
Intro to Database
Systems (15-445/645)

SPRING 2024 Prof. Jignesh Patel

Lecture #15

Query
Planning &
Optimization

15-445/645 (Spring 2024)

A D M I N I S T R I V I A

Project #3 is due Sun April 7, 2024 @ 11:59pm

Mid-Term

→ See me during OH for exam viewing

Final Exam

→ Thu May 2, 2024, @ 05:30pm-08:30pm

2

15-445/645 (Spring 2024)

50 + 50,000 + 1,000,000 writes
(write to temp file T1)
5 tuples per page in T1

1,000,000 + 2,000 writes
(FK join, 10K tuples in temp T2)

2,000 + 4 writes
(10K/500 = 20 emps per dept)

SELECT distinct ename
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

EMP DEPT

πename

σdname = ‘Toy’

×

σEMP.did = DEPT.did

3

4 reads, 1 write

Total: 2M I/Os

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered nonclustered nonclustered

clustered nonclustered

15-445/645 (Spring 2024)

SELECT distinct ename
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

4

Total: 54K I/Os

Page NL, write to temp T1
50 + 50,000 + 2000 writes

Read temp T1
2,000 reads +4 writes

Read temp T2
4 reads + 1 writes

EMP DEPT

πename

σdname = ‘Toy’

⋈EMP.did = DEPT.did

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered nonclustered nonclustered

clustered nonclustered

15-445/645 (Spring 2024)

SELECT distinct ename
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

5

Total: 7,159 I/Os

Sort-merge join (50 buffers)
3*(|Emp|+|Dept|)

= 3150 + 2000 writes

Read temp T1
2,000 reads +4 writes

Read temp T2
4 reads + 1 writes

EMP DEPT

πename

σdname = ‘Toy’

⋈EMP.did = DEPT.did

Total: 3,151 I/Os

w/ Materialization

w/ Pipelining

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered nonclustered nonclustered

clustered nonclustered

15-445/645 (Spring 2024)

DEPTEMP

SELECT distinct ename
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

6

Total: 37 I/Os

Access: Index (name)

3 reads + 1 write

Read temp T1, NL-IDX Join

1 + 3 (idx) + 20 (ptr chase) + 4 writes

Read temp T2
4 reads + 1 writes πename

σdname = ‘Toy’

EMPDEPT

⋈

Swap

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered nonclustered nonclustered

clustered nonclustered

15-445/645 (Spring 2024)

A n n o t a t e d R A Tr e e a . k . a . T h e P h y s i c a l P l a n

7

πename

σdname = ‘Toy’

EMP

DEPT

⋈EMP.did = DEPT.did

Access Path: Unclustered B-tree
Estimates: output cardinality = 1, …

NL-IDX using unclustered index on EMP.id
Estimates: output cardinality = 20, …

Access Path: File Scan
Estimates: output cardinality = 10K

Pipeline

Pipeline

Simple projection
Estimates: output cardinality = 20, …

To the scheduler
to run the query

15-445/645 (Spring 2024)

Q u e r y O p t i m i z a t i o n (Q O)

8

Entire search space very large,

as QO is NP-hard (w.r.t. # joins)

p2

p1

pi

pn

p3

Subspace that a
practical QO searches

1. Identify candidate equivalent trees
(logical). It is an NP-hard problem, so
the space is large.

2. For each candidate, find the execution
plan tree (physical). We need to
estimate the cost of each plan.

3. Choose the best overall (physical) plan.

Practically: Choose from a subset of all

possible plans.

15-445/645 (Spring 2024)

LO G I C A L V S . P H Y S I C A L P L A N S

The optimizer generates a mapping of a logical algebra
expression to the optimal equivalent physical algebra
expression.

Physical operators define a specific execution strategy
using an access path.
→ They can depend on the physical format of the data that they

process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.

9

15-445/645 (Spring 2024)

Q U E R Y O P T I M I Z AT I O N

Heuristics / Rules

→ Rewrite the query to remove (guessed) inefficiencies; e.g, always do
selections first, or push down projections as early as possible.

