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Hardware trends

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
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Transistor growth
continues.

The question is how to use
this hardware for higher
application performance.

Individual cores are not
becoming faster, but there
are more cores.

Every processor is now a
“parallel” data machine,
and the degree of

parallelism is increasing.



| Latency Numbers You Should Know ) ByteByteGo.com

Every
programmer
must know these
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PROCESSING MODEL

A DBMS’s processing model defines how the

system executes a query plan.

— Different trade-offs for different workloads.

Approach #1: Iterator Model
Approach #2: Materialization Model
Approach #3: Vectorized / Batch Model
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ITERATOR MODEL

Each query plan operator implements a Next () function.

— On each invocation, the operator returns either a single tuple or a eof
marker if there are no more tuples.

— The operator implements a loop that calls Next () on its children to retrieve

their tuples and then process them.

Each operator implementation also has Open() and Close() functions.
Analogous to constructors and destructors, but for operators.

Also called the Volcano or the Pipeline Model.
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ITERATOR MODEL

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

\
G value>100

‘
R S
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ITERATOR MODEL

: : SELECT R.id, S.cdate
Next() |for t hild.Next(): ’
O ffor finhitttend e, FROM R JOIN S

. . .
Lo ON R.id = S.id
e
L 4
Next() [For o in Terenonio. ... | WHERE S.value > 100
buildHashTable(t,) . g
for t, in right.Next(): v.,. '~,. 1
if probe(t,): emit(t,Pt,) ".,. '.,.
e, R.id, S.cdate
ol |

Next() |for t in child.Next():
if evalPred(t): emit(t) [\Qva

n........ . \
O valuesieo
Next() |for t in R: Next() [for t in s: <. va
ll.....

emit(t) emit(t) S X
A -
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ITERATOR MODEL

for t in child.Next(): SELECT R.1id, S.cdate
emit(proj*ction(t)) FROM R JOIN S
\ ON R.id = S.id

for t, in left.Next(): WHERE S.value > 100

buildHashTable(t,)

for t, in right.Next(): 1
if probe(t,): emit(t,<t,) n i ot
id, S.cdate
for t in child.Next(): th e
if evalPred(t): emit(t) feLe=. e

. >1
for t in R: for t in S: / qvalue 00
emit(t) emit(t) R s
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ITERATOR MODEL

SELECT R.id, S.cdate

for t in child.Next():

emit(proj*ction(t)) FROM R JOIN S
\ ON R.id = S.id
for ©_ialeft.Next(): WHERE S.value > 100

dHashTable(t,)
t, in right.Next(): 1

if probe(t,): emit(t,<t,) n
R.id, S.cdate
for t in child.Next(): th e
if evalPred(t): emit(t) feLe=. e

)
for t in R: for t in S: qvalue>190
emit(t) emit(t) R S
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ITERATOR MODEL

SELECT R.id, S.cdate

for t in child.Next():

emit(proj*ction(t)) FROM R JOIN S
\ ON R.id = S.id
for ©_ialeft.Next(): WHERE S.value > 100

dHashTableft,)
t, in right.fext(): 1

if probe(t,): pmit(t,<t,)
- 1 - n R.id, S.cdate

- for t in child.Next(): 1 I
SmgleTuplel if evalPred(t): emit(t) NR'ld S.id

)
for t in R: for t in S: qvalue>190
emit(t)=— emit(t) R S
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ITERATOR MODEL

for t in child.Next(): SELECT R.id, S.cdate
emit(proj*ction(t)) FROM R JOIN S
\ ON R.id = S.id
WHERE S.value > 100

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next(): 1
if probe(t,): emit(t,<t,) n i ot
id, S.cdate
for t in child.Next(): th e
if evalPred(t): emit(t) feLe=. e

