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LAST CLASS

Hash tables are important data structures that are

used all throughout a DBMS.

— Space Complexity: O(n)
— Average Time Complexity: O(1)

Static vs. Dynamic Hashing schemes

DBMSs use mostly hash tables for their internal
data structures.
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B+Tree Overview
Design Choices

Optimizations
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B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a

class of balanced tree data structures:
— B-Tree (1971)
— B+Tree (1973)
— B*Tree (1977?)
— Blink_Tree (1981)
— Be-Tree (2003)
— Bw-Tree (2013)
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The Ubiquitous B-Tree
DOUGLAS COMER

Computer Science Department, Purdue Unwersity, West Lafayette, Indiana 47907

B-trees have become, de facto, a standard for file organization. File indexes of users,
dedicated database systems, and general-purpose access methods have all been proposed
and implemented using B-trees This Ppaper reviews B-trees and shows why they have
been so successful It discusses the major variations of the B-tree, especially the B-tree,
contrasting the relative merits and costs of each implementation. It illustrates a general
Ppurpose access method which uses a B-tree.

Keywords and Phrases: B-tree, B*-tree, B*-tree, file organization, index

CR Categories: 3.73 3.74 433434

INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
computer must retrieve an item and place
it in main memory before it can be pro-
cessed. In order to make good use of the
computer resources, one must organize files
intelligently, making the retrieval Pprocess
efficient.

The choice of a good file organization
depends on the kinds of retrieval to be

retrieval commands which can be illys.
trated by the following examples:
Sequential: “From our employee file, pre-
pare a list of al] employees’
names and addresses,” " and
Random: “From our employee file, ex.
tract the information about
employee J. Smith”,
We can imagine a filing cabinet with three
drawers of folders, one folder for each em-
ployee. The drawers might be labeled “A-
G,” “H-R,” and “S-Z,” while the folders

random request implies that the searcher,
guided by the. labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file. If the
index file is large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmost
index consists of labels on drawers, and the
next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-
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B-TREE FAMILY

Efficient Locking for Concurrent Operations
on B-Trees

PHILIP L. LEHMAN
Camegie~MelIon University
and

S. BING YAO

Purdue University

There is a specific data structure calle

The B-tree and its variants have been found to be highly useful (both theoretically and in practice)
for storing large amounts of information, especially on secondary storage devices. We examine the
problem of overcoming the inheront ifficulty of concurrent. operations o suh structures, using a
practical storage model. A single additione) “Tink” pointer in each node allows 5 Process to easily
Fecover from tree modifications performed by other concurrent processes, Our solution compares
favorably with earlier solutions i ghat the locking scheme is simpler (no read.Jock. are used) and
only & (small) constant number of noges are locked by any update process at any given time, An
informal correctness proof for our systen is given,

Key Words and Phrases: database,data structures, B.tree, index organizations, concurrent algorithms,
Cpneurtency controls, locking protocols, “orrectness, consistency, multiway search tron,

CR Categories: 3.73,3.74, 4.32,4.33, 4.34,5.24

People also use the term to generally
class of balanced tree data structures:

— B-Tree (1971)

— B+Tree (1973)
—> B*Tree (1977?)
— Blink_Tree (1981)
— Be-Tree (2003)
— Bw-Tree (2013)

1. INTRODUCTION

system.
Methods for concurrent operations on B*-trees have been discussed by Bayer
and Schkolnick [3] and others [6,12, 13). The solution given in the current paper
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have been widely used in Tecent years as a data
of information, especially on secondary storage
all (average) search, insertion, and deletion time
 structures makes them quite appealing for database applications,
ic of current interest in database design is the construction of databases
be Mmanipulated concurrently and correctly by severa] Processes. In this
‘e consider a simple variant of the B-tree (actually of the B*-tree,
by Wedekind [15]) especially well suited for use in a concurrent database
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B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a

class of balanced tree data structures:
— B-Tree (1971)
— B+Tree (1973)
— B*Tree (1977?)
— Blink_Tree (1981)
— Be-Tree (2003)
— Bw-Tree (2013)
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B+TREE

A B+Tree is a self-balancing, ordered tree data
structure that allows searches, sequential access,
insertions, and deletions in O(log:n).

— Generalization of a binary search tree, since a node can
have more than two children.