→ These techniques may need to examine catalog, but they do not need to
examine data.

Cost-based Search

→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick the one with the

lowest cost.

10

15-445/645 (Spring 2024)

P r e d i c a t e P u s h d o w n

11

DEPT EMP

πename

σdname = ‘Toy’

⋈
DEPT

πename

σdname = ‘Toy’
EMP

⋈

πename (σdname = ‘Toy’ (DEPT ⋈ EMP)) πename (EMP ⋈ σdname = ‘Toy’ (DEPT))rewrite

15-445/645 (Spring 2024)

R e p l a c e C a r t e s i a n P r o d u c t

12

EMP DEPT

×

σEMP.did = DEPT.did

EMP DEPT

⋈EMP.did = DEPT.did

… (σDEPT.did = EMP.did (DEPT X EMP)) … (EMP ⋈did DEPT)rewrite

15-445/645 (Spring 2024)

P r o j e c t i o n P u s h d o w n

13

πEMP.ename (… ⋈did EMP) rewrite

πename

EMP

⋈did

πename

⋈did

EMP

πename, did

πEMP.ename (… ⋈did (πename, did EMP))

15-445/645 (Spring 2024)

4/3/
24

E q u i v a l e n c e
sP1 (sP2(R)) ≡ sP2 (sP1(R)) (s commutativity)

sP1⋀P2 … ⋀Pn (R) ≡ sP1(sP2(… sPn(R))) (cascading s)

∏a1(R) ≡ ∏a1(∏a2(…∏ak (R)…)), ai ⊆ ai+1 (cascading ∏)

R ⋈ S ≡ S ⋈ R (join commutativity)

R ⋈ (S ⋈ T) ≡ (R ⋈ S) ⋈ T (join associativity)

sP (R X S) ≡ (R ⋈P S), if P is a join predicate

sP (R X S) ≡ sP1 (sP2(R) ⋈P4 sP3(S)) , where P = p1 ∧ p2 ∧ p3 ∧ p4

∏A1,A2,…An(sP (R)) ≡ ∏A1,A2,…An(sP (∏A1,…An, B1,… BMR)), where B1 … BM are columns in P

…

15-445/645 (Spring 2024)

A RC H I T E C T U R E OV E R V I E W

Parser

System

Catalog

Cost

Model

Binder

Optimizer

SQL Query1

Abstract

Syntax

Tree

2 Logical

Plan

3

Physical

Plan

4

Application

Name→Internal ID

Schema Info

Estimates

15

15-445/645 (Spring 2024)

Q U E R Y O P T I M I Z AT I O N

Heuristics / Rules

→ Rewrite the query to remove inefficient patterns.
→ These techniques may need to examine catalog, but they do

not need to examine data.

Cost-based Search

→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick

the one with the lowest cost.

16

Examples: predicate pushdown, replace
cartesian product, projection pushdown …

15-445/645 (Spring 2024)

C O S T- B A S E D Q U E R Y O P T I M I Z AT I O N
Let’s start with a certain style of QO: cost-based, bottom-up QO
(the classic System-R optimizer approach)

Approach: Enumerate different plans for the query and estimate
their costs.
→ Single relation.
→ Multiple relations.
→ Nested sub-queries.

It chooses the best plan it has seen for the query after exhausting all
plans or some timeout.

17

15-445/645 (Spring 2024)

S I N G L E - R E L AT I O N Q U E R Y P L A N N I N G

Pick the best access method.
→ Sequential Scan
→ Binary Search (clustered indexes)
→ Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

18

15-445/645 (Spring 2024)

S Y S T E M R O P T I M I Z E R

Break the query into blocks and generate the
logical operators for each block.

For each logical operator, generate a set of
physical operators that implement it.
→ All combinations of join algorithms and access paths

Then, iteratively construct a “left-deep” join
tree that minimizes the estimated amount of
work to execute the plan.