)
for t in R: for t in S: qvalue>1®@
emit(t) emit(t) R s
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ITERATOR MODEL

for t in child.Next(): SELECT R.id, S.cdate
emit(proj*ction(t)) FROM R JOIN S
\ ON R.id = S.id
WHERE S.value > 100

for t, in left.Next():
buildHashTable(t,)
for t, in right.Next(): 1

if probe(ty: emit(t,t,)
R ,l: R.id, S.cdate

for t in child.Next(): N e
if evalPrﬁ(t): emit(t) 0 R.id=S.1id

)
for t in R: for t in S: qvalue>190
emit(t) emit(t) R S
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ITERATOR MODEL

for t in child.Next(): SELECT R.id, S.cdate
emit(proj*ction(t)) FROM R JOIN S
\ ON R.id = S.id
WHERE S.value > 100

for t, in left.Next():
buildHashTable(t,)
for t, in right.Next(): 1

if probe(ty: emit(t,t,)
R ,l: R.id, S.cdate

for t in child.Next(): N e
if evalPr‘d(t): mit(t) 0 R.1d=S.1d

) \
for t in R: for t inj: Gvalue>1@@
emit(t) emit(t R \s
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ITERATOR MODEL

for t in child.Next(): SELECT R.id, S.cdate
emit(proj*ction(t)) FROM R JOIN S
\ ON R.id = S.id
WHERE S.value > 100

for t, in left.Next():
buildHashTable(t,)
for t, in right.Next()q\ 1

if probe(ty: emit(t,t,)
R \ ,t: R.id, S.cdate

for t in child.Next(): e
if evalPr‘d(t): mit(t) 0 NR'ld S.id

) \
for t in R: for t inj: Gvalue>1@@
emit(t) emit(t R \s
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ITERATOR MODEL

SELECT R.id, S.cdate

for t in child.Next():

emit(proj*ctiontt)) FROM R JOIN S
\ \ ON R.id = S.id
for . in left.Next()\ WHERE S.value > 100
buildHashTable(t,)
for t, in right.Next()«-i\ 1

if probe(thy): emit(t,<t,)
1 - \ n R.id, S.cdate

for t in child.Next(): e
if evalPr‘d(t): mit(t) 0 NR'ld S.id

) \
for t in R: for t inj: Gvalue>1@@
emit(t) emit(t R \s
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ITERATOR MODEL

This is used in most DBMSs today. Allows for tuple
pipelining.

Many operators must block until their children emit

all their tuples.
— Joins, Aggregates, Subqueries, Order By

Output control works easily with this approach.

AT L VSQLite ’mongoDB ‘mangoDB INGR=S 2 -/»%l cassandra \a

£2CMU-DB ¥ fauna >l server MSYBASE — WPosigesal  ORACLE  WMysaL. » NUO
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MATERIALIZATION MODEL

Each operator processes its input all at once and then emits its
output all at once.

— The operator “materializes” its output as a single result.

— The DBMS can push down hints (e.g., LIMIT) to avoid scanning too many
tuples.

— Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or subsets of
columns (DSM).
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15-445/645 (Spring 2024)




MATERIALIZATION MODEL

out = [ 1]
for t in child.Output(): :
out.add(projection(t)) SELECT R.id, S.cdate
return out FROM R JOIN S
= ON R.id = S.id
out =
for t, in left.Output(): WHERE S.value > 100
buildHashTable(t,)
for t, in right.Output(): 1
if probe(t,): out.add(t,Mt,)
return out n R.id, S.cdate
out = [ ] 1 .
for t in child.Output(): NR-ld—S-ld
if evalPred(t): out.add(t) \
return out G ] 00
value>1
out = [ ] out = [ ] X
for t in R: for t in S: R s
out.add(t) out.add(t)
£=CMU-DB return out return out
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MATERIALIZATION MODEL

out = [ ]
for t in child.Output(): :
o< out..add(projection(t)) SELECT R.id, S.cdate
m FROM R JOIN S
— A ON R.id = S.1id
out =
for t, in left.Output(): WHERE S.value > 100
buildHashTable(t,)
for t, in right.Output(): 1
if probe(t,): out.add(t,Mt,)
return out n R.id, S.cdate
out = [ ] 1 .
for t in child.Output(): NR-ld—S-ld
if evalPred(t): out.add(t) \
return out G ] -
value>1
out = [ ] out = [ ] X
for t in R: for t in S: R s
out.add(t) out.add(t)
£=CMU-DB return out return out
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MATERIALIZATION MODEL