— Optimized for systems that read and write large blocks of
data.
— fis the fanout of the tree.
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B+TREE PROPERTIES

A B+Tree is an M-way search tree with the

following properties:

— It is perfectly balanced (i.e., every leaf node is at the same
depth in the tree)

— Every node other than the root is at least half-full
M/2-1 < #keys < M-1

— Every inner node with k keys has k+1 non-null children




B+TREE EXAMPLE

/

10 35 Inner Nodes

VRN

6 10 20 || 31 38 || 44 || Leaf Nodes

20 Root Node
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B+TREE EXAMPLE

<nodex>|<key> | 20 Root Node
10 35 Inner Nodes
6 10 20 || 31 38 || 44 || Leaf Nodes
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<node*>|<key>

B+TREE EXAMPLE

20

10

"
‘0
*

<value>|<key>
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<node*>|<key>

B+TREE EXAMPLE

20

10

"
‘0
*

<value>|<key>
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B+TREE EXAMPLE

<nodex>|<key> | 20 Root Node
<20_~"C.r s : >20
WgPomters
10 ) 1|35 Inner Nodes
<10 210 <3% ¥‘35
16l =10 . "Il 20| 31 |[—]| 38|| 44 || Leaf Nodes

"
‘0
*

<value>|<key>
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B+TREE EXAMPLE

<node*>|<key> | 20 Root Node
< o e : >
20 Stbhng Pointers e Also called non-leaf nodes
10 ) 1|35 Inner Nodes
<10 210 <3% ¥‘35
6 L |[—]10 . "Il 20| 31 |[—]| 38|| 44 || Leaf Nodes

<value>|<key>
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NODES

Every B+Tree node is comprised of an array of

key/value pairs.

— The keys are derived from the attribute(s) that the index
is based on.

— The values will differ based on whether the node is
classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.




B+TREE LEAF NODES

B+Tree Leaf Node
Prev Next
v v
S = m | k1| vi|e| kn| v | n =>

‘e
‘e
*

‘e
.
e
J
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B+TREE LEAF NODES

B+Tree Leaf Node

Prev Next
: . PageID<—E K1 | VI || Kn| Vn E—bPageID
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B+TREE LEAF NODES

B+Tree Leaf Node
Prev Next
* t PageID4—| g | K7 | VI || Kn!| Vn| n |—>PageID
Key+Value
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B+TREE LEAF NODES

B+Tree Leaf Node
Prev Next
* t PageID4—| g | K71 g || kp| B | & |—>PageID
Key+Value
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B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev  Next
# # o o
v 3
Sorted Keys
y ¥ Y ' K1 | K2 | K3 | K4 | K5 | ***| Kn
Values
o o o o O | eeel n
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B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev  Next
# i o o
: -
Sorted Keys
y ¥ y Y K2 | K3 | K4 | K5 || Kn

V@esuu |

o o o o So0 o
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LEAF NODE VALUES

Approach #1: Record IDs  PostgreSAL %%Qit_ SeEr

— A pointer to the location of the tuple to

which the index entry corresponds.

ORACLE
Approach #2: Tuple Data |
— AKA Index-Organized Storage 7 ‘ % gcréoflt_ Sarver:
— The leaf nodes store the actual contents of SQthe
the tuple. RMHSQLW ORACLE

— Secondary indexes must store the Record
ID as their values.
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B-TREE VS. B+TREE

The original B-Tree from 1972 stored keys and
values in all nodes in the tree.

— More space-efficient, since each key only appears once in
the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.
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B+TREE - INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.

[f L has enough space, done!

Otherwise, split L keys into L and a new node L2

— Redistribute entries evenly, copy up middle key.
— Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

$=CMU-DB Source: Chris Re
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B+TREE - INSERT

4 1112
<4 24 >12
and
<12
" a
1 3 5 9110 1213
L4 L4
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B+TREE - INSERT

4 1112
: /HJDR
" "
1 3 5 9110 121113
L4 L4
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B+TREE - INSERT

Insert 6

4 1112
: /HJDR
" "
1 3 5 9110 121113
L4 L4
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B+TREE - INSERT

Insert 6

4 1112
- /[4,12)R
I
1 3 5119 (|10 121113
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B+TREE - INSERT

Insert 6

4 1112
<4 /[4,12)\
" N
1 3 5 91110 121(13
R —
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B+TREE - INSERT

Insert 6

4 1112

<4 /[4,12)\
X

1|3 5191|110

12(]13

¢
-
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B+TREE - INSERT

Insert 6

4 1112

<4 /[4,12)\
X

1|3 51| 6 91110

121113

C
)
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B+TREE - INSERT

Insert 6

4 (112
/—j /[4,12)\
1 3 5 6 9 (/10 12113
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B+TREE - INSERT