Selinger

19

BA

C

D

outer inner

A left-deep tree

BA DC

A bushy tree

System-R optimizer does
NOT consider this “shape”

15-445/645 (Spring 2024)

S Y S T E M R O P T I M I Z E R

Step #1: Choose the best access paths
to each table

Step #3: Determine the join ordering
with the lowest cost

ARTIST: Sequential Scan
APPEARS: Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM ⨝ ARTIST
ALBUM ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST ⨝ ALBUM
ARTIST × ALBUM ⨝ APPEARS
ALBUM × ARTIST ⨝ APPEARS
⋮ ⋮ ⋮

Step #2: Enumerate all possible join
orderings for tables

SELECT ARTIST.NAME
 FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID
 AND APPEARS.ALBUM_ID=ALBUM.ID
 AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

20

15-445/645 (Spring 2024)

S Y S T E M R O P T I M I Z E R

ARTIST ALBUM APPEARS

ARTIST ⨝ APPEARS ⨝ ALBUM

21

15-445/645 (Spring 2024)

S Y S T E M R O P T I M I Z E R

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) SM_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A2,A3) HASH_JOIN(A3,A2) SM_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

21

15-445/645 (Spring 2024)

S Y S T E M R O P T I M I Z E R

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

21

15-445/645 (Spring 2024)

S Y S T E M R O P T I M I Z E R

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) SM_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) SM_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •SM_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ARTIST_ID=ARTIST.ID

APPEARS.ARTIST_ID=ARTIST.ID

21

15-445/645 (Spring 2024)

S Y S T E M R O P T I M I Z E R

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ARTIST_ID=ARTIST.ID

APPEARS.ARTIST_ID=ARTIST.ID

21

15-445/645 (Spring 2024)

S Y S T E M R O P T I M I Z E R

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

21

15-445/645 (Spring 2024)

S Y S T E M R O P T I M I Z E R

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

21

The query has ORDER BY on ARTIST.ID
but the plans do not carry an explicit
notion of the sorting properties.

15-445/645 (Spring 2024)

28

Πyear, artist_name, album_name

σgenre = ‘Blues’

Appears

Album

⋈album_id

Unclustered B-tree
output cardinality = …

Hash Join …
output cardinality = …

File Scan
output cardinality = 10K

Artists

⋈artist_id

Hash Join …
Estimates: output cardinality = …

File Scan
output cardinality = 10K

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

15-445/645 (Spring 2024)

M U LT I - R E L AT I O N Q U E R Y P L A N N I N G

Choice #1: Bottom-up Optimization

→ Start with nothing and then build up the plan to get
to the outcome that you want.

Choice #2: Top-down Optimization

→ Start with the outcome that you want, and then
work down the tree to find the optimal plan that
gets you to that goal.

29

We just saw an
example of this,

the System R
approach

15-445/645 (Spring 2024)

B OT TO M - U P O P T I M I Z AT I O N

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL,
Postgres, most open-source DBMSs.

30

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N

Start with a logical plan of what we want the query
to be. Perform a branch-and-bound search to
traverse the plan tree by converting logical operators
into physical operators.
→ Keep track of global best plan during search.
→ Treat physical properties of data as first-class entities

during planning.

Example: MSSQL, Greenplum, CockroachDB

Graefe

31

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

32

15-445/645 (Spring 2024)

TO P - D O W N O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical:

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have
certain properties.

ARTIST ALBUM APPEARS

HASH_JOIN(A1⨝A2,A3)

QUICKSORT(A1.ID)

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

32

15-445/645 (Spring 2024)

L i f e s o f a r … s i n g l e b l o c k Q O

Often, we get nested queries.
→ We could optimize each block using the methods we have discussed.
→ However, this may be inefficient since we optimize each block

separately without a global approach.

What if we could flatten a nested query into a single block
and optimize it?
→ Then, apply single-block query optimization methods.
→ Even if one can’t flatten to a single block, flattening to fewer blocks

is still beneficial.

50

15-445/645 (Spring 2024)

N E S T E D S U B - Q U E R I E S

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return
a single value or set of values.