out = [ ]
for t in child.Output(): .
1 Yl Tt SELECT R.id, S.cdate
T ome_ FROM R JOIN S
- ¥ ON R.id = S.id
awie =1L d WHERE S.value > 100

for t; in left.Output():
buildHashTable(t,)

for t, in right.Output(): 1
if probe(t,): out.add(t,Mt,)
return out n R.id, S.cdate
t
out = [ ] . .
for t in child.Output(): NR-leS-ld
if evalPred(t): out.add(t) \
return out
v / Gvalue>1@@
out = [ ] out = [ ] X
for t in R: for t in S: R
out.add(t) out.add(t) S
£=CMU-DB return out return out
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MATERIALIZATION MODEL

out = [ ]
for t in child.Output(): .
S oo & sobrs
re
P— 3 ON R.id = S.1id
out =
for t; in left.Output(): WHERE S.value > 100
buildHashTable(t,
for t, in right.Outgut(): 1
if probe(t,): outjadd(t,Mt,)
return out n R.id, S.cdate
f t

=[] _ _
fgr t in child.Output(): NRJd:S-ld

if evalPred(t): out.add(t) \
All Tuples I return out
Gvalue>1@@
out = [ ] out = [ ] X
for t in R: for t in S: R S
out.add(t) out.add(t)
£=CMU-DB return out-/ return out
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MATERIALIZATION MODEL

out = [ ]
for t in child.Output(): .
1 Yl Tt SELECT R.id, S.cdate
T ome_ FROM R JOIN S
- ¥ ON R.id = S.id
awie =1L d WHERE S.value > 100

for t; in left.Output():
buildHashTable(t,)

=for t, in right.Output(): 1
Ql if probe(t,): out.add(t,>t,) T eso, oo
return out \ R.id, S.cdate
out = [ ] 1 : .
for t in child.Output(): NR-leS-ld
if evalPred(t): out.add( \
return out
Gvalue>1@@
out = [ 1] out = [ ] X
for t in R: for t in S: R s
out.add(t) out.add(t)
£=CMU-DB return out return out
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MATERIALIZATION MODEL

out = [ ]
for t in child.Output(): .
1 Yl Tt SELECT R.id, S.cdate
T ome_ FROM R JOIN S
- ¥ ON R.id = S.id
awie =1L d WHERE S.value > 100

for t; in left.Output():
buildHashTable(t,)

=for t, in right.Output(): 1
Ql if probe(t,): out.add(t,>t,) T eso, oo
return out \ R.id, S.cdate
out = [ ] 1 . .
<'for t in child.Output(): NR-leS-ld
if evalPred(t): out.add( \
return
Gvalue>1@@
out = [ 1] out = [ ] X
for t in R: for t in S: R s
out.add(t) out.add(t)
£=CMU-DB return out return out
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MATERIALIZATION MODEL

out = [ ]
for t in child.Output(): .
o< out.add(projectfon(t)) SELECT R.ld, S.cdate
?emrm\ FROM R JOIN S
— | ON R.id = S.id
out =
for t, in left.Outhut(): WHERE S.value > 100
buildHashTable¢t,)
=for t, in right 1
(. if probe(t,
return ou n R.id, S.cdate

:ﬁout.add(

A 4

out = [ ] out = [ ] X
for t in R: for t in S: R
out.add(t) out.add( s
£=CMU-DB return out return out
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MATERIALIZATION MODEL

Better for OLTP workloads because queries only
access a small number of tuples at a time.

— Lower execution / coordination overhead. vo LTDB
— Fewer function calls. i
RAVENDB
Not good for OLAP queries with large f\j
intermediate results. monetdb
CrateDB
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VECTORIZATION MODEL

Like the Iterator Model where each operator implements a
Next() function, but...

Each operator emits a batch of tuples instead of a single

tuple.

