Carnegie Intro to Database Mellon University Systems (15-445/645)
Lecture \#08 B+Tree Index


## LAST CLASS

Hash tables are important data structures that are used all throughout a DBMS.
$\rightarrow$ Space Complexity: O(n)
$\rightarrow$ Average Time Complexity: O(1)
Static vs. Dynamic Hashing schemes

DBMSs use mostly hash tables for their internal data structures.

## TODAY'S AGENDA

B+Tree Overview<br>Design Choices<br>Optimizations

## B-TREE FAMILY

There is a specific data structure called a $\underline{\mathbf{B} \text {-Tree. }}$

People also use the term to generally refer to a class of balanced tree data structures:
$\rightarrow$ B-Tree (1971)
$\rightarrow$ B+Tree (1973)
$\rightarrow \mathbf{B}^{*}$ Tree (1977?)
$\rightarrow$ B $^{\text {link }}$-Tree (1981)
$\rightarrow$ Be-Tree (2003)
$\rightarrow$ Bw-Tree (2013)

## B-TREE FAMIL

## There is a specific data structure cal

People also use the term to general class of balanced tree data structure
$\rightarrow$ B-Tree (1971)
$\rightarrow$ B+Tree (1973)
$\rightarrow \mathbf{B}^{*}$ Tree (1977?)
$\rightarrow$ Blink $_{\text {-Tree }}$ (1981)
$\rightarrow$ Be-Tree (2003)
$\rightarrow$ Bw-Tree (2013)

## The Ubiquitous B-Tree

DOUGLAS COMER
Computer Sctence Department, Purdue Unuersty, West Lafayette, Indiana 47907
$\begin{aligned} & \text { B-trees have become, de facto, a standard for file organization. File indexes of users, } \\ & \text { dedicated detabase systems, and general- purpose access methods her }\end{aligned}$
$\begin{aligned} & \text { dedicated detataase systems, and general-purpose e access methods have all been proposed } \\ & \text { and mplemented using B-trees This paper reviews } \\ & \text { b-trees }\end{aligned}$
$\begin{aligned} & \text { ben ssomentented using B-trees This paper reviews B-trees and shows why they have } \\ & \text { conirasting the }\end{aligned}$
$\begin{aligned} & \text { contrasting the relative merits and costs of tach implementation. It illustrates a } B^{+} \text {-treee, } \\ & \text { purpose access method which und }\end{aligned}$
Keywords and Pethod which uses a B-tree.
$C R$ Categorres: 3.73 s.ans
CR Categorres: 3.73 2.744.33 434

## introduction

The secondary storage facilities available store upe computer systems allow users to collections of information data from large computer must retrieve an item files. A it in main memory before it can be pro computer order to make good use of the computer resources, one must organize files efficient. The c
pends on the a good file organization performed. There are two broad classes be retrieval commands which can be illus-
trated by the following Sequential: "Froming examples:
"From our employee file, preRandom: "Mames and addresses," and

We can imagine a filing cabinet with three drawers of folders, one folder for each empioyee. The drawers might be labeled "APermission to copy without fee all or part of this materi
distributed for direct co Permission to copy without fee all or part of this material is
distributed for drect commercial advantage, the
date appear, copy appear, and notice ss given that copying is by permispyright notice and the title of the pabe not made or

might be labeled with the employets' las names. A sequential request requires the searcher to examine the entire file, one
folder at a time. On the other hand random request implies that the searcher a guided by the labels on the drawers and olders, need only extract one folder. Associated with a large, randomly ac which, fle ine a computer system is an index
fols on the diver folders of the file cabinet, speeds retrieval
by directing by directing the searcher to the small part of the file containing the desired item. Fig.
ure 1 depicts a file and its ind may be physically indegrated with An index like the labels on employee folders or ine file, ically separate, like the labels on the drawers. Usually the index itself is a file. If the index file is large, another index may be buitt on top of it to speed retrieval further, o the employee file, where thy is similar index consists of labels on drawers topmost next level of index consists of labels on Natural hierarchies, like the one formed

## B-TREE FAMILY

There is a specific data structure called

People also use the term to generally class of balanced tree data structures:
$\rightarrow$ B-Tree (1971)
$\rightarrow$ B+Tree (1973)
$\rightarrow$ B ${ }^{*}$ Tree (1977?)
$\rightarrow$ B ${ }^{\text {link }}$-Tree (1981)
$\rightarrow$ Be-Tree (2003)
$\rightarrow$ Bw-Tree (2013)

