 ab
Maintain a separate file per attribute

with a dedicated header area for

metadata about the entire column.

$ZCMU-DB

15-445/645 (Spring 2024)

DSM: PHYSICAL ORGANIZATION

Store attributes and metadata (e.g.,
. Row #0
nulls) in separate arrays of fixed- e
length values. Row #2
— Most systems identify unique physical 2:: :i
tuples using offsets into these arrays. Row #5

— Need to handle variable-length values...

header null bitmap
a0 al a2 a3 a4 a5

Maintain a separate file per attribute
with a dedicated header area for
metadata about the entire column.

header null bitmap
b bl b2 b3 b4 b5

File #2 File #1

$ZCMU-DB

15-445/645 (Spring 2024)

DSM: PHYSICAL ORGANIZATION

Store attributes and metadata (e.g.,

nulls) in separate arrays of fixed-

length values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

Maintain a separate file per attribute
with a dedicated header area for
metadata about the entire column.

$ZCMU-DB

15-445/645 (Spring 2024)

File #2 File #1

File #3

Row #0
Row #1
Row #2
Row #3
Row #4
Row #5

ColA ColB ColC

a

header

Y

al

a2

null bitmap

a3

ad

header
b1 b2

bo

null bitmap

b3

b4

b5

header

c0
c5

cl

null bitmap

c2

0
w

c4

— Also known as a “column store”.

multiple tuples contiguously in a page.

DSM: DATABASE EXAMPLE

The DBMS stores the values of a single attribute across

/| DSM Disk Page

header

hostname

hostname

hostname

hostname

hostname|hostname

hostname

hostname

hostname

hostname

hostname|hostname

hostname

hostname

hostname

hostname

hostname|hostname

hostname

hostname

hostname

hostname

Database File

$ZCMU-DB

15-445/645 (Spring 2024)

— Also known as a “column store”.

multiple tuples contiguously in a page.

DSM: DATABASE EXAMPLE

The DBMS stores the values of a single attribute across

/| DSM Disk Page

[ﬁ‘ﬂ]uasuélgin |
=T/

userName |

Database File

.o
Sy

userPass

header hostname|hostnamefhostnamejhostname
hostnamehostname|hostnamelhostname|hostnamejhostname
3|/
/ hostname|hostnamehostnamejhostnamehostnamejhostname
=
= hostnamehostname|hostnamejhostname|hostnamejhostname
\

$ZCMU-DB

15-445/645 (Spring 2024)

DSM: OLAP EXAMPLE

SELECT COUNT(U.lastlLogin),

EXTRACT(month FROM U.lastlLogin) AS month

FROM useracct AS U

WHERE |U.hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

| DSM Disk Page

header hostname hostnameIhostname

hostname

hostnameffhostname|hostnamejhostname|hostname

hostname

hostname|hostname|hostnamg

hostname

hostname

hostnamefjhostnamejhostnamejhostname|hostname

hostname

Database File

$ZCMU-DB

15-445/645 (Spring 2024)

DSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT (month FROM |U.lastlLogin]) AS month

FROM useracct AS U

WHERE |U.hostname| LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin)

DSM Disk Page

header lastlLogin | lastLogin [§ lastlLogin | lastLogin

lastLogin j lastLogin | lastLogin | lastLogin | lastLogin | lastLogin

lastlLogin | lastLogin | lastLoginf lastLogin[§ lastlLogin | lastLogin

lastLogin || lastLogin | lastLogin | lastLogin | lastLogin | lastLogin

Database File

Disk

$ZCMU-DB

15-445/645 (Spring 2024)

DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets

— Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids

— Each value is stored with its tuple id in a column.

Offsets Embedded Ids
e fcfo

wm—\sh
ww—‘®h
wl\)—‘®h
wm—nsh

W N 2

$ZCMU-DB

15-445/645 (Spring 2024)

DSM: VARIABLE-LENGTH DATA

Padding variable-length fields to ensure they are
fixed-length is wasteful, especially for large

attributes.

A better approach is to use dictionary compression
to convert repetitive variable-length data into
fixed-length values (typically 32-bit integers).