— The operator’s internal loop processes multiple tuples at a time.
— The size of the batch can vary based on hardware or query properties.

$ZCMU-DB
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VECTORIZATION MODEL

out = [ 1]
for t in child.Next(): .
out. add(projection(t)) SELECT R.id, S.cdate
if |out|>n: emit(out) FROM R JOIN S
ON R.id = S.1id
out = [ 1]
for t1 in 1eft.NeXt(): WHERE S.Value > 1@@
buildHashTable(t,)
for t, in right.Next(): 1
if probe(t,): out.add(t,t,)
if |out|>n: emit(out) TC R.id, S.cdate
out = [ ] 1 . .
for t in child.Next(): NR°1d=S°1d
if evalPred(t): out.add(t) \
if |out|>n: emit(out) G e 100
value>
out = [ 1] out = [ 1] L
for t in R: for t in S:
out.add(t) out.add(t) R s
$2CMU-DB if |out|>n: emit(out) if |out|>n: emit(out)
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VECTORIZATION MODEL

out = [ 1]
Hfor t in child.Next(): :
([ out. add(projection( i) SELECT R.id, S.cdate
W: emit(out) FROM R JOIN S
X

p— ON R.id = S.id
out =

e rfor t, in left.Next(): WHERE S.value > 100
buildHashTable(t,)

for t, in right.Next(): 1
if probe(t,): out.add(t,t,)
if |out|>n: emit(out) n R.id, S.cdate
t
out = [ 1]
for t in child.Next(): NR°id:S~id
if evalPred(t): out.add(t) \
if |out|>n: emit(out) G a0
value>
out = [ 1] out = [ ] L
for t in R: for t in S:
out.add(t) out.add(t) R S
$2CMU-DB if |out|>n: emit(out) if |out|>n: emit(out)
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VECTORIZATION MODEL

out = [ 1]
for t in child.Next(): .

( out . add(projection(t)) SELECT R.id, S.cdate
W: emit(out) FROM R JOIN S
P— 3 ON R.id = S.id

out =

e ,for t1 in 1eft.NeXt(): WHERE S.Value > 1@@
buildHashTableft,)

for t, in right.Next(): 1
if probe(t,): dqut.add(t,t,)
if |out|>n: em]lt(out) n R.id, S.cdate

oyt = [ 1] . .
fér t in child.Next(): NR-1d=S-1d
if evalPred(t): out.add(t) \
if |out|>n: emit(out) G
value>100

out = [ ] Tuple Batch out = [ ] L
for t in R: for t in S:
out.add(t) out.add(t) R S
$2CMU-DB if |out|>n: emit(out) if |out|>n: emit(out)
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VECTORIZATION MODEL

out = [ 1]
for t in child.Next(): .
( out_;dd(p'{oject’i‘onm) SELECT R.id, S.cdate
W: emit(out) FROM R JOIN S
Y

ON R.id = S.id

out = [ ]
e rfor t, in left.Next(): WHERE S.value > 100
buildHashTableft,)

for t, in right.Next(): 1
if probe(t,): dqut.add(t,X{t,)
if |out|>n: emjt(out) n R.id, S.cdate

t
oyt = [ 1]
Lfgr t in child.Next(): NR-id:S-id
<~ if evalPred(t): out.add(t) \
Wt(out) / G S
value
out = [ ] Tuple Batch out = [ ] L
for t in R: for t in S:
out.add(t) out.add(t) R s
$2CMU-DB if |out|>n: emit(out) if |out|>n: emit(out)
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VECTORIZATION MODEL

I[deal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows for operators to more easily use vectorized
(SIMD) instructions to process batches of tuples.

E

pl’eStO .:::. EXX 1 Nl RISEE DuckDB -@
* VeCtorW|Se >4§SnOWﬂOke 2 @ dCItCIbI’iCkS CockroachDB

& ‘MSQi_ Server
S‘{B?ﬁﬁ'} . ClickHouse gtrino
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom
— Start with the root and “pull” data up from its children.
— Tuples are always passed with function calls.