Two Approaches:
→ Rewrite to de-correlate and/or flatten them.
→ Decompose nested query and store results in a temporary

table.

51

15-445/645 (Spring 2024)

N E S T E D S U B - Q U E R I E S : R E W R I T E

SELECT name FROM sailors AS S
 WHERE EXISTS (
 SELECT * FROM reserves AS R
 WHERE S.sid = R.sid
 AND R.day = '2022-10-25'
)

SELECT name
 FROM sailors AS S, reserves AS R
 WHERE S.sid = R.sid
 AND R.day = '2022-10-25'

52

15-445/645 (Spring 2024)

D E C O M P O S I N G Q U E R I E S

For harder queries, the optimizer breaks up
queries into blocks and then concentrates on
one block at a time.

Sub-queries are written to temporary tables
that are discarded after the query finishes.

53

15-445/645 (Spring 2024)

D E C O M P O S I N G Q U E R I E S

SELECT S.sid, MIN(R.day)
 FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
 AND R.bid = B.bid
 AND B.color = 'red'
 AND S.rating = (SELECT MAX(S2.rating)
 FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Nested Block

54

15-445/645 (Spring 2024)

D E C O M P O S I N G Q U E R I E S

SELECT S.sid, MIN(R.day)
 FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
 AND R.bid = B.bid
 AND B.color = 'red'
 AND S.rating = (SELECT MAX(S2.rating)
 FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Nested Block

SELECT MAX(rating) FROM sailors

54

15-445/645 (Spring 2024)

D E C O M P O S I N G Q U E R I E S

SELECT S.sid, MIN(R.day)
 FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
 AND R.bid = B.bid
 AND B.color = 'red'
 AND S.rating = (SELECT MAX(S2.rating)
 FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

SELECT MAX(rating) FROM sailors

###

54

15-445/645 (Spring 2024)

D E C O M P O S I N G Q U E R I E S

SELECT S.sid, MIN(R.day)
 FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
 AND R.bid = B.bid
 AND B.color = 'red'
 AND S.rating = (SELECT MAX(S2.rating)
 FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Outer Block

SELECT MAX(rating) FROM sailors

###

54

Inner Block

15-445/645 (Spring 2024)

E X P R E S S I O N R E W R I T I N G

An optimizer transforms a query’s expressions
(e.g., WHERE/ON clause predicates) into the
minimal set of expressions.

Implemented using if/then/else clauses or a
pattern-matching rule engine.
→ Search for expressions that match a pattern.
→ When a match is found, rewrite the expression.
→ Halt if there are no more rules that match.

58

15-445/645 (Spring 2024)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;

59

15-445/645 (Spring 2024)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;

59

15-445/645 (Spring 2024)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE NOW() IS NULL;

SELECT * FROM A WHERE false;

59

15-445/645 (Spring 2024)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

59

15-445/645 (Spring 2024)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;

SELECT * FROM A WHERE RANDOM() IS NULL;

SELECT * FROM A WHERE false;

59

15-445/645 (Spring 2024)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
 WHERE val BETWEEN 1 AND 100
 OR val BETWEEN 50 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE RANDOM() IS NULL;

SELECT * FROM A WHERE false;

59

15-445/645 (Spring 2024)

E X P R E S S I O N R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
 WHERE val BETWEEN 1 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE RANDOM() IS NULL;

SELECT * FROM A WHERE false;

59

15-445/645 (Spring 2024)

H o w d o w e c a l c u l a t e t h e c o s t o f t h e p l a n s ?

We have formulas for the operator
algorithms (e.g. the cost formulaes
for hash join, sort merge join, …),
but we also need to estimate the
size of the output that an operator
produces.

66

B

A σpredicate

⋈
?

?

15-445/645 (Spring 2024)

C O S T E S T I M AT I O N

The DBMS uses a cost model to predict the
behavior of a query plan given a database state.
→ This is an internal cost that allows the DBMS to

compare one plan with another.

It is too expensive to run every possible plan to
determine this information, so the DBMS need a
way to derive this information.

