
Intro to Database
Systems (15-445/645)

SPRING 2024 Prof. Jignesh Patel

Lecture #14

Query
Execution
Part 2

15-445/645 (Spring 2024)

A D M I N I S T R I V I A

Project #2 is due Wed Mar 12, 2024 @ 11:59pm
 Fri Mar 15, 2024 @ 11:59pm
 Special OH Thu Mar 14, 2024, 3-5pm GHC 5207

Project #3 is due Sun April 7, 2024 @ 11:59pm

Mid-Term

→ Grades have been posted to Canvas
→ See me during OH for exam viewing
→ You can post a regrade request on Gradescope

2

15-445/645 (Spring 2024)

Q U E R Y E X E C U T I O N

In the last class, we discussed
composing operators into a plan to
execute an arbitrary query.

We assumed that queries execute with
a single worker (e.g., a thread).

We will now discuss how to execute
queries using multiple workers.

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

3

15-445/645 (Spring 2024)

W H Y C A R E A B O U T PA R A L L E L E X E C U T I O N ?

Need to use the (parallel) hardware well
→ Higher Throughput
→ Lower Latency (especially important for human-in-the-

loop scenarios)

Potentially lower total cost of ownership (TCO)
→ Fewer machines means less parts / physical footprint /

energy consumption.

4

15-445/645 (Spring 2024)

PA R A L L E L / D I S T R I B U T E D

The database is spread across multiple resources to
→ Deal with large data sets that don’t fit on a single machine/node
→ Higher performance
→ Redundancy/Fault-tolerance

Appears as a single logical database instance to the
application, regardless of physical organization.
→ SQL query for a single-resource DBMS should generate the same

result on a parallel or distributed DBMS.

5

15-445/645 (Spring 2024)

PA R A L L E L V S . D I S T R I B U T E D

Parallel DBMSs

→ Resources are physically close to each other.
→ Resources communicate over high-speed interconnect.
→ Communication is assumed to be cheap and reliable.

Distributed DBMSs

→ Resources can be far from each other.
→ Resources communicate using slow(er) interconnect.
→ Communication costs and problems cannot be ignored.

6

15-445/645 (Spring 2024)

TO DAY ’ S AG E N DA

Process Models

Execution Parallelism

I/O Parallelism

7

15-445/645 (Spring 2024)

P RO C E S S M O D E L

A DBMS’s process model defines how the system is
architected to support concurrent requests / queries.

A worker is the DBMS component responsible for

executing tasks on behalf of the client and returning the
results.

8

15-445/645 (Spring 2024)

P RO C E S S M O D E L

Approach #1: Process per DBMS Worker

Approach #2: Thread per DBMS Worker

Approach #3: Embedded DBMS

9

15-445/645 (Spring 2024)

P RO C E S S P E R W O R K E R

Each worker is a separate OS process.
→ Relies on the OS dispatcher.
→ Use shared-memory for global data structures.
→ A process crash does not take down the entire system.
→ Examples: IBM DB2, Postgres, Oracle

Application Dispatcher Worker Processes

Connect

SQL Commands

10

15-445/645 (Spring 2024)

T H R E A D P E R W O R K E R

Single process with multiple worker threads.
→ DBMS (mostly) manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: MSSQL, MySQL, DB2, Oracle (2014)

 Almost every DBMS created in the last 20 years!

Application Dispatcher Worker Threads

Connect

SQL Commands

11

https://docs.oracle.com/database/121/CNCPT/process.htm

15-445/645 (Spring 2024)

S C H E D U L I N G

For each query plan, the DBMS decides where, when,
and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS nearly always knows more than the OS.

