—
jamegie |ntro to Database

University Systems (15-445/645)

Lecture #06

Memory
& Disk 1/0

Management

SPRING 2024)) Prof. Jignesh Patel

ADMINISTRIVIA

Project #1 is due February 18® @ 11:59pm.

Homework #2 will be posted in an hour. It is due
February 16™ @ 11:59pm.

£2CMU-DB
15-445/645 (Spri

ng 2024)

£2CMU-DB
15-445/645 (Spri

ng 2024)

LAST CLASS

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory
and move data back-and-forth from disk.

$ZCMU-DB

15-445/645 (Spring 2024)

DATABASE STORAGE

Spatial Control:
— Where to write pages on disk.

— The goal is to keep pages that are used together often as
physically close together as possible on disk.

Temporal Control:

— When to read pages into memory, and when to write
them to disk.

— The goal is to minimize the number of stalls from having
to read data from disk.

DISK-ORIENTED DBMS

Get Page #2 a

Directory

Database File

$ZCMU-DB

15-445/645 (Spring 2024)

Execution
Engine

Buffer Pool

Directory

Directory

DISK-ORIENTED DBMS

Get Page #2 a

Execution
Engine

Database File

$ZCMU-DB

15-445/645 (Spring 2024)

DISK-ORIENTED DBMS

Get Page #2

Directory

Buffer Pool

LLLTTTTLTELEETTTTTTTRRTE >
: Pointer to Page #2

Directory

Database File

Disk

Execution
Engine

$ZCMU-DB

15-445/645 (Spring 2024)

Buffer Pool

Directory

DISK-ORIENTED DBMS

o

Directory

Database File

$ZCMU-DB

15-445/645 (Spring 2024)

Execution
Engine

Buffer Pool

Directory

Directory

DISK-ORIENTED DBMS

Get Page #2 a

Execution
Engine

Database File

$ZCMU-DB

15-445/645 (Spring 2024)

DISK-ORIENTED DBMS

Get Page #2

Execution
i R— > OO Engine

.
Directory : : Headerl

Buffer Pool
N

Directory Headerl Headerl /-/eaderl Headerl Headerl

5 || Pages

Database File
—)
N
w
D

Disk

$ZCMU-DB

15-445/645 (Spring 2024)

£2CMU-DB
15-445/645 (Spri

ng 2024)

TODAY'S AGENDA

Buffer Pool Manager
Disk I/O Scheduling
Replacement Policies

Other Memory Pools

BUFFER POOL ORGANIZATION

Memory region organized as an array of Buffer
fixed-size pages. Pool

An array entry is called a frame. > page]

¥ page3
When the DBMS requests a page, an exact

o : | frame3
copy is placed into one of these frames. i Tframes

..

Dirty pages are buffered and not written

. . : agel age2 age3 age4
to disk immediately Pag pag pag pag

— Write-Back Cache On-Disk File

$ZCMU-DB

15-445/645 (Spring 2024)

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag
— Pin/Reference Counter

— Access Tracking Information

$ZCMU-DB

15-445/645 (Spring 2024)

Page Buffer
Table Pool

pagel @—> pagel
page3 @—> page3
frame3

frame4

pagel page2 page3 page4

On-Disk File

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag
— Pin/Reference Counter

— Access Tracking Information

$ZCMU-DB

15-445/645 (Spring 2024)

Page Buffer
Table Pool
x pagel @&——> pagel
page3 @——> page3
frame3
frame4

pagel page2 page3 page4

On-Disk File

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag
— Pin/Reference Counter

— Access Tracking Information

$ZCMU-DB

15-445/645 (Spring 2024)

Page Buffer
Table Pool
x pagel @&——> pagel
page3 @—> page3
frame3

» frame4

pagel page2 page3 page4

On-Disk File

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag
— Pin/Reference Counter

— Access Tracking Information

$ZCMU-DB

15-445/645 (Spring 2024)

Page Buffer
Table Pool
x pagel @&——> pagel
page3 @——> page3
frame3
frame4

pagel page2 page3 page4

On-Disk File

BUFFER POOL META-DATA

The page table keeps track of pages Page Buffer
that are currently in memory. Table Pool
— Usually a fixed-size hash table protected x pagel @——> pagel
with latches to ensure thread-safe access. page3 @———> page3
page2
Additional meta-data per page: frames

— Dirty Flag

— Pin/Reference Counter :
pagel page2 page3 page4

On-Disk File

— Access Tracking Information

$ZCMU-DB

15-445/645 (Spring 2024)

BUFFER POOL META-DATA

The page table keeps track of pages Page Buffer
that are currently in memory. Table Pool
— Usually a fixed-size hash table protected pagel @——> pagel
with latches to ensure thread-safe access. x page3 @———> page3
page2
Additional meta-data per page: frame4

— Dirty Flag

— Pin/Reference Counter
pagel page2 page3 page4

On-Disk File

— Access Tracking Information

$ZCMU-DB

15-445/645 (Spring 2024)

BUFFER POOL META-DATA

The page table keeps track of pages Page Buffer

that are currently in memory. Table Pool

— Usually a fixed-size hash table protected pagel @——> pagel
with latches to ensure thread-safe access. page3 @——>{ page3

page2
Additional meta-data per page: page2 ./ frame4
— Dirty Flag

— Pin/Reference Counter
pagel page2 page3 page4

On-Disk File

— Access Tracking Information

$ZCMU-DB

15-445/645 (Spring 2024)

LOCKS VS. LATCHES

Locks:

— Protects the database’s logical contents from other transactions.
— Held for transaction duration.
— Need to be able to rollback changes.