Insert 6

4 ?21112
/_} /[4,12)\§
1 3 5 6 9 1(10 121(13
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B+TREE - INSERT

Insert 6

4 ?21112
/_} /[4,12)\§
1 3 5 6 9 1(10 121(13
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B+TREE - INSERT

Insert 6

4 91|12
/_} /[4,12)\§
1 3 5 6 91110 121113

$ZCMU-DB

15-445/645 (Spring 2024)



B+TREE - INSERT

Insert 6

4 (] 9112
/—} /[4,9) 9’12N¥
1 3 51|16 9 ([10 1213
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B+TREE - INSERT

Insert 8

4 119 ([12
11| 3 51618 9110 12113
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INSERT THE KEY 17

Note: new example/tree.
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INSERT THE KEY 17

Note: new example/tree.
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NEXT, INSERT THE KEY 16
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NEXT, INSERT THE KEY 16

11|13 5(17 9 (111 13||14{|15{|17]]| [|20(|21||23

No space in the
node where the
new key “belongs”.
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NEXT, INSERT THE KEY 16

5119|1319
1{]3 5|17 911 13(|14|[15|(17(] [|20]|21][23
Split the node!
Copy the middle key.
Push the key up.
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NEXT, INSERT THE KEY 16

5(19]|13][19
1{]3 5|17 911 13(|14||15|(17 20|(21((23
New node.
Shuffle keys from the
node that triggered
the split.
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NEXT, INSERT THE KEY 16

5(19]|13][19
1{]3 5|17 911 13(|14||15|(17 20((21](23
New node.
Shuffle keys from the
node that triggered
the split.
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NEXT, INSERT THE KEY 16

—

11|13 5(17 9 (111 13||14(|15 16||17 20([21](23

But, this is an “orphan”
node. No parent node
points to it.
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NEXT, INSERT THE KEY 16

—

11|13 5(17 9 (111 13||14(|15 16||17 20([21](23

But, this is an “orphan”
node. No parent node
points to it.
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NEXT, INSERT THE KEY 16

Want to create a key, pointer
pair like this. But can’t insert it
in the root node, which is full.

—

11|13 5(17 9 (111 13||14(|15 16||17 20([21{(23

But, this is an “orphan”
node. No parent node
points to it.
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NEXT, INSERT THE KEY 16

Want to create a key, pointer
pair like this. But can’t insert it
in the root node, which is full.

5 19 Split the root. Grow the tree!
11 13 16|17 20(1211123
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But, this is an “orphan”
node. No parent node
points to it.




NEXT, INSERT THE KEY 16

5119 1[13][19 16(| Split the root. Grow the tree!

—

11|13 5(17 9 (111 13||14(|15 16||17 20([21](23
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NEXT, INSERT THE KEY 16

13

5119 19 16(| Split the root. Grow the tree!

=]

—

11|13 5(17 9 (111 13||14(|15 16||17 20([21](23
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NEXT, INSERT THE KEY 16

13
Next, need to split the “old”
5(|19][16[|19 root, then point to the split
/ “___ nodes from the new root.
1(|3 5|7 9111 13|[14{[15 16{(17 20(121(|123
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NEXT, INSERT THE KEY 16

13
/ \
\
5119 16(|19
1113 5117 9 (|11 13((14|(15 16((17 20]121]|23
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NEXT, INSERT THE KEY 16

13
<1y Vn
\
5(19 16{|19
1113 5117 91111 13||14||15 16|17 20(]121(|23

$ZCMU-DB

15-445/645 (Spring 2024)



NEXT, INSERT THE KEY 16

13
<1y Vn
\
5(19 16{|19
<5 [5,9) [9,13) [13,16) [16,19) >19
1113 5117 91111 13||14||15 16|17 20(]121(|23
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B+TREE - DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.

If L is at least half-full, done!

[f L has only M/2-1 entries,

— Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).
— If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L

or sibling) from parent of L.
$=CMU-DB Source: Chris Re
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DELETE THE KEY 6

—

X

By

101112
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DELETE THE KEY 6

1|3 | 5 | 1] 9[[12]|14

Borrow from a “rich” neighbor.
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DELETE THE KEY 6

—

Borrow from a “rich” neighbor.

14

Could borrow from either neighbor.
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DELETE THE KEY 6

1)
gl

Borrow from a “rich” neighbor.

14

Could borrow from either neighbor.
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DELETE THE KEY 6

)
gl

Borrow from a “rich” neighbor.