## Efficient Locking for Concurrent Operations on B-Trees

PHILIP L LEHMAN
Carnegie-Mellon University
and
and
s. Bing yao

Purdue University

The B-tree and its varistst have been found to be highly usefiu (both theoretrouly



 informan ionrectness proof for our system is givenen.
Key Word any update process at ony given time. An Key Words and Pirases: databuee datestrut

. $3.74,4.32$ 4. 433, 4.34, 5.24

## 1. introduction

The B-tree [2] and its variants have been widely used in devices [7]. The guararte files of information, especially on secoadary a data for these structures makes them quite agage) search, insertion, and deletion time A topic of current interest in datatasase designg for database applications. that can be manipulated concurrently and correctly by construction of databas paper, we consider a simple variant of the B-tree (actuall processes. In thi
proposed by Wedel Wedekind [15]) especially well suited for use in a concurrent $\mathrm{B}^{*}$-tree Methods for concurre and Schkolnick [3] and otheers [6, 12, 13]. The solution been discussed by Bayer Pernisin Pernission to copy without fee anl or par of this material is granted provided that the copies are not
made or ditrributed for direct conmercial advanase

 pernission.
This research was supported by




postgres / src / backend / access / nbtree / README
1083 lines ( 959 loc ) • 62.8 KB
Code Blame $\quad$ Raw ra, $\downarrow, \square$
src/backend/access/nbtree/README

## Btree Indexing



This directory contains a correct implementation of Lehman and Yao's high-concurrency B-tree management algorithm (P. Lehman and S. Yao, Efficient Locking for Concurrent Operations on B-Trees, ACM Transactions on Database Systems, Vol 6, No. 4, December 1981, pp 650-670). We also use a simplified version of the deletion logic described in Lanin and Shasha (V. Lanin and D. Shasha, A Symmetric Concurrent B-Tree Algorithm, Proceedings of 1986 Fall Joint Computer Conference, pp 380-389).

The basic Lehman \& Yao Algorithm

## $\rightarrow$ Bw-Tree (2013)

Efficient Locking for Concurrent Operations n B-Trees

## HLIP L LEHMAN

dinegie-Mellon University
Bing yao
raue University


 al correctness proof for our system is given. loked by any uppate process at any given time and ords and Pirrsess: data
 Cgories: 373, 3.74, 4.32. 4.33, 4.44, 5.24

## RODUCTION

tree $[2]$ and its variants have been widely used in recent years as a datas
re for storing Iarge files of information re 17 . The guaranteed smail (average) searchecinally on secondary storage e structures makeses shem quite appealing for insertion, and deletion time ic of current interest in database desing is the construction of equs.
be manipulater be manipulated concurrently and correctly by construction of databas e consider a simple variant of the B-tree (actually of the E . th .
by Wedekind y Wedekind [15]) especially well suited for use in a concurrent $\mathrm{B}^{*}$-tree,
for concurrent operations on $B^{*}$ trees have been discussed by Baye
Inick [3] and others [6, 12, 13] The sither
fick [3] and others [6, 12, 13]. The solution given in the current paper
copy without fee all or part of this material is granted provided that the copies are not
buted for dircect commercial advantare, the ACM coprivit
 Wuported by the cothervise, or to repubblish, requires a fee andior spor specific

 ACM Trangectionser $10151 / 81 / 1200-0650$. 50.75
ACM Trean


## B-TREE FAMILY

There is a specific data structure called a $\underline{\mathbf{B}}$-Tree.

People also use the term to generally refer to a class of balanced tree data structures:
$\rightarrow$ B-Tree (1971)
$\rightarrow$ B+Tree (1973)
$\rightarrow \mathbf{B}^{*}$ Tree (1977?)
$\rightarrow$ B $^{\text {link }}$-Tree (1981)
$\rightarrow$ Be-Tree (2003)
$\rightarrow$ Bw-Tree (2013)

## B+TREE

A B+Tree is a self-balancing, ordered tree data structure that allows searches, sequential access, insertions, and deletions in $\mathbf{O}\left(\log _{\mathbf{f}} \mathbf{n}\right)$.
$\rightarrow$ Generalization of a binary search tree, since a node can have more than two children.
$\rightarrow$ Optimized for systems that read and write large blocks of data.
$\rightarrow \mathbf{f}$ is the fanout of the tree.