Latches:

— Protects the critical sections of the DBMS’s internal data

—Mutex

structure from other threads.

— Held for operation duration.

— Do not need to be able to rollback changes.

$ZCMU-DB

15-445/645 (Spring 2024)

PAGE TABLE VS. PAGE DIRECTORY

The page directory is the mapping from page ids

to page locations in the database files.
— All changes must be recorded on disk to allow the DBMS
to find on restart.

The page table is the mapping from page ids to a

copy of the page in buffer pool frames.

— This is an in-memory data structure that does not need to
be stored on disk.

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

ALLOCATION POLICIES

Global Policies:

— Make decisions for all active queries.

Local Policies:

— Allocate frames to a specific queries without considering
the behavior of concurrent queries.
— Still need to support sharing pages.

£2CMU-DB
15-445/645 (Spri

ng 2024)

BUFFER POOL OPTIMIZATIONS

Multiple Buffer Pools
Pre-Fetching
Scan Sharing

Buffer Pool Bypass

$ZCMU-DB

15-445/645 (Spring 2024)

MULTIPLE BUFFER POOLS

The DBMS does not always have a single buffer “\MySQL.
pool for the entire system.

— Multiple buffer pool instances
— Per-database buffer pool ORACLE

/2

N SYBASE

Partitioning memory across multiple pools helps & SQL Server

— Per-page type buffer pool

reduce latch contention and improve locality. |nformizx

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids
and then maintain a mapping from objects

to specific buffer pools.

$ZCMU-DB

15-445/645 (Spring 2024)

Q1 |GET RECORD [#123

A

ObjectId,

Buf fer Pool #1

PageId, SlotNum>

Buf fer Pool #2

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids

and then maintain a mapping from objects

to specific buffer pools.

Approach #2: Hashing
— Hash the page id to select which
buffer pool to access.

$ZCMU-DB

15-445/645 (Spring 2024)

Q1 |GET RECORD [#123

Buf fer Pool #1

HASH(123) % n

Buf fer Pool #2

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.

— Sequential Scans

— Index Scans

Buffer Pool

£CMU-DB

15-445/645 (Spring 2024)

Disk Pages

o

page0

page!

“~ page2

.
.
.
.
.
.
.

an

page3

page4

pageb

PRE-FETCHING

The DBMS can also prefetch pages Disk Pages

based on a query plan. page0
— Sequential Scans

— Index Scans pa*_;“
Buffer Pool pgge2
pageo “ page3
pageT J I page4
... I

£CMU-DB

15-445/645 (Spring 2024)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.

— Sequential Scans

— Index Scans

Buffer Pool

page0

£CMU-DB

15-445/645 (Spring 2024)

Disk Pages

page0

pagel

page2

page3

page4

pageb

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.

— Sequential Scans

— Index Scans

Buffer Pool

page0

pagel

[

$ZCMU-DB

15-445/645 (Spring 2024)

Disk Pages

page0

pagel

page2

page3

page4

pageb

The DBMS can also prefetch pages

based on a query plan.
— Sequential Scans

— Index Scans

Buffer Pool

PRE-FETCHING

pagel

$ZCMU-DB

15-445/645 (Spring 2024)

o
RN
.
.
o
*
°
g
0
*
0
D
page3 ------------------- B

»

L]

L]

L]

L]

Ll

L]

Ll
~

.
B
R
.
Y

Disk Pages

page0

pagel

page2

page3

page4

pageb

The DBMS can also prefetch pages

based on a query plan.
— Sequential Scans

— Index Scans

Buffer Pool

PRE-FETCHING

page3

pagel

page2

£CMU-DB

15-445/645 (Spring 2024)

Disk Pages

page0

pagel

page2

o1 mp

page3

page4

pageb

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Sequential Scans

— Index Scans

Buffer Pool

page3

page4

pageb

£CMU-DB

15-445/645 (Spring 2024)

Disk Pages

page0

pagel

page2

page3

page4

pageb

PRE-FETCHING

Q‘] SELECT * FROM A
WHERE val BETWEEN 100 AND 250

Buffer Pool

£CMU-DB

15-445/645 (Spring 2024)

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

PRE-FETCHING

index-page0

/\

index-page1

index-page4

index-page2

index-page3

index-page5||index-page6

£CMU-DB

15-445/645 (Spring 2024)

(] — »199 200------»299 300--—----»399

Disk Pages

o

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

PRE-FETCHING

index-page0

/\

index-page1

index-page4

index-page2

index-page3

index-page5||index-page6

£CMU-DB

15-445/645 (Spring 2024)

(] — »199 200------»299 300--—----»399

Buffer Pool

index-page0

Disk Pages

o

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

PRE-FETCHING

index-page® Disk P ages

ﬁ&ge: index-page0
index-page2||index-page3||index-page5||index-page6 c _

— 99 10— >199 200-—--—-»299 300-———-»399 Q1 ‘ 1ndex-page?