— More on this in a few slides.

$ZCMU-DB

15-445/645 (Spring 2024)

DSM: SYSTEM HISTORY

1970s: Cantor DBMS D ®
N SYBASE
1980s: DSM Proposal

=T~/ N\
1990s: SybaselQ (in-memory only) VERTICN monetds)

0:::0 t -
2000s: Vertica, Vectorwise, MonetDB L WIS
/’/’/ Apache -
2010s: Everyone + Parquet / ORC % Parquet ‘ orc

AAAAAA

cloudera @»= DuckDB (X QuestDB
presto .. ClickHouse (3 UMBRA IMPALA

; - -3 druid

pinoi MANA _> E @’) ORACIT@?%C“’“E? , . Eg‘g?ﬁﬁﬁ' % APACHE
s S O Rsener o BB ABHL
Rigigle]

€ pancakeDB Exasol ———
% . A~ Q sSingleStore InfiniDB .
| ¥» DORIS CiAlloyDB @ @ influxdb

S2CMUDB MiariaDB (4 S < Y FIREBOLT

15-445/645 (Spring 2024)

http://dl.acm.org/citation.cfm?id=655555
https://parquet.apache.org/
https://orc.apache.org/

DECOMPOSITION STORAGE MODEL (DSM)

$ZCMU-DB

15-445/645 (Spring 2024)

Advantages

— Reduces the amount wasted I/O per query because the
DBMS only reads the data that it needs.

— Faster query processing because of increased locality
and cached data reuse.

— Better data compression (more on this in a few slides).

Disadvantages

— Slow for point queries, inserts, updates, and deletes
because of tuple splitting/stitching/reorganization.

OBSERVATION

OLAP queries rarely access a single column in a table
by itself.

— At some point during query execution, the DBMS must get
other columns and stitch the original tuple back together.

But we still need to store data in a columnar format to
get the storage + execution benefits.

We need a columnar scheme that still stores attributes
separately but keeps the data for each tuple physically

close to each other...
$2CMU-DB

15-445/645 (Spring 2024)

PAX STORAGE MODEL

Weaving Relations for Cache Performance

Partition Attributes Across (PAX) is a
hybrid storage model that vertically

partitions attributes within a database page.

— This is what Paraquet and Orc use.

The goal is to get the benefit of faster
processing on columnar storage while
retaining the spatial locality benefits of row

storage.

$ZCMU-DB

15-445/645 (Spring 2024)

Anastassia Ailamaki ¥

Camegic Mellon University

David J. DeWitt

Univ. of Wi i

ark D. Hill
isconsin-Mad

niv. of W

Marios Skounakis
Univ. of W in-Madi

natassa@cs.cmu.edu dewitt@cs.wisc.edu

Abstract

Relational database systems have traditionally optimzed for
10 performance and organized records sequentially on disk
pages using the N-ary Storage Model (NSM) (ak.a., slotted
pages). Recent research, however, indicates that cache utilization
and performance is becoming increasingly important on modern
platforms. In this paper, we first demonstrate that in-page data
placement is the key to high cache performance and that NSM
exhibits low cache utilization on modern platforms. Next, we pro-
pose a new data organization model called PAX (Partition
Attributes Across), that significantly improves cache perfor-
mance by grouping together all values of each attribute within
each page. Because PAX only affects layout inside the pages, it
incurs no storage penalty and does not affect IO behavior.
According 10 our experimental results, when compared to NSM
(a) PAX exhibits superior cache and memory bandwidth uiliza-
tion, saving at least 75% of NSM's stall time due to data cache
accesses, (b) range selection queries and updates on memory-
resident relations execute 17-25% faster, and (c) TPC-H queries
involving I/0 execute 11-48% faster.

1 Introduction

The communication between the CPU and the secondary

Univ.

markhill @cs.wisc.edu marios@cs wisc.edu
tremendous additional time to join the participating sub-
relations together. Except for Sybase-IQ [33], today’s rela-
tional DBMSs use NSM for general-purpose data place-
ment [20][29](32].