## B+TREE PROPERTIES

A B+Tree is an $M$-way search tree with the following properties:
$\rightarrow$ It is perfectly balanced (i.e., every leaf node is at the same depth in the tree)
$\rightarrow$ Every node other than the root is at least half-full M/2-1 $\leq$ \#keys $\leq$ M-1
$\rightarrow$ Every inner node with $\mathbf{k}$ keys has $\mathbf{k}+1$ non-null children

## B+TREE EXAMPLE



## NODES

Every B+Tree node is comprised of an array of key/value pairs.
$\rightarrow$ The keys are derived from the attribute(s) that the index is based on.
$\rightarrow$ The values will differ based on whether the node is classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.

## B+TREE LEAF NODES



## LEAF NODE VALUES

## Approach \#1: Record IDs

$\rightarrow$ A pointer to the location of the tuple to which the index entry corresponds.

๑RACLE
$\rightarrow$ AKA Index-Organized Storage
$\rightarrow$ The leaf nodes store the actual contents of the tuple.
$\rightarrow$ Secondary indexes must store the Record ID as their values.

## B-TREE VS. B+TREE

The original B-Tree from 1972 stored keys and values in all nodes in the tree.
$\rightarrow$ More space-efficient, since each key only appears once in the tree.

A B+Tree only stores values in leaf nodes. Inner nodes only guide the search process.

## B+TREE - INSERT

Find correct leaf node L.
Insert data entry into $L$ in sorted order.
If $L$ has enough space, done!
Otherwise, split $\mathbf{L}$ keys into $L$ and a new node $L 2$
$\rightarrow$ Redistribute entries evenly, copy up middle key.
$\rightarrow$ Insert index entry pointing to $\mathbf{L} 2$ into parent of $\mathbf{L}$.

To split inner node, redistribute entries evenly, but push up middle key.

## B+TREE - INSERT



## B+TREE - INSERT



## B+TREE - INSERT

## Insert 6



## B+TREE - INSERT

Insert 6


## B+TREE - INSERT

Insert 6


## B+TREE - INSERT

Insert 6


## B+TREE - INSERT

Insert 6


## B+TREE - INSERT

Insert 6


## B+TREE - INSERT

Insert 6


## B+TREE - INSERT

Insert 6


## B+TREE - INSERT

Insert 6


## B+TREE - INSERT

Insert 6


## B+TREE - INSERT

## Insert 6

Insert 8


INSERT THE KEY 17

Note: new example/tree.


INSERT THE KEY 17

Note: new example/tree.


## NEXT, INSERT THE KEY 16



New node.
Shuffle keys from the node that triggered the split.

## NEXT, INSERT THE KEY 16



New node.
Shuffle keys from the node that triggered the split.

## NEXT, INSERT THE KEY 16



## NEXT, INSERT THE KEY 16



## NEXT, INSERT THE KEY 16



But, this is an "orphan" node. No parent node points to it.

## NEXT, INSERT THE KEY 16



But, this is an "orphan" node. No parent node points to it.

## NEXT, INSERT THE KEY 16



## B+TREE - DELETE

Start at root, find leaf $L$ where entry belongs.
Remove the entry.
If $L$ is at least half-full, done!
If $\mathbf{L}$ has only M/2-1 entries,
$\rightarrow$ Try to re-distribute, borrowing from sibling (adjacent node with same parent as L).
$\rightarrow$ If re-distribution fails, merge $L$ and sibling.

If merge occurred, must delete entry (pointing to $L$ or sibling) from parent of $\mathbf{L}$.

## DELETE THE KEY 6



## DELETE THE KEY 6



Borrow from a "rich" neighbor.

## DELETE THE KEY 6



Borrow from a "rich" neighbor.
Could borrow from either neighbor.

## DELETE THE KEY 6



Borrow from a "rich" neighbor.
Could borrow from either neighbor.

## DELETE THE KEY 6



Borrow from a "rich" neighbor.
Could borrow from either neighbor.

## DELETE THE KEY 6



Borrow from a "rich" neighbor.
Could borrow from either neighbor.

## DELETE THE KEY 15



## NEXT, DELETE THE KEY 19



## NEXT, DELETE THE KEY 19



## NEXT, DELETE THE KEY 19



Under-filled.
No "rich" neighbors to borrow.
Merge with a sibling

## NEXT, DELETE THE KEY 19



## NEXT, DELETE THE KEY 19



## NEXT, DELETE THE KEY 19

The tree has shrunk in height.