Buffer Pool index-page?2

index-page0 index-page3

index-page1 index-page4

... ndexpages

15-445/645 (Spring 2024)

PRE-FETCHING

index-page0

index-page1

—

index-page4

index-page2

Iindex—page3

index—pageSI index-page6

£CMU-DB

15-445/645 (Spring 2024)

T00———>199 200 —»299 300——»399
II'> Buffer Pool
index-page0
index-page1

Disk Pages

index-page0

L

index-page1

index-page2

index-page3

index-page4

index-page5

PRE-FETCHING

index-page0

index-pagel

— —

index-page4

index-page2

Iindex—page3

index—pageSI index-page6

£CMU-DB

15-445/645 (Spring 2024)

100> 199 2005299 300399
» Buffer Pool
index-page0
index-page1l

Disk Pages

index-page0

Q1 ‘ index-pagel

index-page2

index-page3

index-page4

index-page5

SCAN SHARING

Queries can reuse data retrieved from storage or
operator computations.

— Also called synchronized scans.
— This is different from result caching.

Allow multiple queries to attach to a single cursor
that scans a table.

— Queries do not have to be the same.
— Can also share intermediate results.

$ZCMU-DB

15-445/645 (Spring 2024)

SCAN SHARING

[f a query wants to scan a table and another query
is already doing this, then the DBMS will attach
the second query’s cursor to the existing cursor.

Examples:
— Fully supported in DB2, MSSQL, Teradata, and Postgres.
— Oracle only supports cursor sharing for identical queries.

=Ml ORACLE @ PostgreSQL

TERADATA Z38L Server

$ZCMU-DB

15-445/645 (Spring 2024)

https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html

SCAN SHARING

[f a query wants to scan a table and another query
is already doing this, then the DBMS will attach
the second query’s cursor to the existing cursor.

Examples:
— Fully supported in DB2, MSSQL, Teradata, and Postgres.
— Oracle only supports cursor sharing for identical queries.

=Ml ORACLE @ PostgreSQL

TERADATA Z38L Server

$ZCMU-DB

15-445/645 (Spring 2024)

https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html

SCAN SHARING

[f a query wants to scan a table and another query
is already doing this, then the DBMS will attach
the second query’s cursor to the existing cursor.

: g spaces, case, and comments. For e
following statements cannot use the same shared SQL area: RS

SELECT * FROM employees;

SELECT * FROM Employees: [0 copy
SELECT * FROM employees;

TeER/
. ORACLE"

eSQL

$ZCMU-DB

15-445/645 (Spring 2024)

https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

Disk Pages

o1

page0

pagel

page2

page3

page4

pageb

£CMU-DB

15-445/645 (Spring 2024)

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

Disk Pages

page0

pagel

o1 mp

page2

page0

page3

page1

page4

page2

pageb

£CMU-DB

15-445/645 (Spring 2024)

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

Disk Pages

page0

pagel

page2

page0

Q1P

page3

page1

page4

page2

pageb

£CMU-DB

15-445/645 (Spring 2024)

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

Disk Pages

page0

pagel

page2

Q1P

page3

page1

page4

page2

pageb

£CMU-DB

15-445/645 (Spring 2024)

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

Disk Pages

page0

pagel

page2

Q1P

page3

page1

page4

page2

pageb

£CMU-DB

15-445/645 (Spring 2024)

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

page0

pagel

page2

page3

Q1P

page3

page1

page4

page2

pageb

£CMU-DB

15-445/645 (Spring 2024)

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

page3

page1

page2

£CMU-DB

15-445/645 (Spring 2024)

SCAN SHARING

Disk Pages

2y

page0

pagel

page2

Q1P

page3

page4

pageb

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

page0

pagel

page2

page3

page3

page1

page4

page2

pageb

£CMU-DB

15-445/645 (Spring 2024)

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

page0

pagel

page2

page3

page3

page4

page4

pageb

pageb

£CMU-DB

15-445/645 (Spring 2024)

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

2y

page0

pagel

page2

page3

page3

page4

page4

pageb

pageb

£CMU-DB

15-445/645 (Spring 2024)

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

page0

pagel

2

page2

page0

page3

page1

page4

page2

pageb

£CMU-DB

15-445/645 (Spring 2024)

CONTIONOUS SCAN SHARING

Instead of trying to be clever, the Disk Pages
DBMS continuously scans the ‘ page0
database files repeatedly.
. P 4 Q1 pagel

— One continuous cursor per table.
— Queries “hop” on board the cursor while it page2

is running and then disconnect once they

have enough data. page3
Not viable if you pay per IOP. ‘ B
Only done in academic prototypes. @& page5

$ZCMU-DB

15-445/645 (Spring 2024)

BUFFER POOL BYPASS

The sequential scan operator will not store fetched

pages in the buffer pool to avoid overhead.

— Memory is local to running query.

— Works well if operator needs to read a large sequence of
pages that are contiguous on disk.

— Can also be used for temporary data (sorting, joins).

Called “Light Scans” in Informix.

Microsoft®

ORACLE Z801 server WPostgesal |nformix

$ZCMU-DB

15-445/645 (Spring 2024)

https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm

BUFFER REPLACEMENT POLICIES

When the DBMS needs to free up a frame to make
room for a new page, it must decide which page to
evict from the buffer pool.