Recent research has demonstrated that modern data-
base workloads, such as decision support systems and spa-
tial applications, are often bound by delays related to the
processor and the memory subsystem rather than /O
[20](5][26]. When running commercial database systems
on a modern processor, data requests that miss in the cache
hierarchy (i.c., requests for data that are not found in any
of the caches and are transferred from main memory) are a
key memory bottleneck [1]. In addition, only a fraction of
the data transferred to the cache is useful to the query: the
item that the query processing algorithm requests and the
transfer unit between the memory and the processor are
typically not the same size. Loading the cache with useless
data (a) wastes bandwidth, (b) pollutes the cache, and (c)
possibly forces replacement of information that may be
needed in the future, incurring even more delays. The
challenge is to repair NSM’s cache behavior without com-
promising its advantages over DSM.

This paper introduces and cvaluates Partition

i Across (PAX), a new layout for data records

storage (/0) has been ized as the
major database performance bottleneck. To optimize data
transfer to and from mass storage, relational DBMSs have
long organized records in slotted disk pages using the N-
ary Storage Model (NSM). NSM stores records contigu-
ously starting from the beginning of cach disk page, and
uses an offset (slot) table at the end of the page to locate
the beginning of cach record [27).

Unfortunately, most querics use only a fraction of
cach record. To minimize unnecessary 1O, the Decompo-
sition Storage Model (DSM) was proposed in 1985 [10].
DSM partitions an n-attribute relation vertically into n
sub-relations, cach of which is accessed only when the
corresponding attribute is needed. Queries that involve
multiple attributes from a relation, however, must spend

Work done while author was at the University of Wisconsin-Madison.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
v the VLDB d

that combines the best of the two worlds and exhibits per-
formance superior to both placement schemes by eliminat-
ing unnecessary accesses to main memory. For a given
relation, PAX stores the same data on each page as NSM.
Within cach page, however, PAX groups all the values of a
particular attribute together on a minipage. During a
sequential scan (e.g., to apply a predicate on a fraction of
the record), PAX fully utilizes the cache resources,
because on each miss a number of a single attribute’s val-
ues are loaded into the cache together. At the same time,
all parts of the record are on the same page. To reconstruct
a record one needs to perform a mini-join among
‘minipages, which incurs minimal cost because it does not
have to look beyond the page.

‘We evaluated PAX against NSM and DSM using (a)
predicate selection queries on numeric data and (b) a vari-
ety of queries on TPC-H datasets on top of the Shore stor-
age manager [7]. We vary query parameters including

otice and the title of icatic
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or 1o republish,
requires a fee andlor special permission from the Endovwment
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

selectivity, number of predicates, distance

between the projected attribute and the attribute in the
predicate, and degree of the relation. The experimental
results show that, when compared to NSM, PAX (a) incurs
50-75% fewer second-level cache misses duc to data

PAX: PHYSICAL ORGANIZATION

ColA ColB ColC

Horizontally partition rows into groups.
Then vertically partition their attributes

into columns.

Global header contains directory with
the offsets to the file’s row groups.

— This is stored in the footer if the file is
immutable (Parquet, Orc).

dnoun moy

Each row group contains its own

PAX File

metadata header about its contents.
$2CMU-DB

15-445/645 (Spring 2024)

PAX: PHYSICAL ORGANIZATION

ColA ColB ColC

Horizontally partition rows into groups.
Then vertically partition their attributes

into columns.

Global header contains directory with
the offsets to the file’s row groups.

— This is stored in the footer if the file is
immutable (Parquet, Orc).

dnoun moy

Each row group contains its own

PAX File

metadata header about its contents.

dnoun moy

$ZCMU-DB

15-445/645 (Spring 2024)

PAX: PHYSICAL ORGANIZATION

Horizontally p? ColA ColB ColC

Then vertically Parquet: data organization

into columns. | ¢ Dataorganization

© Row-groups (default 128MB)
o Column chunks
Global header ° Pages (default 1MB) T /[cemrems
m Metadata R | [ruamo
. L Column A chunk 0
the offsets to t * Min = q
o Max ;

— This is store(N, /é:Olelnt l Ce=|| |l I)
. ep e eve S Columnz‘cnmuo g
immutable (] ® Encoded values - : J E

MmN . j ,é

EaCh row grO] @databricks J g
metadata header aboUt 1ts contermnts: 9
=

S

$ZCMU-DB

15-445/645 (Spring 2024)

OBSERVATION

I/0 is the main bottleneck if the DBMS fetches data from
disk during query execution.