## COMPOSITE INDEX

Composite Index: The key is composed of multiple attributes.
CREATE INDEX LFM_name ON artist
(last_name, first_name, middle_names NULLS FIRST);
Can use a B+Tree index if the query provides a "prefix" of composite key. Example: Index on <a , b , c>
$\rightarrow$ Supported: ( $a=1$ AND $b=2$ AND $c=3$ )
$\rightarrow$ Supported: ( $a=1$ AND $b=2$ )
$\rightarrow$ NOT (generally) supported: (b=2), (c=3)
For a hash index, we must have all attributes in search key.

## SELECTION CONDITIONS

Find Key=(1,2)


## SELECTION CONDITIONS

Find Key=(1,2)


## SELECTION CONDITIONS

Find Key=(1,2)


## SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)


## SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)
Find Key=(*,1)


## SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)
Find Key=(*,1)


## SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)
Find Key=(*,1)


## B+TREE - DUPLICATE KEYS

## Approach \#1: Append Record ID

$\rightarrow$ Add the tuple's unique Record ID as part of the key to ensure that all keys are unique.
$\rightarrow$ The DBMS can still use partial keys to find tuples.

## Approach \#2: Overflow Leaf Nodes

$\rightarrow$ Allow leaf nodes to spill into overflow nodes that contain the duplicate keys.
$\rightarrow$ This is more complex to maintain and modify.

## B+TREE - APPEND RECORD ID



## B+TREE - APPEND RECORD ID

## Insert 6



## B+TREE - APPEND RECORD ID

Insert <6,(Page,Slot)>


## B+TREE - OVERFLOW LEAF NODES

## Insert 6



## B+TREE - OVERFLOW LEAF NODES

## Insert 6



## B+TREE - OVERFLOW LEAF NODES

## Insert 6



## B+TREE - OVERFLOW LEAF NODES

Insert 6
Insert 7


## B+TREE - OVERFLOW LEAF NODES

Insert 6
Insert 7
Insert 6


## CLUSTERED INDEXES

The table is stored in the sort order specified by the primary key.
$\rightarrow$ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
$\rightarrow$ If a table does not contain a primary key, the DBMS will automatically make a hidden primary key.

Other DBMSs cannot use them at all.

## CLUSTERED B+TREE

Traverse to the left-most leaf page and then retrieve tuples from all leaf pages.

This will always be better than sorting data for each query.


## CLUSTERED B+TREE

Traverse to the left-most leaf page and then retrieve tuples from all leaf pages.

This will always be better than sorting data for each query.


## CLUSTERED B+TREE

Traverse to the left-most leaf page and then retrieve tuples from all leaf pages.

This will always be better than sorting data for each query.


## INDEX SCAN PAGE SORTING

Retrieving tuples in the order they appear in a non-clustered index is inefficient due to redundant reads.

A better approach is to find all the tuples that the query needs and then sort them based on their page ID.

The DBMS retrieves each page once.

## INDEX SCAN PAGE SORTING

Retrieving tuples in the order they appear in a non-clustered index is inefficient due to redundant reads.

| 101 | 102 | 103 |
| :--- | :--- | :--- |

A better approach is to find all the tuples that the query needs and then sort them based on their page ID.

The DBMS retrieves each page once.

## INDEX SCAN PAGE SORTING

Retrieving tuples in the order they appear in a non-clustered index is inefficient due to redundant reads.

A better approach is to find all the tuples that the query needs and then sort them based on their page ID.

The DBMS retrieves each page once.

## INDEX SCAN PAGE SORTING

Retrieving tuples in the order they appear in a non-clustered index is inefficient due to redundant reads.

A better approach is to find all the tuples that the query needs and then sort them based on their page ID.

The DBMS retrieves each page once.

$\square$ Page 102
$\square$ Page 103
$\square$ Page 104
Page 104
$\square$ Page 102
$\square$ Page 103
$\square$ Page 102
Page 102
$\square$ Page 101
$\square$ Page 103
$\square$ Page 104
$\square$ Page 103

## INDEX SCAN PAGE SORTING

Retrieving tuples in the order they appear in a non-clustered index is inefficient due to redundant reads.