Goals:

— Correctness

— Accuracy

— Speed

— Metadata overhead

£2CMU-DB
15-445/645 (Spri

ng 2024)

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the
one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

page0d +*pagel [+ * page2

Newest<Oldest

$ZCMU-DB

15-445/645 (Spring 2024)

Disk Pages

o1y

page0
pagel
page2
page3
page4

pageb

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the
one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

pagel +* page0d +> page2

Newest<Oldest

$ZCMU-DB

15-445/645 (Spring 2024)

Disk Pages

o1y

page0
pagel
page2
page3
page4

pageb

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the
one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

pagel + > page0 x
Newest<Oldest

$ZCMU-DB

15-445/645 (Spring 2024)

Disk Pages

o1y

page0
pagel
page2
page3
page4

pageb

CLOCK
Approximation of LRU that does not ref=0
need a separate timestamp per page. page1

— Each page has a reference bit.

— When a page is accessed, set to 1. ref=0
page4
Organize the pages in a circular buffer
with a “clock hand™
page3
— Upon sweeping, check if a page’s bit is set to 1. ref=0

— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

page2

CLOCK
Approximation of LRU that does not ref=0
need a separate timestamp per page. page1

— Each page has a reference bit.

— When a page is accessed, set to 1. ref=0
page4
Organize the pages in a circular buffer
with a “clock hand™
page3
— Upon sweeping, check if a page’s bit is set to 1. ref=0

— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

page2

CLOCK
Approximation of LRU that does not ref=1
need a separate timestamp per page. page1

— Each page has a reference bit.

— When a page is accessed, set to 1. ref=0
page4
Organize the pages in a circular buffer
with a “clock hand™
page3
— Upon sweeping, check if a page’s bit is set to 1. ref=0

— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

page2

CLOCK
Approximation of LRU that does not ref=1
need a separate timestamp per page. page1

— Each page has a reference bit.

— When a page is accessed, set to 1. ref=0
page4
Organize the pages in a circular buffer
with a “clock hand™
page3
— Upon sweeping, check if a page’s bit is set to 1. ref=0

— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

page2

CLOCK
Approximation of LRU that does not ref=0
need a separate timestamp per page. page1

— Each page has a reference bit.

— When a page is accessed, set to 1. ref=0
page4
Organize the pages in a circular buffer
with a “clock hand™
page3
— Upon sweeping, check if a page’s bit is set to 1. ref=0

— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

page2

CLOCK

Approximation of LRU that does not
need a separate timestamp per page.

— Each page has a reference bit.

— When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a “clock hand™

— Upon sweeping, check if a page’s bit is set to 1.
— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

pagel

ref=0 ref=0

page4 ” page2

page3

ref=0

CLOCK

Approximation of LRU that does not
need a separate timestamp per page.

— Each page has a reference bit.

— When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a “clock hand™

— Upon sweeping, check if a page’s bit is set to 1.
— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

CLOCK

Approximation of LRU that does not
need a separate timestamp per page.

— Each page has a reference bit.

— When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a “clock hand™

— Upon sweeping, check if a page’s bit is set to 1.
— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

pagel

ref=0 ref=0

page4 ” page5

page3

ref=0

CLOCK

Approximation of LRU that does not
need a separate timestamp per page.

— Each page has a reference bit.

— When a page is accessed, set to 1.

Organize the pages in a circular buffer
with a “clock hand™

— Upon sweeping, check if a page’s bit is set to 1.
— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

pagel

ref=1 ref=0

page4 ” page5

page3
ref=1

CLOCK
Approximation of LRU that does not ref=0
need a separate timestamp per page. page1

— Each page has a reference bit.

— When a page is accessed, set to 1. ref=0
page4
Organize the pages in a circular buffer
with a “clock hand™
page3
— Upon sweeping, check if a page’s bit is set to 1. ref=0

— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

pageb

CLOCK

Approximation of LRU that does not
need a separate timestamp per page.

— Each page has a reference bit.

— When a page is accessed, set to 1. ref=0
page4
Organize the pages in a circular buffer
with a “clock hand™ B
— Upon sweeping, check if a page’s bit is set to 1. ref=0

— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

pageb

CLOCK
Approximation of LRU that does not ref=0
need a separate timestamp per page. page1

— Each page has a reference bit.

— When a page is accessed, set to 1. ref=0
page4
Organize the pages in a circular buffer
with a “clock hand™
page3
— Upon sweeping, check if a page’s bit is set to 1. ref=0

— If yes, set to zero. If no, then evict.

$ZCMU-DB

15-445/645 (Spring 2024)

ref=0

pageb

$ZCMU-DB

15-445/645 (Spring 2024)

OBSERVATION

LRU + CLOCK replacement policies are
susceptible to sequential flooding.

— A query performs a sequential scan that reads every page.

— This pollutes the buffer pool with pages that are read
once and then never again.

— In OLAP workloads, the most recently used page is often
the best page to evict.

LRU + CLOCK only tracks when a page was last
accessed, but not how often a page is accessed.