Approach #2: Bottom-to-Top
— Start with leaf nodes and push data to their parents.
— Allows for tighter control of caches/registers in pipelines.

— More amenable to dynamic query re-optimization.




ACCESS METHODS

An access method is the way that the
DBMS accesses the data stored in a table.

— Not defined in relational algebra.

Three basic approaches:
— Sequential Scan.
— Index Scan (many variants).

— Multi-Index Scan.

$ZCMU-DB
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SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

\
G value>100

‘
R S




ACCESS METHODS

An access method is the way that the
DBMS accesses the data stored in a table.

— Not defined in relational algebra.

Three basic approaches:
— Sequential Scan.
— Index Scan (many variants).

— Multi-Index Scan.

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100




SEQUENTIAL SCAN

For each page in the table: for page in table.pages:

— Retrieve it from the buffer pool. for t in page.tuples:
if evalPred(t):

— [terate over each tuple and check whether 7 5 S

to include it.

The DBMS maintains an internal
cursor that tracks the last page / slot

it examined.

$ZCMU-DB
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SEQUENTIAL SCAN: OPTIMIZATIONS

This is almost always the worst thing that the
DBMS can do to execute a query, but it may be the
only choice available.

Sequential Scan Optimizations:
— Prefetching

— Buffer Pool Bypass

— Parallelization

— Heap Clustering

— Late Materialization

— Data Skipping

$ZCMU-DB
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SEQUENTIAL SCAN: OPTIMIZATIONS

This is almost always the worst thing that the
DBMS can do to execute a query, but it may be the
only choice available.

Sequential Scan Optimizations:
— Prefetching

— Buffer Pool Bypass

[EMNEE) — Parallelization
— Heap Clustering

Y8 — Late Materialization

— Data Skipping
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DATA SKIPPING
Approach #1: Approximate Queries (Lossy)

— Execute queries on a sampled subset of the entire table to produce
approximate results.

— Examples: BlinkDB, Redshift, ComputeDB, XDB, Oracle, Snowflake, Google
BigQuery, DataBricks

Approach #2: Zone Maps (Lossless)

— Pre-compute columnar aggregations per page that allow the DBMS to check
whether queries need to access it.

— Trade-off between page size vs. filter efficacy.

— Examples: Oracle, Vertica, SingleStore, Netezza, Snowflake, Google BigQuery

$ZCMU-DB
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http://blinkdb.org/
https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://tibco-computedb.readthedocs.io/
https://initialdlab.github.io/XDB/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.snowflake.com/en/user-guide/querying-approximate-frequent-values.html
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://docs.databricks.com/sql/language-manual/functions/approx_count_distinct.html
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/

ZONE MAPS ORACLE

Pre-computed aggregates for the attribute values

in a page. DBMS checks the zone map first to

: : cloudera
decide whether it wants to access the page. IMPALA

@ NETEZZA

Original Data Zone Map

val type val
SELECT * FROM table 100 MIN 100
WHERE val > 600 200 » MAX 400
300 AVG 280
400 SUM 1400
400 COUNT 5

$ZCMU-DB
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%Microsoﬂ'f )
« Q5senver ZONE MAPS ORACLE

——
VERTION Pre-computed aggregates for the attribute values
Osinglestore  in a page. DBMS checks the zone map first to

, , cloudera
decide whether it wants to access the page. IMPALA
amazon
. REDSHIFT @ T
i‘l{( SHe fltke Original Data Zone Map
val type val
SELECT * FROM table 100 MIN 100
WHERE val > 600 00 » x| 400
300 AvG | 280
400 sum | 1400
400 CONT | 5
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ZSQL Server

Pre-comp

QsSingleStore 11 @ page.

decide wh
amazon
REDSHIFT

db
358 snowflake

SELECT * FROM table
WHERE val > 600
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Small Materialized Aggregates:
A Light Weight Index Structure for Data Warehousing

Guido Moerkotte
moer@pi3.informatik.uni-mannheim.de

Lehrstuhl fiir praktische Informatik III, Universitit Mannheim, Germany

Abstract

Small Materialized Aggregates (SMAs for
short) are considered a highly flexible and ver-
satile alternative for materialized data cubes.
The basic idea is to compute many aggregate
values for small to medium-sized buckets of tu-
ples. These aggregates are then used to speed
up query processing. We present the general
idea and present an application of SMAs to
the TPC-D benchmark. We show that ex-
ploiting SMAs for TPC-D Query 1 results in
a speed up of two orders of magnitude. Then,
we investigate the problem of query process-
ing in the presence of SMAs. Last, we briefly
discuss some further tuning possibilities for
SMAs.