14

Could borrow from either neighbor.
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DELETE THE KEY 6

)
gl

Borrow from a “rich” neighbor.

14

Could borrow from either neighbor.
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DELETE THE KEY 15

13 Note: new example/tree.

TN

5119 17]|21
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DELETE THE KEY 15

13 Note: new example/tree.

TN

5119 17]|21
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DELETE THE KEY 15

13
5119 17|21
TN
1113 517 9 (|11 13 17((19]|20 211123

$ZCMU-DB

15-445/645 (Spring 2024)



DELETE THE KEY 15

13
5(|9 (19])21
1|[3 5(|7 9|11 13([17 19][20 21([23
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NEXT, DELETE THE KEY 19

13
5119 19]]21
11|13 5(17 9 (111 13|17 19]]20 21(|23
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NEXT, DELETE THE KEY 19

13
5119 19]]21
11|13 5(17 9 (111 13|17 20 21(|23
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NEXT, DELETE THE KEY 19

13
—
5|9 19([21
1|3 5(|7 9|11 13([17 24|20 | [21][3

Under-filled.
No “rich” neighbors to borrow.

Merge with a sibling
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NEXT, DELETE THE KEY 19

13

5([g |' 19 This node is
under-filled!

\ Pull-down.
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NEXT, DELETE THE KEY 19

5] g 13 | 19 This node is
under-filled!

\ Pull-down.
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NEXT, DELETE THE KEY 19

The tree has shrunk in height.

519 (13|19

4___——”’/

<5 [5,9) 9,13) [13,19) =19
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COMPOSITE INDEX

Composite Index: The key is composed of multiple attributes.

CREATE INDEX LFM_name ON artist
(last_name, first_name, middle_names NULLS FIRST);

Can use a B+ Tree index if the query provides a “prefix” of
composite key. Example: Index on <a, b, c>

— Supported: (a=1 AND b=2 AND c=3)

— Supported: (a=1 AND b=2)

— NOT (generally) supported: (b=2), (c=3)

For a hash index, we must have all attributes in search key.

$ZCMU-DB
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SELECTION CONDITIONS

Find Key=(1,2)

2,2|(3,1

1,3
= [
~
1,1{[1,2 1,3(]2,1

2,2|12,3 3,3|(3,4] 4,1
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Find Key=(1,2)

IA IA

SELECTION CONDITIONS

3,1

[

1,3
%
~
1,1|1,2 1,3|(2,1

2,2

2,3

4,1
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SELECTION CONDITIONS

Find Key=(1,2)

1<1
2 <3
1,3((2,2|13,1
1,1{[1,2 1,3([2,1 2,212,3 3,3|(3,4] 4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

— |

1,1{[1,2 1,3([2,1 2,2|12,3 3,3|(3,4] 4,1
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SELECTION CONDITIONS
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B+TREE - DUPLICATE KEYS

Approach #1: Append Record ID
— Add the tuple’s unique Record ID as part of the key to

ensure that all keys are unique.
— The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes
— Allow leaf nodes to spill into overflow nodes that contain

the duplicate keys.
— This is more complex to maintain and modify.




B+TREE - APPEND RECORD ID
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B+TREE - APPEND RECORD ID
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B+TREE - APPEND RECORD ID
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B+TREE - APPEND RECORD ID
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B+TREE - APPEND RECORD ID
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B+TREE - APPEND RECORD ID
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B+TREE - APPEND RECORD ID
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B+TREE - OVERFLOW LEAF NODES
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B+TREE - OVERFLOW LEAF NODES
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B+TREE - OVERFLOW LEAF NODES

Insert 6
Insert 7

Insert 6
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CLUSTERED INDEXES

The table is stored in the sort order specified by
the primary key.

— Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.

— [f a table does not contain a primary key, the DBMS will
automatically make a hidden primary key.

Other DBMSs cannot use them at all.




CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

This will always be better than
sorting data for each query.
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Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

CLUSTERED B+TREE
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This will always be better than

sorting data for each query.
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CLUSTERED B+TREE

Traverse to the left-most leaf page Scan Direction

and then retrieve tuples from all leaf N\
pages.