SEQUENTIAL FLOODING

SELECT * FROM A WHERE primKey = 1

Disk Pages

Buffer Pool

-

page0

pagel

page2

page3

page4

pageb5

£CMU-DB

15-445/645 (Spring 2024)

Q1
Q2

£CMU-DB

15-445/645 (Spring 2024)

SEQUENTIAL FLOODING

SELECT * FROM A WHERE primKey = 1

SELECT AVG(val) FROM A

Buffer Pool

Disk Pages

-

page0

page1

page2

page3

page4

pageb5

Q1
Q2

£CMU-DB

15-445/645 (Spring 2024)

SEQUENTIAL FLOODING

SELECT * FROM A WHERE primKey = 1

SELECT AVG(val) FROM A

Buffer Pool

page0

pagel

page2

Disk Pages

page0

pagel

page2

2P

page3

page4

pageb5

Q1
Q2

£CMU-DB

15-445/645 (Spring 2024)

SEQUENTIAL FLOODING

SELECT * FROM A WHERE primKey = 1

SELECT AVG(val) FROM A

Buffer Pool

pagel

page2

Disk Pages

pageo

pagel

page2

2P

page3

page4

pageb

Q1
Q2

£CMU-DB

15-445/645 (Spring 2024)

SEQUENTIAL FLOODING

SELECT * FROM A WHERE primKey = 1

SELECT AVG(val) FROM A

Buffer Pool

page3

pagel

page2

Disk Pages

page0

pagel

page2

2P

page3

page4

pageb5

Q1
Q2
Q3

£CMU-DB

15-445/645 (Spring 2024)

SEQUENTIAL FLOODING

SELECT * FROM A WHERE primKey =

SELECT AVG(val) FROM A

SELECT * FROM A WHERE primKey =

Buffer Pool

page3

pagel

page2

Disk Pages

03

pageo

pagel

page2

2P

page3

page4

pageb

Q1
Q2
Q3

$ZCMU-DB

15-445/645 (Spring 2024)

SEQUENTIAL FLOODING

SELECT * FROM A WHERE primKey =

SELECT AVG(val) FROM A

SELECT * FROM A WHERE primKey =

Buffer Pool

page3

page2

Disk Pages

03

pageo

pagel

page2

2P

page3

page4

pageb

SEQUENTIAL FLOODING

Q1|SELECT * FROM A WHERE primKey =

Q2 [SELECT AVG(val) FROM A

Q3 |SELECT * FROM A WHERE primKey =

Buffer Pool

Sequential flooding can
occur when a table is

scanned multiple times _

within one query, such as
with a Nested-Blocks Join.

page3

page2

$ZCMU-DB

15-445/645 (Spring 2024)

Disk Pages

Q3‘

2 mp

page0
pagel
page2
page3
page4

pageb

BETTER POLICIES

Track the last K references to each page and
compute the interval between subsequent accesses.

— Can get fancy with distinguishing between reference types.

The DBMS then uses this history to estimate the

next time that page is going to be accessed.

— Replace the page with the oldest “K-th” access.

— A balance between recency and frequency of access.

— Maintain an ephemeral in-memory cache for recently
evicted pages to prevent them from always being evicted.

$ZCMU-DB

15-445/645 (Spring 2024)

LRU-K

The LRU-K Page Replacement Algorithm
For Database Disk Buffering

Elizabeth J. O'Neill, Patrick E. O'Neil!, Gerhard Weikum?

1 Department of Mathematics
University n[Viesachosets t Dosi

Baston, MA 021253393
E-mail: eonei

Computer Science

2 Department of Computer Science
ich

b.ed

ABSTRACT

‘This paper introduces a new approach to database disk
buffering, called the LRU-K method. The basic idea of
LRU-K is to keep track of the times of the last X references
© perpuhrdnuba!c pages, using this information o statis-
times of refe
by pagc ‘basis. Although the LRU-K approach performs
optimal statistical inference under relatively standard as-
sumptions, it i fairly simple and incurs litle bookkeeping
emonstrate with simulation experiments,
gorithm surpasses conventional buffering al-
gonlhms in dwcnmmzung beweenfrequeatly and infre
oroach the

Bebavior of b bulfeing algomhms in which page sets with
‘known access frequencies are manually assigned to different
buffer pools of specifically tuned sizes. Unlike such cus-
tomized huﬂenng algorithms however, the LRU-K method
is self-tuning, and does not rely on external hints about
workload characteristics. Furthermore, the LRU-K algo-
sithm adapisin real time to changing patiers of access

1. Introduction
1.1 Problem Statement

Al database systems retain disk pages in memory buffers
for a period of time after they have been read in from disk
and accessed by a particular application. The purpose is (o

in
their "Five Minute Rule", Gray and Putzolu pose the fol
lowing are willing to pay more for memory
‘poin, in order t0 reduce the cost of
disk arms for a system ([GRAYPUT], see also [CKS]).
The critical buffering decision arises when a new buffer
slot s needed for apage about (o be rad n from disk, and

n as the page replace-
ment policy, and the differcn bufferng aonms ake
their names from the type of replacement policy they im-
pose (sec, for example, [COFFDENN], [EFFEHAERY]).