1 Introduction

Among the predominant demands put on data ware-
house management systems (DWMSs) is performance,
i.e., the highly efficient evaluation of complex analyt-
ical queries. A very successful means to speed up
query processing is the exploitation of index struc-
tures. Several index structures have been applied to
data warehouse management systems (for an overview
see [2, 17]). Among them are traditional index struc-
tures (1, 3, 6], bitmaps [15], and R-tree-like structures
[9].

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference
New York, USA, 1998

Since most of the queries against data warehouses
incorporate grouping and aggregation, it seems to be
a good idea to materialize according views. The most
popular of these approaches is the materialized data
cube where for a set of dimensions, for all their possi-
ble grouping combinations, the aggregates of interest
are materialized. Then, query processing against a
data cube boils down to a very efficient lookup. Since
the complete data cube is very space consuming [5, 18],
strategies have been developed for materializing only
those parts of a data cube that pay off most in query
processing [10]. Another approach-based on [14]-is to
hierarchically organize the aggregates [12]. But still
the storage consumption can be very high, even for a
simple grouping possibility, if the number of dimen-
sions and/or their cardinality grows. On the user side,
the data cube operator has been proposed to allow for
easier query formulation [8]. But since we deal with
performance here, we will throughout the rest of the
paper use the term data cube to refer to a materialized
data cube used to speed up query processing.

Besides high storage consumption, the biggest dis-
advantage of the data cube is its inflexibility. Each
data cube implies a fixed number of queries that can
be answered with it. As soon as for example an ad-
ditional selection condition occurs in the query, the
data cube might not be applicable any more. Further-
more, for queries not foreseen by the data cube de-
signer, the data cube is useless. This argument applies
also to alternative structures like the one presented
in [12]. This inflexibility—together with the extrordi-
nary space consumption—maybe the reason why, to
the knowledge of the author, data cubes have never
been applied to the standard data warehouse bench-
mark TPC-D [19]. (cf. Section 2.4 for space require-
ments of a data cube applied to TPC-D data) Our goal
was to design an index structure that allows for effi-
cient support of complex queries against high volumes
of data as exemplified by the TPC-D benchmark.

The main problem encountered is that some queries
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INDEX SCAN

The DBMS picks an index to find the tuples that

the query needs.

Which index to use depends on:

— What attributes the index contains
— What attributes the query references
— The attribute's value domains

— Predicate composition

— Whether the index has unique or non-unique keys




INDEX SCAN
SELECT * FROM students
Suppose that we have a single table WHERE age < 30
with 100 tuples and two indexes: AND dept = 'CS'
—> Index #1: age AND country = 'US'
— Index #2: dept
Scenario #1 Scenario #2

There are 99 people There are 99 people in

under the age of 30 but the CS department but

only 2 people in the CS only 2 people under the

department. age of 30.

£2CMU-DB
15-445/645 (Spri

ng 2024)



MULTI-INDEX SCAN

[f there are multiple indexes that the DBMS can use for a query:
— Compute sets of Record IDs using each matching index.

— Combine these sets based on the query’s predicates (union vs. intersect).
— Retrieve the records and apply any remaining predicates.

Examples:
— DB2 Multi-Index Scan

— PostgreSQL Bitmap Scan
— MySQL Index Merge
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https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html

MULTI-INDEX SCAN

With an index on age and an index on SELECT * FROM students
WHERE age < 30

dept: AND dept = 'CS'

— We can retrieve the Record IDs satisfying AND country = 'US'

age<30 using the first,

— Then retrieve the Record IDs satisfying
dept="CS' using the second,

— Take their intersection

— Retrieve records and check country="'US".
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L
MULTI-INDEX SCAN

Set intersection can be done efficiently SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

with bitmaps or hash tables.