101 102 103 104
This will always be better than Table Pages

sorting data for each query.
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they A
appear in a non-clustered index is CEE e

inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.
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INDEX SCAN PAGE SORTING

7\
Retrieving tuples in the order they Scan Direction

appear in a non-clustered index is

inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is

inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is

inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.
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B+TREE DESIGN CHOICES

Node Size
Merge Threshold
Variable-Length Keys

Intra-Node Search

£CMU-DB
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NODE SIZE

The slower the storage device, the larger the

optimal node size for a B+Tree.
— HDD: ~1MB

— SSD: ~10KB

— In-Memory: ~512B

Optimal sizes can vary depending on the workload

— Leaf Node Scans vs. Root-to-Leaf Traversals

$ZCMU-DB
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MERGE THRESHOLD

Some DBMSs do not always merge nodes when they are half full.

— Average occupancy rate for B+ Tree nodes is 69%.

Delaying a merge operation may reduce the amount of

reorganization.

[t may also be better to just let smaller nodes exist and then
periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a “non-balanced”
B+Tree (nbtree).

ng 2024)

109


https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree
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VARIABLE-LENGTH KEYS

Approach #1: Pointers

— Store the keys as pointers to the tuple’s attribute.
— Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes

— The size of each node in the index can vary.
— Requires careful memory management.

Approach #3: Padding
— Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection

— Embed an array of pointers that map to the key + value
list within the node.
£2CMU-DB
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INTRA-NODE SEARCH

Approach #1: Linear Find Key=8
— Scan node keys from beginning to end. 4(|s5|lef|l7]l8||9]|10
— Use SIMD to vectorize comparisons. f
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INTRA-NODE SEARCH

Approach #1: Linear
— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.
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INTRA-NODE SEARCH

Approach #1: Linear Find Key=8

— Scan node keys from beginning to end. 4(|5(6]l7]8]l9]|10

— Use SIMD to vectorize comparisons.
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INTRA-NODE SEARCH

Approach #1: Linear
— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.
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INTRA-NODE SEARCH

Approach #1: Linear
— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.
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INTRA-NODE SEARCH

Approach #1: Linear ;)
— Scan node keys from beginning to end. 4

— Use SIMD to vectorize comparisons.
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INTRA-NODE SEARCH

Approach #1: Linear
— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.
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INTRA-NODE SEARCH

Approach #1: Linear
— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.
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INTRA-NODE SEARCH

Approach #1: Linear
— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right

10

depending on comparison.
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INTRA-NODE SEARCH
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INTRA-NODE SEARCH

Approach #1: Linear
— Scan node keys from beginning to end.

— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based 4 1|5

10

on known distribution of keys.

$ZCMU-DB

15-445/645 (Spring 2024)




INTRA-NODE SEARCH

Approach #1: Linear
— Scan node keys from beginning to end.

— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation
— Approximate location of desired key based
on known distribution of keys.
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INTRA-NODE SEARCH

Approach #1: Linear
— Scan node keys from beginning to end.

— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation
— Approximate location of desired key based
on known distribution of keys.
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INTRA-NODE SEARCH

Binary vs. Interpolation search: Tradeoffs
change based on hardware trends.

Approach #1: Linear
— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation
— Approximate location of desired key based

on known distribution of keys.
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Efficiently Searching In-Memory Sorted Arrays:
Revenge of the Interpolation Search?

Peter Van Sandt, Yannis Chronis, Jignesh M. Patel
Department of Computer Sciences, University of Wisconsin-Madison
{van-sandt,chronis,jignesh}@cs.wisc.edu

ABSTRACT

In this paper, we focus on the problem of searching sorted,
in-memory datasets. This is a key data operation, and Binary
Search is the de facto algorithm that is used in practice. We
consider an alternative, namely Interpolation Search, which
can take advantage of hardware trends by using complex cal-
culations to save memory accesses. Historically, Interpolation
Search ‘was found to underperform compm:d to other sean:h
in this setting, despite it

plexity. Also, Interpolation Search is known to perform poorly
on non-uniform data. To address these issues, we introduce
SIP (Slope reuse Interpolation), an optimized lmplementaucn
of! ion Search, and TIP (Three point

new search algorithm that uses linear fractions to mterpolate
on non-uniform distributions. We evaluate these two algo-
rithms against a similarly optimized Binary Search method
using a variety of real and synthetic datasets. We show that
SIP is up to 4 times faster on uniformly distributed data and
TIP is 2-3 times faster on non-uniformly distributed data in
some cases. We also design a meta-algorithm to switch be-
tween these di ‘methods t icking the higher
performing search algorithm, which depcnds on factors like
data distribution.