12

15-445/645 (Spring 2024)

S Q L S E R V E R – S Q LO S

SQLOS is a user-level OS layer that runs inside the
DBMS and manages provisioned hardware resources.
→ Determines which tasks are scheduled onto which threads.
→ It also manages I/O scheduling and higher-level concepts like

logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

13

15-445/645 (Spring 2024)

S Q L S E R V E R – S Q LO S

SQLOS is a user-level OS layer that runs inside the
DBMS and manages provisioned hardware resources.
→ Determines which tasks are scheduled onto which threads.
→ It also manages I/O scheduling and higher-level concepts like

logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

13

15-445/645 (Spring 2024)

S Q L S E R V E R – S Q LO S

SQLOS is a user-level OS layer that runs inside the
DBMS and manages provisioned hardware resources.
→ Determines which tasks are scheduled onto which threads.
→ It also manages I/O scheduling and higher-level concepts like

logical database locks.

Non-preemptive thread scheduling through
instrumented DBMS code.

13

15-445/645 (Spring 2024)

S Q L S E R V E R – S Q LO S

SQLOS quantum is 4 ms, but the
scheduler cannot enforce that.

DBMS developers must add
explicit yield calls in various
locations in the source code.

SELECT * FROM R WHERE R.val = ?

for t in R:
 if eval(predicate, tuple, params):
 emit(tuple)

Approximate Plan

last = now()
for tuple in R:
 if now() – last > 4ms:
 yield
 last = now()
 if eval(predicate, tuple, params):
 emit(tuple)

16

More on a different/modern way to do query/operator
scheduling today (bonus material).

15-445/645 (Spring 2024)

E M B E D D E D D B M S

DBMS runs inside the same address space as the
application. Application is (primarily) responsible for
threads and scheduling.

The application may support outside connections.
→ Examples: BerkeleyDB, SQLite, RocksDB, LevelDB

Application

17

15-445/645 (Spring 2024)

P RO C E S S M O D E L S

Advantages of a multi-threaded architecture:
→ Less overhead per context switch.
→ Do not have to manage shared memory.

The thread per worker model does not mean that the
DBMS supports intra-query parallelism.

DBMS from the last 15 years use native OS threads
unless they are Redis or Postgres forks.

18

15-445/645 (Spring 2024)

I N T E R - V S . I N T R A- Q U E R Y PA R A L L E L I S M

Inter-Query: Execute multiple disparate
queries simultaneously.
→ Increases throughput & reduces latency.

Intra-Query: Execute the operations of a

single query in parallel.
→ Decreases latency for long-running queries, especially

for OLAP queries.

19

15-445/645 (Spring 2024)

I N T E R - Q U E R Y PA R A L L E L I S M

Improve overall performance by allowing multiple queries to
execute simultaneously.

If queries are read-only, then this requires almost no explicit
coordination between the queries.
→ Buffer pool can handle most of the sharing if necessary.

If multiple queries are updating the database at the same time, then
this is hard to do correctly…

20

Lecture #16

15-445/645 (Spring 2024)

I N T R A- Q U E R Y PA R A L L E L I S M

Improve the performance of a single query by
executing its operators in parallel.

Think of the organization of operators in terms of
a producer/consumer paradigm.

There are parallel versions of every operator.
→ Can either have multiple threads access centralized data

structures or use partitioning to divide work up.

21

15-445/645 (Spring 2024)

PA R A L L E L G R AC E H A S H J O I N

Use a separate worker to perform the join for each level of buckets
for R and S after partitioning.

h1
⋮

HTR

h1
⋮

HTS
0
1
2

max

R(id,name) S(id,value,cdate)

22

15-445/645 (Spring 2024)

PA R A L L E L G R AC E H A S H J O I N

Use a separate worker to perform the join for each level of buckets
for R and S after partitioning.

h1
⋮

HTR

h1
⋮

HTS
0
1
2

max

R(id,name) S(id,value,cdate)
1

2

3

n

22

15-445/645 (Spring 2024)

I N T R A- Q U E R Y PA R A L L E L I S M

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy

24

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

Approach #1: Intra-Operator (Horizontal)

→ Decompose operators into independent fragments that

perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce/split results from multiple
children/parent operators.
→ Postgres calls this “gather”

25

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

SELECT * FROM A
 WHERE A.val > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

26

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

SELECT * FROM A
 WHERE A.val > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
a
g
e
s