The DBMS can compress pages to increase the utility of

the data moved per I/O operation.

Key trade-off is speed vs. compression ratio
— Compressing the database reduces DRAM requirements.

— It may decrease CPU costs during query execution.

$ZCMU-DB

15-445/645 (Spring 2024)

DATABASE COMPRESSION

Goal #1: Must produce fixed-length values.

— Only exception is var-length data stored in separate pool.

Goal #2: Postpone decompression for as long as
possible during query execution.

— Also known as late materialization.

Goal #3: Must be a lossless scheme.

$ZCMU-DB

15-445/645 (Spring 2024)

C3CMU -DB

4444444444444444444

LOSSLESS VS. LOSSY COMPRESSION

When a DBMS uses compression, it is always
lossless because people don't like losing data.

Any kind of lossy compression must be
performed at the application level.

COMPRESSION GRANULARITY

Choice #1: Block-level

— Compress a block of tuples for the same table.

Choice #2: Tuple-level

— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
— Compress a single attribute within one tuple (overflow).

— Can target multiple attributes for the same tuple.

Choice #4: Column-level

— Compress multiple values for one or more attributes stored for
multiple tuples (DSM-only).

$ZCMU-DB

15-445/645 (Spring 2024)

NAIVE COMPRESSION

Compress data using a general-purpose
algorithm. The scope of compression is
only based on the data provided as input.

—» LZO (1996), LZ4 (2011), Snappy (2011),
Oracle OZIP (2014), Zstd (2015)

Considerations
— Computational overhead

— Compress vs. decompress speed.

$ZCMU-DB

15-445/645 (Spring 2024)

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

MYSQL INNODB COMPRESSION

H Buffer Pool &l Database File

mod log

Compressed Page,

mod log

(124,81 KB

mod log

Compressed Page;

mod log

Compressed Page,

£CMU-DB Source: MySQL 5.7 Documentation

15-445/645 (Spring 2024)

https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

MYSQL INNODB COMPRESSION

H Buffer Pool &l Database File

Write mod log

Compressed Page,

mod log

(124,81 KB

mod log

Compressed Page;

mod log

Compressed Page,

£CMU-DB Source: MySQL 5.7 Documentation

15-445/645 (Spring 2024)

https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

£CMU-DB

MYSQL INNODB COMPRESSION

H Buffer Pool &l Database File

Write mod log

Read

mod log

(124,81 KB

mod log

Compressed Page,

Uncompressed
Page,
mod log

Compressed Page,

Source: MySQL 5.7 Documentation

15-445/645 (Spring 2024)

https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

£CMU-DB

MYSQL INNODB COMPRESSION

H Buffer Pool &l Database File

Write mod log nod log {12081 KB
Read Gomressed ragea [L1248

mod log

Read 16 KB

Uncompressed

mod log

Compressed Page,

Source: MySQL 5.7 Documentation

15-445/645 (Spring 2024)

https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

NAIVE COMPRESSION

The DBMS must decompress data first before
it can be read and (potentially) modified.

— This limits the “scope” of the compression scheme.

These schemes also do not consider the high-

level meaning or semantics of the data.

$ZCMU-DB

15-445/645 (Spring 2024)

OBSERVATION

[deally, we want the DBMS to operate on compressed
data without decompressing it first.

Datab_as’e
SELECT * FROM users Magig’ SELECT * FROM users
WHERE name = ‘Andy'’ WHERE name = XX

Andy 99999 XX AA
Jane 88888 1 YY BB
(L |

NAME SALARY NAME SALARY
»Tw

$ZCMU-DB

15-445/645 (Spring 2024)

COMPRESSION GRANULARITY

Choice #1: Block-level

— Compress a block of tuples for the same table.