CCS CONCEPTS
« Information systems —> Point lookups; Main memory
engines.
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In-memory search; Interpolation Search; Binary Search
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Figure 1: Speed comparison of representative pro-
cessor and main memory technologies [27]. The

of is din FLOPS. The
performance of main memory is measured as peak
FLOPS to sustained memory bandwidth (GFLOP/sec) /
(Words/sec) and peak FLOPS per idle memory latency
(GFLOP/sec) * sec. In the conventional von Neumann
architectural path, main memory speed is poised to
become (relatively) slower compared to the speed of
computing inside processors.

1 INTRODUCTION
Searching in-memory, sorted datasets is a fundamental data
operation [23]. Today, Binary Search is the de facto search
method that is used in practice, as it is an efficient and asymp-
totically optimal in the worst case algorithm. Binary Search
is a primitive in many popular data systems and frameworks
(e.g LevelDB [25] and Pandas [30]).

 Designing algorithms around hardware trends can yield

om
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gains. A key trend s
the diverging CPU and memory spe:ds which is illustrated
in Figure 1. This trend favors algorithms that can use more
computation to reduce memory accesses [4,6, 16, 21, 27, 38].
‘The focus of this paper is on exploring the impact of this trend
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OPTIMIZATIONS

Prefix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert
Buffered Updates

Many more...

126



PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store
only unique suffix for each key.

— Many variations.
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robbed || robbing|| robot
Prefix: rob
bed [[bing|| ot




DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a “posting list” of
tuples with that key (similar to what
we discussed for hash tables).
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SUFFIX TRUNCATION

The keys in the inner nodes are only

used to “direct traffic’.
— We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the

index.
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SUFFIX TRUNCATION

The keys in the inner nodes are only

used to “direct traffic’.
— We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the

index.
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POINTER SWIZZLING

Nodes use page ids to reference other

nodes in the index. The DBMS must
et the memory location from the / \\
E Y N

page table during traversal. 111 3 617

[f a page is pinned in the buffer pool,

then we can store raw pointers

instead of page ids. This avoids

address lookups from the page table.

Buffer Pool
—_
N
w
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POINTER SWIZZLING
Find Key>3

Nodes use page ids to reference other
nodes in the index. The DBMS must Page #2

get the memory location from the

page table during traversal. T ([3]] ] 7
[f a page is pinned in the buffer pool,
then we can store raw pointers = | | |
instead of page ids. This avoids = ] 5 3
address lookups from the page table. §

=
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POINTER SWIZZLING
Find Key>3

Nodes use page ids to reference other
nodes in the index. The DBMS must ~Page #2

get the memory location from the

page table during traversal.

.
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Page #2 » <Page*>

[f a page is pinned in the buffer pool,

then we can store raw pointers

Headerl Headerl Headerl

1 2 || 3

instead of page ids. This avoids

Buffer Pool.--

address lookups from the page table.
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POINTER SWIZZLING

Find Key>3
Nodes use page ids to reference other s =
nodes in the index. The DBMS must Page #2
get the memory location from the Page #3

page table during traversal.

IIIII-I‘IHII-I

Page #2 » <Pagex>

[f a page is pinned in the buffer pool,

then we can store raw pointers

Headerl Headerl Headerl

1 2 || 3

instead of page ids. This avoids

Buffer Pool

address lookups from the page table.
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POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must

get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.
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POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.
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BULK INSERT

The fastest way to build a new

B+Tree for an existing table is to first
sort the keys and then build the index

from the bottom up.
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Keys:3,7,9,13,6,1
Sorted Keys: 1, 3,6,7,9,13
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OBSERVATION

Modifying a B+tree is expensive when the DBMS
has to split/merge nodes.

— Worst case is when DBMS reorganizes the entire tree.
— The worker that causes a split/merge is responsible for
doing the work.

What if there was a way to delay updates and then
apply multiple changes together in a batch?
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value

entries in log buffers at inner nod%.dLo
o0
— Also known as Be-trees. & »- 20

Updates cascade down to / \
lower nodes incrementally
when buffers get full. / / \

Tokutek. @) spLinterDs

<> Relational AI
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying Insert 7
updates, store changes to key/value

entries in log buffers at inner nodes.
— Also known as Be-trees.
Updates cascade down to / \
lower nodes incrementally - 10 - =
when buffers get full. / \ / \
10 20 38
Tokutek. @) spLinterDs

<> Relational AI

t v

t v
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WRITE-OPTIMIZED B+TREE
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CONCLUSION

The venerable B+Tree is (almost) always a good
choice for your DBMS.
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NEXT CLASS

Index Concurrency Control
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