Fragment

26

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

SELECT * FROM A
 WHERE A.val > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
a
g
e
s

Next

Next

26

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

SELECT * FROM A
 WHERE A.val > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
a
g
e
s

Next

Next

26

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

SELECT * FROM A
 WHERE A.val > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
a
g
e
s

Next

Next

26

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

SELECT * FROM A
 WHERE A.val > 99

A2A1 A3
1 2 3

s s s

A

svalue>99

Exchange

1 2 3 4 5

P
a
g
e
s

26

15-445/645 (Spring 2024)

E X C H A N G E O P E R ATO R

Exchange Type #1 – Gather

→ Combine the results from multiple workers
into a single output stream.

Exchange Type #2 – Distribute

→ Split a single input stream into multiple
output streams.

Exchange Type #3 – Repartition

→ Shuffle multiple input streams across multiple
output streams.

Source: Craig Freedman

Gather

Operator Operator Operator

Repartition

Operator Operator Operator

Operator Operator

Operator Operator Operator

Distribute

32

https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3
1 2 3A B

⨝
s

p

s

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3
1 2 3A B

⨝
s

p

s

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3
1 2 3A B

⨝
s

p

s s s s

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3
1 2 3A B

⨝
s

p

s s s s

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3
1 2 3A B

⨝
s

p

s s s s
p p p

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3

Build HT Build HT Build HT

1 2 3A B

⨝
s

p

s s s s
p p p

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s s s s
p p p

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s s s s

⨝

p p p

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s s s s
B1 B2 B3
1 2 3

⨝

p p p

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s s s s
B1 B2 B3
1 2 3

⨝

p p p

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s s s s
B1 B2 B3
1 2 3

s s s

⨝

p p p p p p

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s s s s
B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T R A- O P E R ATO R PA R A L L E L I S M

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s s s s
B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange
SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

33

15-445/645 (Spring 2024)

I N T E R - O P E R ATO R PA R A L L E L I S M

Approach #2: Inter-Operator (Vertical)

→ Operations are overlapped in order to pipeline data from one
stage to the next without materialization.

→ Workers execute operators from different segments of a
query plan at the same time.

→ More common in streaming systems (continuous queries)

Also called pipeline parallelism.

46

15-445/645 (Spring 2024)

I N T E R - O P E R ATO R PA R A L L E L I S M

1 ⨝ for r1 ∊ outer:
 for r2 ∊ inner:
 emit(r1⨝r2)

2 p for r ∊ incoming:
 emit (p(r))

A B

⨝
s

p

s

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

47

15-445/645 (Spring 2024)

B U S H Y PA R A L L E L I S M

Approach #3: Bushy Parallelism

→ Hybrid of intra- and inter-operator
parallelism where workers execute
multiple operators from different
segments of a query plan at the same time.

→ Still need exchange operators to combine
intermediate results from segments.

SELECT *
 FROM A JOIN B JOIN C JOIN D A

⨝
B

⨝
C D

⨝
Exchange Exchange

Exchange

⨝
3 4

1 2

48

15-445/645 (Spring 2024)

O B S E R VAT I O N

Using additional processes/threads to execute
queries in parallel won’t help if the disk is always
the main bottleneck.

It can sometimes make the DBMS’s performance
worse if a worker is accessing different segments
of the disk at the same time.

49

15-445/645 (Spring 2024)

I /O PA R A L L E L I S M

Split the DBMS across multiple storage devices to
improve disk bandwidth latency.

Many different options that have trade-offs:
→ Multiple Disks per Database
→ One Database per Disk
→ One Relation per Disk
→ Split Relation across Multiple Disks

Some DBMSs support this natively. Others
require admin to configure outside of DBMS.

50

15-445/645 (Spring 2024)

M U LT I - D I S K PA R A L L E L I S M

Data on the disk can get corrupted (bit rot),
or an entire disk can fail.

Get higher performance from a disk array.

Hardware-based: A hardware controller
manages multiple devices, e.g. RAID.