Choice #2: Tuple-level

— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
— Compress a single attribute within one tuple (overflow).

— Can target multiple attributes for the same tuple.

Choice #4: Column-level

— Compress multiple values for one or more attributes stored for

multiple tuples (DSM-only).

$ZCMU-DB

15-445/645 (Spring 2024)

COLUMNAR COMPRESSION

Run-length Encoding
Bit-Packing Encoding
Bitmap Encoding
Delta Encoding
Incremental Encoding

Dictionary Encoding

C3CMU -DB

RUN-LENGTH ENCODING

Compress runs of the same value in a single

column into triplets:
— The value of the attribute.

— The start position in the column segment.

— The # of elements in the run.

Requires the columns to be sorted intelligently

to maximize compression opportunities.

$ZCMU-DB

15-445/645 (Spring 2024)

RUN-LENGTH ENCODING

Original Data Compressed Data

(Y,0,3)

(N,3,1)

(Y,4,1)

(N,5,1)

(Y,6,2)
RLE Triplet
- Value

- Offset
- Length

O |0 IN]|JO|dlwWwIN]|—-

O |0 IN]JO|Ddlw N |-

$ZCMU-DB

15-445/645 (Spring 2024)

RUN-LENGTH ENCODING

Compressed Data

(v,0,3)

(N,3,1)

(Y,4,1)

(N,5,1)

(Y,6,2)
RLE Triplet
- Value

- Offset
- Length

SELECT isDead, COUNT(*)
FROM users
GROUP BY isDead

»

Oolo|lvw|lola|lw v |-

$ZCMU-DB

15-445/645 (Spring 2024)

RUN-LENGTH ENCODING

Original Data Compressed Data
isDead
L 1
2 Y 2 (N,3,1)
3 Y 3 (Y,4,1)
4 N 4 (N,5,1)
6 Y 6 (Y,6,2)
/ N 7 | RLE Triplet
8 \ 8 | -Value
g Y g | - Offset
- Length

$ZCMU-DB

15-445/645 (Spring 2024)

RUN-LENGTH ENCODING

Sorted Data Compressed Data
1 Y 1 (Y,0,6)
2 Y 2 (N,7,2)
3 Y 3
41 » b
8 Y 8
9 Y 9
4 N 4
7 N 7

$ZCMU-DB

15-445/645 (Spring 2024)

BIT PACKING

[f the values for an integer attribute Original Data

is smaller than the range of its given
data type size, then reduce the
number of bits to represent each

value.

Use bit-shifting tricks to operate on

multiple values in a single word.

$ZCMU-DB

15-445/645 (Spring 2024)

Original:
8 x 32-bits =
256 bits

13 =P 00000000 00000000 00000000 00001101
191 =1 00000000 00000000 00000000 10111111
56 =1 00000000 00000000 00000000 00111000
92 =P 00000000 00000000 00000000 01011100
81 =J>| 00000000 00000000 00000000 01010001
120 =1 00000000 00000000 00000000 01111000
231 =1 00000000 00000000 00000000 11100111
172 =1 00000000 00000000 00000000 10101100

BIT PACKING

[f the values for an integer attribute Original Data

is smaller than the range of its given
data type size, then reduce the
number of bits to represent each

value.

Use bit-shifting tricks to operate on

multiple values in a single word.

$ZCMU-DB

15-445/645 (Spring 2024)

13

Original:

8 x 32-bits =

256 bits

00000000 00000000 00000000

00001101

191

56

00000000 00000000 00000000

10111111

92

00111000

81

01011100

120

231

01010001

01111000

00000000 00000000 00000000

11100111

172

IEEEEEENE!

00000000 00000000 00000000

10101100

BIT PACKING

[f the values for an integer attribute

is smaller than the range of its given

data type size, then reduce the
number of bits to represent each

value.

Use bit-shifting tricks to operate on

multiple values in a single word.