AN AN

age<30 dept='CS'
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MULTI-INDEX SCAN

Set intersection can be done efficiently
with bitmaps or hash tables.

AN AN

age<30 dept="CS'

record ids record ids

Sfetch records country="'US'

£CMU-DB
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SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'




MODIFICATION QUERIES

Operators that modify the database (INSERT,
UPDATE, DELETE) are responsible for modifying
the target table and its indexes.

— Constraint checks can either happen immediately inside
of operator or deferred until later in query/transaction.

The output of these operators can either be
Record Ids or tuple data (i.e., RETURNING).
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MODIFICATION QUERIES

UPDATE/DELETE:
— Child operators pass Record IDs for target tuples.

— Must keep track of previously seen tuples.

INSERT:

— Choice #1: Materialize tuples inside of the operator.

— Choice #2: Operator inserts any tuple passed in from
child operators.
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UPDATE QUERY PROBLEM

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)

updateTuple(t.salary = t.salary + 100)

CREATE INDEX idx_salary
ON people (salary);

insertIntoIndex(idx_salary, t.salary, t)
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for t in Index,.,pe:
if t.salary < 1100:
emit(t)

UPDATE people

SET salary = salary + 100

WHERE salary < 1100

Index(people.salary)

LIt

*

(999, Andy)




UPDATE QUERY PROBLEM

for t in child.Next(): (999, Andy)
removeFromIndex(idx_salalN, t.salary, t)
updateTuple(t.salary = t.sNary + 100)

insertIntoIndex(idx_salary, %.salary, t)

CREATE INDEX idx_salary
ON people (salary);
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/

for t in Index,.,pe:
if t.salary < 119#%
emit(t)

UPDATE people

SET salary = salary + 100

WHERE salary < 1100

Index(people.salary)

LIt

*




UPDATE QUERY PROBLEM

for t in child.Next(): (999, Andy)
removeFromIndex(idx_salary, t.salary, t)=

updateTuple(t.salary = t.salary + 100)

CREATE INDEX idx_salary
ON people (salary);

insertIntoIndex(idx_salary, t.salary, t)
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for t in Index,.,pe:
if t.salary < 1100:
emit(t)

UPDATE people

SET salary = salary + 100

WHERE salary < 1100

Index(people.salary)

LIt

*




UPDATE QUERY PROBLEM

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)

updateTuple(t.salary = t.salary + 100)

CREATE INDEX idx_salary
ON people (salary);

(1099, Andy)

insertIntoIndex(idx_salary, t.salary, t) =
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for t in Index,.,pe:
if t.salary < 1100:
emit(t)

UPDATE people

SET salary = salary + 100

WHERE salary < 1100

\\\“*Index(people.salary)

LIt

*




UPDATE QUERY PROBLEM

for t in child.Next():
removeFromIndex(idx_salalN, t.salary, t)
updateTuple(t.salary = t.sNary + 100)
insertIntoIndex(idx_salary, %.salary, t)

CREATE INDEX idx_salary
ON people (salary);
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for t in Index,.,pe:
if t.salary < 119#%
emit(t)

UPDATE people

SET salary = salary + 100

WHERE salary < 1100

Index(people.salary)

LLIJtIt]

*

(1099,Andy)




UPDATE QUERY PROBLEM

for t in child.Next(): (1099, Andy)
removeFromIndex(idx_salalN, t.salary, t)
updateTuple(t.salary = t.sNary + 100)

insertIntoIndex(idx_salary, %.salary, t)

CREATE INDEX idx_salary
ON people (salary);
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/

for t in Index,.,pe:
if t.salary < 119#%
emit(t)

UPDATE people

SET salary = salary + 100

WHERE salary < 1100

Index(people.salary)

LLIJtIt]