Software-based: Use erasure codes at the
file/object level. Faster and more flexible.

This is transparent to the DBMS.

51

15-445/645 (Spring 2024)

M U LT I - D I S K PA R A L L E L I S M

Data on the disk can get corrupted (bit rot),
or an entire disk can fail.

Get higher performance from a disk array.

Hardware-based: A hardware controller
manages multiple devices, e.g. RAID.

Software-based: Use erasure codes at the
file/object level. Faster and more flexible.

This is transparent to the DBMS.

51

Performance

CapacityDurability

15-445/645 (Spring 2024)

File of 6 pages (logical view):
page

 1
page

 2
page

 3
page

 4
page

 5
page

 6

M U LT I - D I S K PA R A L L E L I S M

Data on the disk can get corrupted (bit rot),
or an entire disk can fail.

Get higher performance from a disk array.

Hardware-based: A hardware controller
manages multiple devices, e.g. RAID.

Software-based: Use erasure codes at the
file/object level. Faster and more flexible.

This is transparent to the DBMS.

51

Performance

CapacityDurability

Physical layout of pages across disks

page
 4

page
 1

page
 5

page
 2

page
 6

page
 3

Striping (RAID 0)

15-445/645 (Spring 2024)

File of 6 pages (logical view):
page

 1
page

 2
page

 3
page

 4
page

 5
page

 6

M U LT I - D I S K PA R A L L E L I S M

Data on the disk can get corrupted (bit rot),
or an entire disk can fail.

Get higher performance from a disk array.

Hardware-based: A hardware controller
manages multiple devices, e.g. RAID.

Software-based: Use erasure codes at the
file/object level. Faster and more flexible.

This is transparent to the DBMS.

51

Performance

CapacityDurability

Physical layout of pages across disks

page
 2

page
 1

page
 2

page
 1

page
 2

page
 1

Mirroring (RAID 1)

15-445/645 (Spring 2024)

File of 6 pages (logical view):
page

 1
page

 2
page

 3
page

 4
page

 5
page

 6

M U LT I - D I S K PA R A L L E L I S M

Data on the disk can get corrupted (bit rot),
or an entire disk can fail.

Get higher performance from a disk array.

Hardware-based: A hardware controller
manages multiple devices, e.g. RAID.

Software-based: Use erasure codes at the
file/object level. Faster and more flexible.

This is transparent to the DBMS.

51

Performance

CapacityDurability

Physical layout of pages across disks

page
 2

page
 1

page
 2

page
 1

page
 2

page
 1

Mirroring (RAID 1)

15-445/645 (Spring 2024)

DATA B A S E PA RT I T I O N I N G

Some DBMSs allow you to specify the disk location of
each individual database.
→ The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the
DBMS stores each database in a separate directory.
→ The DBMS recovery log file might still be shared if

transactions can update multiple databases.

56

15-445/645 (Spring 2024)

PA RT I T I O N I N G

Split a single logical table into disjoint physical segments that are
stored/managed separately.

Partitioning should (ideally) be transparent to the application.
→ The application should only access logical tables and not have to worry

about how things are physically stored.

We will cover this further when we talk about distributed databases.

57

15-445/645 (Spring 2024)

C O N C L U S I O N

Parallel execution is important, which is why
(almost) every major DBMS supports it.

However, it is hard to get right.
→ Coordination Overhead
→ Scheduling
→ Concurrency Issues
→ Resource Contention

58

15-445/645 (Spring 2024)

N E X T C L A S S

59

Query Optimization
→ Logical vs Physical Plans
→ Search Space of Plans
→ Cost Estimation of Plans

15-445/645 (Spring 2024)

S c h e d u l e r

So far, we have largely taken a data flow perspective of the query
processing model.

The control flow was implicit in the processing model. We can

make the control flow more explicit with a scheduler.

Query schedulers are often not discussed in database papers. We’ll
look at what was done in the Quickstep (academic) project. Based
on allowing frequent switches between data flow and control flow.