$ZCMU-DB

15-445/645 (Spring 2024)

Original Data Original:

8 x 32-bits =
256 bits

13 =P 00001101

191 =1 10111111

56 =1 00111000

92 =1 01011100

81 =1 01010001

120 =1 01111000

231 =1 11100111

172 =1 10101100
Compressed:
8 x 8-bits =
64 bits

PATCHING / MOSTLY ENCODING

A variation of bit packing when attribute’s values are “mostly”
less than the largest size, store them with the smaller data type.

— The remaining values that cannot be compressed are stored in their raw

form.

Original Data

13
191
99999999
92
81
120
231
172

Source: Redshift Documentation

$ZCMU-DB

15-445/645 (Spring 2024)

http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

PATCHING / MOSTLY ENCODING

A variation of bit packing when attribute’s values are “mostly”
less than the largest size, store them with the smaller data type.

— The remaining values that cannot be compressed are stored in their raw

form.
Original Data Compressed Data
offset value
13 13 3 99999999
191 181
99999999 XXX
92 92
81 81
120 120
231 231
. , 172 172
Source: Redshift Documentation

$ZCMU-DB

15-445/645 (Spring 2024)

http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

PATCHING / MOSTLY ENCODING

A variation of bit packing when attribute’s values are “mostly”
less than the largest size, store them with the smaller data type.

— The remaining values that cannot be compressed are stored in their raw

form.
Original Data Compressed Data
‘o1 offset value .
Original: 13 = 3159990900 Compres.sed.
8 x 32-bits = 191 181 (8 x 8-bits) +
. 99999999 XXX . .

256 bits 92 5 16-bits + 32-bits
81 81 = 112 bits
120 120
231 231

Source: Redshift Documentation 172 172

$ZCMU-DB

15-445/645 (Spring 2024)

http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

BITMAP ENCODING

Store a separate bitmap for each unique value for an attribute
where an offset in the vector corresponds to a tuple.
— The i position in the Bitmap corresponds to the i tuple in the table.

— Typically segmented into chunks to avoid allocating large blocks of
contiguous memory.

Only practical if the value cardinality is low.

Some DBMSs provide bitmap indexes.

$ZCMU-DB

15-445/645 (Spring 2024)

https://dbdb.io/browse?indexes=bitmap

BITMAP ENCODING

Original Data Compressed Data

isDead

.
o

isDead

Y

Y

=

»

O |0 IN|oldJwWw]IN]|—-

1
1
1
0
1
0
1
1

O |0 IN]JOO|Ddw N
O |o|=|O|= |||

$ZCMU-DB

15-445/645 (Spring 2024)

BITMAP ENCODING

Original Data Compressed Data
. _» 2% 8-bits =
. B~ 76 birs

=

)

9 x 8-bits =
72 bits

} Original:

Ol |IN]|oldhlwWIN]—-
< I<I|IZI<|IZ2|I<]|<

1
1
1
0
1
0
1
1

O |0 IN]JOO|Ddw N
O |o|=|O|= |||

$ZCMU-DB

15-445/645 (Spring 2024)

&
BITMAP ENCODING

Compressed:
o 16 bits + 18 bits =
Original Data Compressed Data 34 bits
. _» 2% 8-bits =

1y | Ml 76 birs

- m|m(oh

3 y 1 2 ||1][e

y N Ortgma.l: 3 [1][e

- y } 9 x 8-bits = IIE 9 x 2-bits =

. . 72 bits s 11 e 18 bits

: y 7 |leff1

9 y J 8 [|1]|e

s |[1][e]/

$ZCMU-DB

15-445/645 (Spring 2024)

BITMAP ENCODING: EXAMPLE

Assume we have 10 million tuples.

43,000 zip codes in the US. e —
— 10000000 x 32-bits = 40 MB id INT PRIMARY KEY,

_ name VARCHAR(32),
— 10000000 x 43000 = 53.75 GB email VARCHAR(64),

address VARCHAR(64),
Every time the application inserts [zip_code INT |

);
a new tuple, the DBMS must
extend 43,000 different bitmaps.