67

15-445/645 (Spring 2024)

C O S T M O D E L C O M P O N E N T S

Choice #1: Physical Costs

→ Predict CPU cycles, I/O, cache misses, RAM consumption,
network messages…

→ Depends heavily on hardware.

Choice #2: Logical Costs

→ Estimate output size per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.

68

15-445/645 (Spring 2024)

P O S TG R E S C O S T M O D E L

Uses a combination of CPU and I/O costs that are weighted by
“magic” constant factors.

Default settings are obviously for a disk-resident database without
a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

69

15-445/645 (Spring 2024)

P O S TG R E S C O S T M O D E L

Uses a combination of CPU and I/O costs that are weighted by
“magic” constant factors.

Default settings are obviously for a disk-resident database without
a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

69

15-445/645 (Spring 2024)

P O S TG R E S C O S T M O D E L

Uses a combination of CPU and I/O costs that are weighted by
“magic” constant factors.

Default settings are obviously for a disk-resident database without
a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.

69

15-445/645 (Spring 2024)

S TAT I S T I C S

The DBMS stores internal statistics about tables,
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:
→ Postgres/SQLite: ANALYZE
→ Oracle/MySQL: ANALYZE TABLE
→ SQL Server: UPDATE STATISTICS
→ DB2: RUNSTATS

72

15-445/645 (Spring 2024)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
age

S E L E C T I O N C A R D I N A L I T Y

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.
Equality Predicate: A=constant
→ sel(A=constant) = #occurences/|R|
→ Example: sel(age=9) =

SELECT * FROM people
 WHERE age = 9

Distinct values

of attribute

of occurrences

73

15-445/645 (Spring 2024)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
age

S E L E C T I O N C A R D I N A L I T Y

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.
Equality Predicate: A=constant
→ sel(A=constant) = #occurences/|R|
→ Example: sel(age=9) =

SELECT * FROM people
 WHERE age = 9

Distinct values

of attribute

of occurrences

73

15-445/645 (Spring 2024)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
age

S E L E C T I O N C A R D I N A L I T Y

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.
Equality Predicate: A=constant
→ sel(A=constant) = #occurences/|R|
→ Example: sel(age=9) =

SC(age=9)=4

SELECT * FROM people
 WHERE age = 9

Distinct values

of attribute

of occurrences

73

15-445/645 (Spring 2024)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
age

S E L E C T I O N C A R D I N A L I T Y

The selectivity (sel) of a predicate P
is the fraction of tuples that qualify.
Equality Predicate: A=constant
→ sel(A=constant) = #occurences/|R|
→ Example: sel(age=9) =

SC(age=9)=4

SELECT * FROM people
 WHERE age = 9

4/45

Distinct values

of attribute

of occurrences

73

15-445/645 (Spring 2024)

S E L E C T I O N C A R D I N A L I T Y

Assumption #1: Uniform Data

→ The distribution of values (except for the heavy hitters) is the same.

Assumption #2: Independent Predicates

→ The predicates on attributes are independent

Assumption #3: Inclusion Principle

→ The domain of join keys overlap such that each key in the inner
relation will also exist in the outer table.

77

15-445/645 (Spring 2024)

C O R R E L AT E D AT T R I B U T E S

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

 And the following query:
→ (make=“Honda” AND model=“Accord”)

With the independence and uniformity assumptions, the
selectivity is:
→ 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real selectivity is
1/100 = 0.01

78

Source: Guy Lohman

http://wp.sigmod.org/?p=1075

15-445/645 (Spring 2024)

S TAT I S T I C S

Choice #1: Histograms

→ Maintain an occurrence count per value (or range of values)
in a column.

Choice #2: Sketches

→ Probabilistic data structure that gives an approximate count
for a given value.

Choice #3: Sampling

→ DBMS maintains a small subset of each table that it then
uses to evaluate expressions to compute selectivity.

79

15-445/645 (Spring 2024)

H I S TO G R A M S
Our formulas are nice, but we assume that data
values are uniformly distributed.