A better approach is to find all the tuples that the query needs and then sort them based on their page ID.

The DBMS retrieves each page once.

## B+TREE DESIGN CHOICES

Node Size<br>Merge Threshold<br>Variable-Length Keys<br>Intra-Node Search

## Foundations ond Trends' in

 Dotoboces 38Modern B-Tree Techniques Goetz Graefe

## NODE SIZE

The slower the storage device, the larger the optimal node size for a B+Tree.
$\rightarrow$ HDD: ~1MB
$\rightarrow$ SSD: ~10KB
$\rightarrow$ In-Memory: ~512B

Optimal sizes can vary depending on the workload
$\rightarrow$ Leaf Node Scans vs. Root-to-Leaf Traversals

## MERGE THRESHOLD

Some DBMSs do not always merge nodes when they are half full.
$\rightarrow$ Average occupancy rate for B+Tree nodes is $69 \%$.
Delaying a merge operation may reduce the amount of reorganization.

It may also be better to just let smaller nodes exist and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-balanced" B+Tree (nbtree).

## VARIABLE-LENGTH KEYS

## Approach \#1: Pointers

$\rightarrow$ Store the keys as pointers to the tuple's attribute.
$\rightarrow$ Also called T-Trees (in-memory DBMSs)

## Approach \#2: Variable-Length Nodes

$\rightarrow$ The size of each node in the index can vary.
$\rightarrow$ Requires careful memory management.

## Approach \#3: Padding

$\rightarrow$ Always pad the key to be max length of the key type.

## Approach \#4: Key Map / Indirection

$\rightarrow$ Embed an array of pointers that map to the key + value list within the node.

## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
Find $K e y=8$
$\rightarrow$ Use SIMD to vectorize comparisons.

## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.

$\rightarrow$ Use SIMD to vectorize comparisons.

```
_mm_cmpeq_epi32_mask(a, b)
```


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.

$\rightarrow$ Use SIMD to vectorize comparisons.

| 8 | 8 | 8 | 8 |
| :--- | :--- | :--- | :--- |

```
_mm_cmpeq_epi32_mask(a, b)
```


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.


```
_mm_cmpeq_epi32_mask(a, b)
```


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.

| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 8 | 8 | 8 | 8 |
| :--- | :--- | :--- | :--- |

```
_mm_cmpeq_epi32_mask(a, b)
```


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.


```
_mm_cmpeq_epi32_mask(a, b)
```


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.

## Approach \#2: Binary

$\rightarrow$ Jump to middle key, pivot left/right depending on comparison.


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.

## Approach \#2: Binary

$\rightarrow$ Jump to middle key, pivot left/right depending on comparison.


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.

## Approach \#2: Binary

$\rightarrow$ Jump to middle key, pivot left/right depending on comparison.


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.

## Approach \#2: Binary

$\rightarrow$ Jump to middle key, pivot left/right depending on comparison.

## Approach \#3: Interpolation

$\rightarrow$ Approximate location of desired key based

| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | on known distribution of keys.

## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.

## Approach \#2: Binary

$\rightarrow$ Jump to middle key, pivot left/right depending on comparison.

Approach \#3: Interpolation
Offset: $(8-4) * 7 /(10-4)=4$
$\rightarrow$ Approximate location of desired key based

| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | on known distribution of keys.

## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.

## Approach \#2: Binary

$\rightarrow$ Jump to middle key, pivot left/right depending on comparison.

Approach \#3: Interpolation
$\rightarrow$ Approximate location of desired key based on known distribution of keys.

Offset: $(8-4) * 7 /(10-4)=4$


## INTRA-NODE SEARCH

## Approach \#1: Linear

$\rightarrow$ Scan node keys from beginning to end.
$\rightarrow$ Use SIMD to vectorize comparisons.

## Approach \#2: Binary

$\rightarrow$ Jump to middle key, pivot left/right depending on comparison.

## Approach \#3: Interpolation

$\rightarrow$ Approximate location of desired key based on known distribution of keys.

Binary vs. Interpolation search: Tradeoffs change based on hardware trends.