$ZCMU-DB

15-445/645 (Spring 2024)

DELTA ENCODING

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.
— Combine with RLE to get even better compression ratios.

Original Data Compressed Data Compressed Data
12:00 99.5 12:00 99.5 12:00 99.5
12:01 99.4 +1 -0.1 (+1.4) -0.1
12:02 99.5 +1 +0.1 +0.1
12:03 99.6 +1 +0.1 +0.1
12:04 99.4 +1 -0.2 -0.2

5 x 64-bits 64-bits + (4 x 16-bits) 64-bits + (2 x 16-bits)
=320 bits = 128 bits = 96 bits

$ZCMU-DB

15-445/645 (Spring 2024)

DICTIONARY COMPRESSION

Replace frequent values with smaller fixed-length
codes and then maintain a mapping (dictionary)
from the codes to the original values

— Typically, one code per attribute value.

— Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast
encoding and decoding for both point and range
queries.

$ZCMU-DB

15-445/645 (Spring 2024)

DICTIONARY: EXAMPLE

SELECT * FROM users SELECT * FROM users
WHERE name = 'Andy' WHERE name = 30
Original Data Compressed Data

_name S

Andrea 10 Andrea 10 S..

Prashanth » 20 Prashanth 20 g

Andy 30 Andy 30 Q

Matt 40 Matt 0 |) 3

Prashanth 20

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

DICTIONARY: ENCODING / DECODING

A dictionary needs to support two operations:

— Encode/Locate: For a given uncompressed value,
convert it into its compressed form.

— Decode/Extract: For a given compressed value,

convert it back into its original form.

No magic hash function will do this for us.

DICTIONARY: ORDER-PRESERVING

The encoded values need to support the same collation

as the original values.

SELECT * FROM users
WHERE name LIKE 'And%'

Original Data

Andrea
Prashanth
Andy
Matt
Prashanth

$ZCMU-DB

15-445/645 (Spring 2024)

»

»

SELECT * FROM users

WHERE name BETWEEN 10 AND 20

Compressed Data

name value code

10 Andrea 10
40 Andy 20
20 Matt 30
30 Prashanth 40
40

Aavuorpng

pajiog

ORDER-PRESERVING ENCODING

SELECT name FROM users .
WHERE name LIKE 'And%' » Still must perform scan on column

SELECT DISTINCT name .
FROM users » Only need to access dictionary

WHERE name LIKE 'And%'

Original Data Compressed Data

_name S
Andrea 10 Andrea 10 QL

-
Prashanth » 40 Andy 20 S :_
Andy 20 Matt 30 g QL

Matt 30 Prashanth 40 Q

S2CMU-DB Prashanth 40

15-445/645 (Spring 2024)

DICTIONARY: DATA STRUCTURES

Choice #1: Array

— One array of variable length strings and another array with
pointers that maps to string offsets.
— Expensive to update so only usable in immutable files.

Choice #2: Hash Table

— Fast and compact.

— Unable to support range and prefix queries.

Choice #3: B+Tree

— Slower than a hash table and takes more memory.

— Can support range and prefix queries.
£2CMU-DB

15-445/645 (Spring 2024)

DICTIONARY: ARRAY

First sort the values and then Original Data Compressed Data
store them sequentially in a byte EEN | name |
Andrea 0
array. . » -
— Need to also store the size of the Andy 7
Matt 12

value if they are variable-length.

¥

Replace the original data with

dictionary codes that are the 6| Andrea
. S 4| Andy
(byte) offset into this array. it
3|Wan

$ZCMU-DB

15-445/645 (Spring 2024)

CONCLUSION

[t is important to choose the right storage model
for the target workload:

— OLTP = Row Store

— OLAP = Column Store

DBMSs can combine different approaches for

even better compression.

Dictionary encoding is probably the most useful
scheme because it does not require pre-sorting.

$ZCMU-DB

15-445/645 (Spring 2024)

C3CMU -DB

4444444444444444444

DATABASE STORAGE

Problem #1: How the DBMS
represents the database in files on disk.

Problem #2: How the DBMS manages

its memory and moves data back-and-

forth from disk.

«— Next