Parmiasion to oopy without rt of this matorial io
for

ot
notice s given

The algoithon wilzed by lmost all commercil eystens s

known as LRU, for Least Recendy Used. When a new
buffer s needed, the LRU policy drops the page from buffer
that has not been accessed for the longest time. LRU
buffering was developed originally for patterns of use in in-
{ruction logic (for cxample, [DENNING], [Ce

fit well
as was noted also in [REITER], [STON], [SACSCH], and
[CHOUDEW). In fact, the LRU bffecin agortm s a
current paper: that it de-

cides what page to drop rom b s to vl i
formation, limiting itsclf to only the time of last reference.
Specifically, LRU is unable to differentiate between pages
that have relatively frequent references and pages that have
very infrequent references unil the system has wasted a lot
of resources keeping infrequently referenced pages in buffer
for an exteaded period.

Example 1.1. Consider a multi-user database applica-
ich references randomly chosen customer records
mmugh a clustered B-tree indexed key, CUST-ID, to re-
< -A)).

mlly g 20,000 customers exist, that a customer record is
2000 bytes in leagth, and that space needed for the B-tree
index at the leaf level, free space included, is 20 bytes for
ech ey y ey Thenif ek pagescontin 4000 byes of
full, we require 100 pages to

R v mode of e B ndon (there is a sin-
gle Btree root node), and 10,000 pages to hold the records.
‘The pattern of reference to these pages (ignoring the B-tree
root node) is clearly: 11, R1,12,R2, 13, R3, . ., altenate
references to random index leaf pages and record pages, It
s

enced with a prot

005 (once in each 200 general
ly wasteful to di

of these leaf pages with a data page, since data pages have
only .00005 probability of reference (once in each 20,000
general page references). Using the LRU algorithm, how-
ever, the pages held in memory buffers will be the hundred
‘most recently referenced ones. To a first approximation,
this means 50 B-tree leaf pages and 50 record pages. Given

twicein

ion of
tharwie, o 1 publeh.reqn

lc permi
si 9% Washoton, DG.USA
©1393 ACM 0-89791-592.5/93/0006/0297...41.50

the recent past and that his is more likely to happen with
B-tree leaf pages, there will even be slightly more data

ZSQL Server
@) PostgreSQL

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

Disk Pages

entry points (“old” vs “young”).

— New pages are always inserted to the head
of the old list. 01 »

— If pages in the old list is accessed again,
then insert into the head of the young list.

neap Young List neap Old List
. ‘ ... groseees ‘ ...

page4 +* pageb +* page9 (> page3 <—;*pageG 4> page2 +* page8

Newest<Oldest

page0
pagel
page2
page3
page4

pageb

$ZCMU-DB

15-445/645 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

Disk Pages
entry points (“old” vs “young”). .
— New pages are always inserted to the head —
of the old list. Q1 » page‘]
— If pages in the old list is accessed again,
then insert into the head of the young list. page2
neap Young List eap Old List SRR
. ‘ ... g ..
page4 +* pageb +* page9 (> page3 4—* pageb [« page2 +* page8 page4
page5

$ZCMU-DB

15-445/645 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

Disk Pages
entry points (“old” vs “young”). .
— New pages are always inserted to the head —
of the old list. Q1 » page‘]
— If pages in the old list is accessed again,
then insert into the head of the young list. page2
neap Young List eap Old List SRR
. ‘ ... g ..
page4 ¥ page5 > page9 [+ > page3 4—* page6 [+> page2 [+ page4
page5

$ZCMU-DB

15-445/645 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

Disk Pages

entry points (“old” vs “young”).

— New pages are always inserted to the head
of the old list. 01 »

— If pages in the old list is accessed again,
then insert into the head of the young list.

neap Young List neap Old List
. ‘ ... groseees ‘ ...

page4 +* pageb +* page9 (> page3 4—* pagel > page6 +* page2

Newest<Oldest

page0
pagel
page2
page3
page4

pageb

$ZCMU-DB

15-445/645 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

Disk Pages

entry points (“old” vs “young”).

— New pages are always inserted to the head
of the old list. 02 »

— If pages in the old list is accessed again,
then insert into the head of the young list.

neap Young List neap Old List
. ‘ ... groseees ‘ ...

page4 +* pageb +* page9 (> page3 4—* pagel > page6 +* page2

Newest<Oldest

page0
pagel
page2
page3
page4

pageb

$ZCMU-DB

15-445/645 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

Disk Pages
entry points (“old” vs “young”). .
— New pages are always inserted to the head —
of the old list. Q2 * page1l
— If pages in the old list is accessed again,
then insert into the head of the young list. page2
neap Young List eap Old List SRR
. ... g ‘ ...
«> page5 (¥ page9 [« page3 4—* pagel [+> page6 (> page2 page4
page5

$ZCMU-DB

15-445/645 (Spring 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

Disk Pages

entry points (“old” vs “young”).

— New pages are always inserted to the head
of the old list. 02 »

— If pages in the old list is accessed again,
then insert into the head of the young list.

neap Young List neap Old List
. ‘ ... groseees ‘ ...

pagel +*> page4 +* pageb [** page9 4—* page3 «* pageb6 [« page2

Newest<Oldest

page0
pagel
page2
page3
page4

pageb

$ZCMU-DB

15-445/645 (Spring 2024)

BETTER POLICIES: LOCALIZATION

The DBMS chooses which pages to evict on a per
query basis. This minimizes the pollution of the

buffer pool from each query.
— Keep track of the pages that a query has accessed.