Efficiently Searching In-Memory Sorted Arrays:
Revenge of the Interpolation Search?
Peter Van Sandt, Yannis Chronis, Jignesh M. Patel
$\underset{\text { Department of Computer Sciences, University of Wisconsin-Madiso }}{\text { fvand,chronis,jignesh\}@cs.wisc.edu }}$

## ABSTRACT

In this paper, we focus on the problem of searching sorted, in-memory datasest. This is a keroy data op peration, nand dinary
Search is the de facto algorithm that is used in practice Search is the de facto algorithm that is used in practice. We
consider an altenctive consider an aternative, namely Interpolation Search, which
can take advantage of hardware trends by using complex cal culations to save memory accesses. Historically, Interpolation
 algorithms in this setting, despite its superior asymptotic com-
plexity. Also. Interpolation Search i skowntoperform plexity.Aso. Interpolation Search isknowntoperformpoong
on non-uniform data. To address these issues, we introduce
SPISloperesel
 of Interpolation Search, and TTP (Three point Interpolation)
new search algorithm that uses inear fractions to interpola new search halgorithm that uses inear fractions to interpol
on non- uniform distributions. We evaluate these two algo
rithms aggint rittms against a similiarly optinized dinary Search method
using avariety of feal and syntheicic datsets using a variety of real and synthetic datasets. We show th
SP is is to t times faster on uniformly distributed data and
TP is 23 ITP is $2-3$ times faster on non-uniformly distributed data in some cases. We also design a meta-algorithm to switch be
tween these different methods to automate picking the higher tween these different methods to automate picking the higher
pefforming search algorithm, which depends on factors like performing search.
data distribution.
CCS CONCEPTS

- Inform
engines.

KEYWORDS
In-memory search; Interpolation Search; Binary Search Permission to make digitit or hard copies of all or pato of this work for
personal or classisom use is santer without fee povided personal or classiom use is granted without fee provided that oppies
are not made or distribibuted for proft to o commercial addanatage and that


 or 2019 Copyight held by the wunerfauthor(s). Publication rights licensed
to Acc.


ACM Reference Format
Peter Van Sandt, Yamis Chronis, Jignesh M. Patel. 2019. Efficiently Scarching In-Memory Sorted Arrays: Revenge of the Interpolation
Search? In 2019 Interational Conference onNanagementof $\operatorname{Fatata}$ (SIC-



Figure 1: Speed comparison of representative processor and main memory technologies [27]. The performance of processors is measured in FLOPS. The
performance of main memory is measured as peak FLOPS to sustained memory bandwidth (GFLOP/sec)/ (Words/sec) and peak FLOPS per idle memory latency
(GFLOP ${ }^{\text {sec }}$ ) (GFLOP/sec) * sec. In the conventional von Neumann
architectural path, main memory speed is poised to architectural path, main memory speed is poised oo
become (relatively) slower compared to the speed of become (relatively) slower
computing inside processors.

## 1 INTRODUCTION

Searching in-memory, sorted datasets is a fundamental data operation [23]. Today, Binary Search is the de facto search method that is used in practice, as it is an efficient and asymp-
totically optimal in the worst ase allosithe Bin is aprimitive in many popular data systems and frameworks is a primititie in many popular data sy,
(e.g. LevelDP [25] and Pandas [30]).
Designing algorithms around hardware trends can yield significant performance gains. A key technological trend
the diverging CPU and memory speeds, which is ilustrated the diverging CPU and memory speeds, which is il ustrated
in Figure 1 This trend favors algorithms that can use more computation to reduce memory accesses $[4,6,16,21,27,38]$.
The focus of this paper is on exploring the impact of this trend

## OPTIMIZATIONS

Prefix Compression<br>Deduplication<br>Suffix Truncation<br>Pointer Swizzling<br>Bulk Insert<br>Buffered Updates<br>Many more...

## PREFIX COMPRESSION

Sorted keys in the same leaf node are likely to have the same prefix.

| robbed | robbing | robot |
| :--- | :--- | :--- |

Instead of storing the entire key each time, extract common prefix and store only unique suffix for each key.
$\rightarrow$ Many variations.


## DEDUPLICATION

Non-unique indexes can end up storing multiple copies of the same key in leaf nodes.

The leaf node can store the key once and then maintain a "posting list" of

| K1 | V1 | K1 | V2 | K1 | V3 | K2 | V4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | tuples with that key (similar to what we discussed for hash tables).

## SUFFIX TRUNCATION

The keys in the inner nodes are only used to "direct traffic".
$\rightarrow$ We don't need the entire key.

Store a minimum prefix that is needed
 to correctly route probes into the index.