60
Bonus

15-445/645 (Spring 2024)

Clean Separation of Data Flow and Control Flow

⨝

σ σ

R S
SELECT * FROM R, S
WHERE R.b > 10
 AND S.c >100
 AND R.a= S.a

The “traditional” way The Quickstep way

61
Bo
nu
s

15-445/645 (Spring 2024)

Pool of
Worker
Threads

⨝

σ σ

R S
SELECT * FROM R, S
WHERE R.b > 10
 AND S.c >100
 AND R.a= S.a

r1 r2 s1 s2

s3 s4

Pending work orders
σ (r1)σ (r2)σ (s1). . .

Network

Buffer Pool
r1

r2

s1 s2

s3 s4
r’ s’

s’’

Buffer pool: Abstraction to manage “data blocks”/pages using LRU-2.

Data blocks = base data, intermediate results, QP data structures (Hash tables)
Variable length, but multiples of a base block size. Thus, hash tables can grow (via doubling in size)

Clean Separation of Data Flow and Control Flow

The Quickstep Scheduler
62

Bo
nu
s

15-445/645 (Spring 2024)

Pool of
Worker
Threads

⨝

σ σ

R S
SELECT * FROM R, S
WHERE R.b > 10
 AND S.c >100
 AND R.a= S.a

r1 r2 s1 s2

s3 s4

Pending work orders
Build Hash

(r’)
Probe Hash

(h’, s1)
Probe Hash

(h’, s2)

Network

Buffer Pool
s’

s’’

h’

+ Cleaner Abstraction
+ Dynamic Optimization
+ In-built query suspension
+ Better p9X
+ Manageability and Debug-ability

Advantages

r’

Clean Separation of Data Flow and Control Flow

The Quickstep Scheduler
63

Bo
nu
s

15-445/645 (Spring 2024)

2 4 6 8 10 12 14 16 18

Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
To

ta
lC

P
U

R
es

ou
rc

es

Q3 (Priority 10)
Q2 (Priority 1)
Q1 (Priority 1)

0.0 5.0 10.0 15.0 20.0
Time in seconds

0.0

0.2

0.4

0.6

0.8

1.0

C
PU

U
til

iz
at

io
n

Q4.3 (2)
Q4.2 (2)
Q4.1 (1)
Q3.4 (1)
Q3.3 (1)
Q3.2 (1)
Q3.1 (1)
Q2.3 (1)
Q2.2 (1)
Q2.1 (1)
Q1.3 (1)
Q1.2 (1)
Q1.1 (1)

Priority scheduling = Elastic behavior
64

Bo
nu
s

15-445/645 (Spring 2024)

[0] SelectOperator
Input stored relation [supplier]

Span: [0ms, 38ms] (6.15%)
Effective concurrency: 6.89

Completed

[1] BuildHashOperator
Span: [45ms, 80ms] (5.61%)
Effective concurrency: 1.12

Completed

[6] HashJoinOperator
probe side stored relation [lineorder]

Span: [111ms, 620ms] (81.96%)
Effective concurrency: 37.92

In progress

[7] HashJoinOperator
Not started

[2] SelectOperator
Input stored relation [customer]

Span: [0ms, 88ms] (14.32%)
Effective concurrency: 27.55

Completed

[3] BuildHashOperator
Span: [89ms, 96ms] (1.27%)
Effective concurrency: 10.58

Completed

[8] HashJoinOperator
Not started

[4] SelectOperator
Input stored relation [ddate]
Span: [78ms, 83ms] (0.87%)
Effective concurrency: 1.00

Completed

[5] BuildHashOperator
Span: [84ms, 84ms] (0.06%)
Effective concurrency: 1.00

Completed

[9] AggregationOperator
Not started

[10] FinalizeAggregationOperator
Not started

[11] DestroyAggregationStateOperator
Not started

[12] SortRunGenerationOperator
Not started

[13] SortMergeRunOperator
Not started

I n - b u i l t Q u e r y P r o g r e s s M o n i t o r i n g
65

Bo
nu
s