Example: Postgres maintains a small ring buffer
that is private to the query.

£2CMU-DB
15-445/645 (Spri

ng 2024)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page

during query execution.

[t can provide hints to the buffer pool on whether

a page 1s important or not.

INSERT INTO A VALUES (1d++)

$ZCMU-DB

15-445/645 (Spring 2024)

index-page®

— —

index-pagel

index-page4

index-page2

index-page3||index-page5

index-page6

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether

a page 1s important or not.

INSERT INTO A VALUES (1d++)

index-page0

$ZCMU-DB

15-445/645 (Spring 2024)

index-pagel

index-page6

index-page2||index-page3||index-page5

Q1
Q2

$ZCMU-DB

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page

during query execution.

[t can provide hints to the buffer pool on whether

a page 1s important or not.

INSERT INTO A VALUES (1d++)

SELECT * FROM A WHERE id = ?

15-445/645 (Spring 2024)

index-page®

— —

index-pagel

index-page4

index-page2

index-page3||index-page5

index-page6

Q1
Q2

$ZCMU-DB

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether

a page 1s important or not.

INSERT INTO A VALUES (7d++)

SELECT * FROM A WHERE id = ? ‘}.p\gl }.p\g:

index-page2||index-page3||index-page5||index-page6

15-445/645 (Spring 2024)

£2CMU-DB
15-445/645 (Spri

ng 2024)

DIRTY PAGES

Fast Path: If a page in the buffer pool is not dirty, then
the DBMS can simply “drop” it.

Slow Path: If a page is dirty, then the DBMS must
write back to disk to ensure that its changes are
persisted.

Trade-off between fast evictions versus dirty writing
pages that will not be read again in the future.

£2CMU-DB
15-445/645 (Spri

ng 2024)

BACKGROUND WRITING

The DBMS can periodically walk through the page
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can
either evict the page or just unset the dirty flag.

Need to be careful that the system doesn't write

dirty pages before their log records are written...

£2CMU-DB
15-445/645 (Spri

ng 2024)

OBSERVATION

OS/hardware tries to maximize disk bandwidth by
reordering and batching I/O requests.

But they do not know which I/O requests are

more important than others.

Many DBMSs tell you to switch Linux to use the

deadline or noop (FIFO) scheduler.
— Example: Oracle, Vertica, MySQL

https://docs.oracle.com/en/database/oracle/oracle-database/23/ladbi/setting-the-disk-io-scheduler-on-linux.html
https://docs.vertica.com/23.3.x/en/setup/set-up-on-premises/before-you-install/manually-configured-os-settings/io-scheduling/
https://dev.mysql.com/doc/refman/8.0/en/innodb-linux-native-aio.html

DISK I/O SCHEDULING

The DBMS maintain internal queue(s) to track
page read/write requests from the entire system.

Compute priorities based on several factors:

— Sequential vs. Random I/O
— Critical Path Task vs. Background Task
— Table vs. Index vs. Log vs. Ephemeral Data

— Transaction Information
— User-based SLAs

The OS doesn’t know these things and is going to

get into the way...
£2CMU-DB

15-445/645 (Spring 2024)

OS PAGE CACHE

Most disk operations go through the OS
API. Unless the DBMS tells it not to, the
OS maintains its own filesystem cache
(aka page cache, buffer cache).

Most DBMSs use direct I/O (O_DIRECT)
to bypass the OS’s cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

£CMU-DB

15-445/645 (Spring 2024)

User-space read(...)

Kernel-

space

Page Cache

o{H

OS PAGE CACHE

Most disk operations go through the OS
API. Unless the DBMS tells it not to, the User_sp‘%

OS maintains its own filesystem cache Kernel-space
(aka page cache, buffer cache). Filesystem

Most DBMSs use direct I/O (O_DIRECT) Page Cache
to bypass the OS’s cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

£CMU-DB

15-445/645 (Spring 2024)

OS PAGE CACHE

Most disk operations go through the OS
API. Unless the DBMS tells it not to, the
OS maintains its own filesystem cache
(aka page cache, buffer cache).

Most DBMSs use direct I/O (0O_DIRECT)
to bypass the OS’s cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

£CMU-DB

15-445/645 (Spring 2024)

User-space read(...)

Kernel-

space

Page Cache

ol

102

FSYNC PROBLEMS

[f the DBMS calls fwrite, what happens?

[f the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?

— Linux marks the dirty pages as clean.
— If the DBMS calls fsync again, then Linux tells you that
the flush was successful. .