## SUFFIX TRUNCATION

The keys in the inner nodes are only used to "direct traffic".
$\rightarrow$ We don't need the entire key.

Store a minimum prefix that is needed
 to correctly route probes into the index.

## POINTER SWIZZLING

Nodes use page ids to reference other nodes in the index. The DBMS must get the memory location from the page table during traversal.


If a page is pinned in the buffer pool, then we can store raw pointers instead of page ids. This avoids address lookups from the page table.


## POINTER SWIZZLING

Nodes use page ids to reference other nodes in the index. The DBMS must get the memory location from the page table during traversal.


If a page is pinned in the buffer pool, then we can store raw pointers instead of page ids. This avoids address lookups from the page table.


## POINTER SWIZZLING

Nodes use page ids to reference other nodes in the index. The DBMS must get the memory location from the page table during traversal.

If a page is pinned in the buffer pool, then we can store raw pointers instead of page ids. This avoids address lookups from the page table.


## POINTER SWIZZLING

Nodes use page ids to reference other nodes in the index. The DBMS must get the memory location from the page table during traversal.

If a page is pinned in the buffer pool, then we can store raw pointers instead of page ids. This avoids address lookups from the page table.


## POINTER SWIZZLING

Nodes use page ids to reference other nodes in the index. The DBMS must get the memory location from the page table during traversal.

If a page is pinned in the buffer pool, then we can store raw pointers instead of page ids. This avoids address lookups from the page table.


## POINTER SWIZZLING

Nodes use page ids to reference other nodes in the index. The DBMS must get the memory location from the page table during traversal.

Find Key>3


If a page is pinned in the buffer pool, then we can store raw pointers instead of page ids. This avoids address lookups from the page table.


## BULK INSERT

The fastest way to build a new
$\mathrm{B}+$ Tree for an existing table is to first sort the keys and then build the index

Keys: 3, 7, 9, 13, 6, 1 Sorted Keys: 1, 3, 6, 7, 9, 13 from the bottom up.


## OBSERVATION

Modifying a $\mathrm{B}+$ tree is expensive when the DBMS has to split/merge nodes.
$\rightarrow$ Worst case is when DBMS reorganizes the entire tree.
$\rightarrow$ The worker that causes a split/merge is responsible for doing the work.

What if there was a way to delay updates and then apply multiple changes together in a batch?

## WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value entries in log buffers at inner nodes.
$\rightarrow$ Also known as $\mathbf{B} \varepsilon$-trees.
Updates cascade down to lower nodes incrementally when buffers get full.


## Tokutek. (6) splinterdb

## WRITE-OPTIMIZED B+TREE

Instead of immediately applying
Insert 7
updates, store changes to key/value entries in log buffers at inner nodes.
$\rightarrow$ Also known as $\mathbf{B} \varepsilon$-trees.
Updates cascade down to lower nodes incrementally when buffers get full.


## Tokutek. (6) splinterdb

## WRITE-OPTIMIZED B+TREE

Instead of immediately applying updates, store changes to key/value entries in log buffers at inner nodes. $\rightarrow$ Also known as $\mathbf{B} \varepsilon$-trees.

Updates cascade down to lower nodes incrementally when buffers get full.


## Tokułek. (6) splinterdb

## WRITE-OPTIMIZED B+TREE

Instead of immediately applying updates, store changes to key/value entries in log buffers at inner nodes.
$\rightarrow$ Also known as $\mathbf{B} \varepsilon$-trees.
Updates cascade down to lower nodes incrementally when buffers get full.


## Tokulek. (6) splinterdb

## WRITE-OPTIMIZED B+TREE

Instead of immediately applying
Insert 40
updates, store changes to key/value entries in log buffers at inner nodes.
$\rightarrow$ Also known as $\mathbf{B} \varepsilon$-trees.
Updates cascade down to lower nodes incrementally when buffers get full.


## Tokulek. (6) splinterdb

## WRITE-OPTIMIZED B+TREE

Instead of immediately applying
Insert 40
updates, store changes to key/value entries in log buffers at inner nodes.
$\rightarrow$ Also known as $\mathbf{B} \varepsilon$-trees.
Updates cascade down to lower nodes incrementally when buffers get full.


## Tokulek. (6) splinterdb

## CONCLUSION

## The venerable $\mathrm{B}+$ Tree is (almost) always a good choice for your DBMS.

## NEXT CLASS

Index Concurrency Control