*




UPDATE QUERY PROBLEM

for t in child.Next():

(
removeFromIndex(idx_salalN, t.salary, t
updateTuple(t.salary = t.sNary + 100)
insertIntoIndex(idx_salary, %.salary, t)

CREATE INDEX idx_salary
ON people (salary);

1199, Andy)
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/

for t in Index,.qpe:
if t.salary < 119#%
emit(t)

UPDATE people

SET salary = salary + 100

WHERE salary < 1100

Index(people.salary)

LLIJtIt]

*




HALLOWEEN PROBLEM

Anomaly where an update operation changes the
physical location of a tuple, which causes a scan
operator to visit the tuple multiple times.

— Can occur on clustered tables or index scans.

First discovered by IBM researchers while

working on System R on Halloween day in 1976.

Solution: Track modified record ids per query.
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https://en.wikipedia.org/wiki/Halloween_Problem

EXPRESSION EVALUATION
The DBMS represents a WHERE clause SELECT R.id, S.cdate

as an expression tree. FROM R JOIN S
‘ ON R.id = S.id

WHERE S.value > 100

The nodes in the tree represent

different expression types: AND

— Comparisons (=, <, >, 1=)
— Conjunction (AND), Disjunction (OR) /'/ \
= >

— Arithmetic Operators (+, =, *, /, %)

— Constant Values /

— Tuple Attribute References

\

Attribute(R.id)| | Attribute(S.id) | | Attribute(value) | | Constant(100)
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EXPRESSION EVALUATION

Evaluating predicates in this manner is slow.
— The DBMS traverses the tree and for each node
that it visits, it must figure out what the operator / \
needs to do. Attribute(s.val) Constant(1)

Consider this predicate: ‘
WHERE S.val=1

bool check(val) {
return (val == 1);

A better approach is to just evaluate the )

expression directly. gcc, Clang, LLVM, ..

— Think JIT compilation
Q Machine Code
£CMU-DB
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EXPRESSION EVALUATION

PREPARE xxx AS Execution Context
SELECT * FROM S
WHERE [S.val = $1 +9 e o € e e T val)

EXECUTE xxx(991)

»
— =

Attribute(S.val)

Parameter($1) Constant(9)
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EXPRESSION EVALUATION

PREPARE xxx AS Execution Context
SELECT * FROM S
WHERE |S.val = $1 +9 e o € e e e e val)

EXECUTE xxx(991)

— =

» Attribute(S.val) +

1000 / ‘\

Parameter($1) Constant(9)
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EXPRESSION EVALUATION

PREPARE xxx AS Execution Context
SELECT * FROM S
WHERE |S.val = $1 +9 e o € e e T val)

EXECUTE xxx(991)

—

Attribute(S.val) +

1000 /./ ‘\

Parameter($1) « Constant(9)
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EXPRESSION EVALUATION

PREPARE xxx AS Execution Context
SELECT * FROM S
WHERE |S.val = $1 +9 e o € e e T val)

EXECUTE xxx(991)

—

Attribute(S.val) +
1000 /./ \\
Parameter($1) Constant(9) «
991 9
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EXPRESSION EVALUATION

PREPARE xxx AS Execution Context
SELECT * FROM S
WHERE [S.val = $1 +9 e o € e e T val)

EXECUTE xxx(991)

— =

Attribute(S.val) + «
1000 /_/ 1@00‘\
Parameter($1) Constant(9)
991 9
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EXPRESSION EVALUATION

PREPARE xxx AS Execution Context
SELECT * FROM S
WHERE [S.val = $1 +9 e o € e e T val)

EXECUTE xxx(991)

"
’,—————’/ true \*—\\

Attribute(S.val)

1000 /_/ 1@00‘\

Parameter($1) Constant(9)
991 9
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CONCLUSION

The same query plan can be executed in multiple
different ways.

(Most) DBMSs will want to use index scans as
much as possible.

Expression trees are flexible but slow.

JIT compilation can (sometimes) speed them up.
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NEXT CLASS

Parallel Query Execution
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