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram

15 Keys × 32-bits = 60 bytes

Distinct values of attribute

of occurrences

80

15-445/645 (Spring 2024)

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Non-Uniform Approximation

E Q U I -W I DT H H I S TO G R A M
Maintain counts for a group of values instead of
each unique key. All buckets have the same width
(i.e., same # of value).

Bucket #1
Count=8

Bucket #2
Count=4

Bucket #3
Count=15

Bucket #4
Count=3

Bucket #5
Count=14

Bucket Ranges

81

15-445/645 (Spring 2024)

E Q U I - D E P T H H I S TO G R A M S
Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram (Quantiles)

82

15-445/645 (Spring 2024)

E Q U I - D E P T H H I S TO G R A M S
Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

0

5

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram (Quantiles)

Bucket #1
Count=12

Bucket #2
Count=12

Bucket #3
Count=9

Bucket #4
Count=12

82

15-445/645 (Spring 2024)

E Q U I - D E P T H H I S TO G R A M S
Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

0

5

10

15

1-5 6-8 9-13 14-15

Histogram (Quantiles)

82

15-445/645 (Spring 2024)

S K E TC H E S

Probabilistic data structures that generate
approximate statistics about a data set.

Cost-model can replace histograms with sketches
to improve its selectivity estimate accuracy.

Most common examples:
→ Count-Min Sketch (1988): Approximate frequency

count of elements in a set.
→ HyperLogLog (2007): Approximate the number of

distinct elements in a set.

85

https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://en.wikipedia.org/wiki/HyperLogLog

15-445/645 (Spring 2024)

S A M P L I N G

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying
tables changes significantly.

⋮
1 billion tuples

1/3sel(age>50) =

SELECT AVG(age)
 FROM people
 WHERE age > 50

id name age status
1001 Obama 61 Rested
1002 Kanye 45 Weird
1003 Tupac 25 Dead
1004 Bieber 28 Crunk
1005 Andy 41 Illin
1006 TigerKing 59 Jailed1001 Obama 61 Rested

1003 Tupac 25 Dead
1005 Andy 41 Illin

Table Sample

86

15-445/645 (Spring 2024)

C O N C L U S I O N

• Query optimization is critical for a database system.

• SQL -> logical plan -> physical plan.

• Flatten queries before going to the optimization part.
Expression handling is also important.

• QO enumeration can be bottom-up or top-down.

• Need to cost each plan, so need cost-estimation methods.

87

15-445/645 (Spring 2024)

E s s e n t i a l Q u e r y O p t i m i z a t i o n p a p e r s

88

Surajit Chaudhuri: An Overview of
Query Optimization in Relational
Systems. PODS 1998: 34-43

Goetz Graefe, William J.
McKenna: The Volcano Optimizer
Generator: Extensibility and

Efficient Search. ICDE 1993: 209-
218

Patricia G. Selinger, Morton M.
Astrahan, Donald D. Chamberlin,
Raymond A. Lorie, Thomas G.

Price: Access Path Selection in a
Relational Database
Management System. SIGMOD
Conference 1979: 23-34

Umeshwar Dayal: Of Nests and
Trees: A Unified Approach to
Processing Queries That Contain

Nested Subqueries, Aggregates,
and Quantifiers. VLDB 1987: 197-
208

Bonus

15-445/645 (Spring 2024)

S u g g e s t i o n s i f yo u a r e g o i n g t o b u i l d a Q O

Rule 1: Read lots of papers, especially from the 80s & 90s.

→ Expect new combinations, only partially new core inventions.

Rule 2: Early on, test various workloads on the QO.

→ QOs harden over time as they “see” new workloads. Let them see more ASAP.

Rule 3: Throw away the initial one (or two) and start anew.

→ The hard part is going to be nitty-gritty details like data structures and
pointers to shared objects; e.g., the list of predicates and the query graph
structure, … You will NOT get this right in the first pass. Don’t try to patch;
be prepared to rewrite.

89
Bonus

15-445/645 (Spring 2024)

N E X T C L A S S

Transactions!
→ aka the second hardest part about database systems

90