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

FSYN

If the DBMS calls f

If the DBMS calls f

If fsync fails (EIO
— Linux marks the di

— [f the DBMS calls
the flush was succe

navigation
= Main Page
= Random page
= Recent changes
= Help

tools
= What links here
= Related changes
= Special pages
= Printable version
= Permanent link
= Page information

search
‘Sear(h PostgresQL WiJ

(o) [searn]

102

f—n_nnm_m —

pPage | discussion view source history

Fsync Errors

This article covers the current status, history, and 0S and OS version differences relating to the circa 2018 fsync() reliability issues
discussed on the PostgresqQL mailing list and elsewhere., It has sometimes been referred to as "fsyncgate 2018",

| Contents [hide]

| 1 Current status

| 2 Articles and news |
| 3 Research notes and 0s differences |
| 3.1 Open source kernels

| 3.2 Closed source kernels

“ 3.3 Special cases “
| 3.4 History and notes |

Current status

As of this PostgreSQL 12 commiteH, PostgreSQL will now PANIC on fsync() failure. It was backpatched to PostgreSQL 11, 10, 9.6, 9.
and 9.4. Thanks to Thomas Munro, Andres Freund, Robert Haas, and Craig Ringer,
Linux kernel 4.13 improved fsync() error handling and the man page for fsync() is somewhat improved @ as well, See:
= Kernelnewbies for 4,137
= Particularly significant 4.13 commits include:
= "fs: new infrastructure for writeback error handling and reporting" g&#
= "ext4: use errseq_t based error handling for reporting data writeback errors" i
= "Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors" &g
= "mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error' @
Many thanks to Jeff Layton for work done in this area.
Similar changes were made in InnoDB/MySQLE7, WiredTiger/MongoDB & and no doubt other software as a result of the PR around
this.
A proposed follow-up change to PostgreSQL was discussed in the thread Refactoring the checkpointer's fsync request queuer].
The patch that was committed & did not incorporate the file-descriptor passing changes proposed. There is still discussion open on
some additional safeguards that may use file system error counters and/or filesystem-wide flushing.

Articles and news

= The "fsyncgate 2018" mailing list thread g
= LWN.net article "PostgreSQL's fsync() surprise" &
= LWN.net article "Improved block-layer error handling" &

104

OTHER MEMORY POOLS

The DBMS needs memory for things other than
just tuples and indexes.

These other memory pools may not always backed

by disk. Depends on implementation.
— Sorting + Join Buffers

— Query Caches

— Maintenance Buffers

— Log Buffers

— Dictionary Caches

$ZCMU-DB

15-445/645 (Spring 2024)

105

CONCLUSION

The DBMS can almost always manage memory
better than the OS.

Leverage the semantics about the query plan to
make better decisions:

— Evictions
— Allocations
— Pre-fetching

$ZCMU-DB

15-445/645 (Spring 2024)

106

NEXT CLASS

Hash Tables

£2CMU-DB
15-445/645 (Spri

ng 2024)

107

PROJECT #1

You will build the first component of

your Storage manager.
— LRU-K Replacement Policy

— Disk Scheduler
— Buffer Pool Manager Instance

We will provide you with the basic B us T u b
APIs for these components. Due Date:
Sunday Feb 18" @ 11:59pm

$ZCMU-DB

15-445/645 (Spring 2024)

108

TASK #1 - LRU-K REPLACEMENT POLICY

Build a data structure that tracks the usage of pages
using the LRU-K policy.

General Hints:

— Your LRUKReplacer needs to check the “pinned” status
of a Page.

£2CMU-DB
15-445/645 (Spri

ng 2024)

109

TASK #2 - DISK SCHEDULER

Create a background worker to read/write

pages from disk.

— Single request queue. Database

— Simulates asynchronous IO using std: : promise (On-Disk)
for callbacks.

» page0

pagel

« page2

It’s up to you to decide how you want to

Y344y
Disk Scheduler

batch, reorder, and issue read/write requests
to the local disk.

Make sure it is thread-safe!

$ZCMU-DB

15-445/645 (Spring 2024)

110

TASK #3 - BUFFER POOL MANAGER

Use your LRU-K replacer to manage
the allocation of pages.

— Need to maintain internal data Buffer Pool Database
(In-Memory) (On-Disk)
structures to track allocated + free pages. D &
— Use whatever data structure you want page6 » § mp || Paged
for the page table. page? || g | 3 - pagel
page4 » = page2

Make sure you get the order of

operations correct when pinning!

$ZCMU-DB

15-445/645 (Spring 2024)

£2CMU-DB
15-445/645 (Spri

ng 2024)

THINGS TO NOTE

Do not change any file besides the ones you must
hand in. Other changes will not be graded.

The projects are cumulative.
We will not be providing solutions.

Post any questions on Piazza or come to office
hours, but we will not help you debug.

111

112

CODE QUALITY

We will automatically check whether you are

writing good code.
— Google C++ Style Guide

— Doxvygen Javadoc Style

You need to run these targets before you submit

your implementation to Gradescope.

— make format
— make check-clang-tidy-p1
£2CMU-DB

15-445/645 (Spring 2024)

https://google.github.io/styleguide/cppguide.html
http://www.doxygen.nl/manual/docblocks.html

113

EXTRA CREDIT

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class

will receive extra credit for this assignment.
— #1: 50% bonus points

— #2-10: 25% bonus points

— #11-20: 10% bonus points

The student with the most bonus points at the end

of the semester will receive a BusTub hoodie!
£=CMU-DB

15-445/645 (Spring 2024)

114

Q’ PLAGIARISM WARNING
oWy

The homework and projects must be your own

original work. They are not group assignments.

You may not copy source code from other people
or the web.

Plagiarism is not tolerated. You will get lit up.

— Please ask me if you are unsure.

See CMU's Policy on Academic Integrity for

S2CMU-DB additional information.
15-445/645 (Spri

ng 2024)

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

