—
jamegie |ntro to Database

University Systems (15-445/645)

Lecture #15

Query
Planning &

Optimization

SPRING 2024)) Prof. Jignesh Patel

$ZCMU-DB

15-445/645 (Spring 2024)

ADMINISTRIVIA

Project #3 is due Sun April 7, 2024 @ 11:59pm

Mid-Term

— See me during OH for exam viewing

Final Exam
— Thu May 2, 2024, @ 05:30pm-08:30pm

SELECT distinct ename Total: 2M 1/Os

FROM Emp E, Dept D _

WHERE E.did = D.did AND D.dname = ‘Toy’ 4 reads, 1 write Tcename
Catalog D

2,000 + 4 writes G
cIusied noZustered noncluste&d (10K/500 20 emps per dept) dname = ‘TOY;

EMP (ssn, ename, addr, sal, did)

1,000,000 + 2,000 writes D

10,000 records . G
1,000 pages (FK join, 10K tuples in temp T2) EMP.did = DEPT.did
A AT 50 + 50,000 + 1,000,000 writes D
DEPT (did, dname, floor, mgr) (write to temp file T'1)
500 records 5 tuples per page in T'1 @ %
50 pages
DEPT

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT distinct ename
FROMEmpE, Dept D
WHERE E.did = D.did AND D.dname = “Toy’

Total: 54K 1/Os

Read temp T2

Catalog 4 reads + 1 writes ename
clustered nonclustered noncluste&d
A D
EMP (ssn, ename, addr, sal, did) Read temp T1
10,000 records 2,000 reads +4 writes dname = Toy
1,000 pages
clustered nonclustered Page NL’ erte to temp Tl N
A 50 + 50,000 + 2000 writes EMP.did = DEPT.did
DEPT (did, dname, floor, mgr)
500 records @ %
50 pages DEPT

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT distinct ename w/ Materialization| Total: 7,159 1/Os
FROMEmpE, Dept D IEHER
WHERE E.did = D.did AND D.dname = “Toy w/ Pipelining| Total: 3,151 1/Os
Catalo ‘ Read temp T2
g 4 reads + 1 writes ename
clustered nonclustered noncluste&d
A D
EMP (ssn, ename, addr, sal, did) Read temp T'1
10,000 records 2,000-reads +4-writes dname = Ly
1,000 pages 7 . | |
s Sort-merge join (50 buffers)
clustered nonclustered
A 3*(IEmpl+|Dept]) X EMP.did = DEPT.did
DEPT (did, dname, floor, mgr) = 3150 + 1tes
500 records @ %
50 pages DEPT

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT distinct ename
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = “Toy’

Total: 37 1/Os

Read temp T2
CatalOg 4 reads + 1 writes

clustered nonclustered nonclustered

S

€name

=

EMP (ssn, ename, addr, sal, did) | Read temp T1, NL-IDX Join

Q

dname = Toy’

10,000 records 1 + 3 (idx) + 20 (ptr chase) + 4 writes
1,000 pages | |
clustered nonclustered
A)\ Access: Index (name) N
DEPT (did, dname, floor, mgr) 3 reads + 1 write @ %
500 records DEIPT DMIPT
50 pages

X A

Swap

$ZCMU-DB

15-445/645 (Spring 2024)

Annotated RA Tree a.k.a. The Physical Plan

Simple projection TC

Estimates: output cardinality = 20, ...

ename

i | Pipeline

NL-IDX using unclustered index on EMP.id N To the scheduler
i 2 dinality = 20, ...
Estimates: output cardinality = 20, EMP.did = DEPT.did to run the query

Pipelineg %
EMP Access Path: File Scan

Access Path: Unclustered B-tree Estimates: output cardinality = 10K
Estimates: output cardinality = 1, ... dname = ‘Toy’

T

DEPT

$ZCMU-DB

15-445/645 (Spring 2024)

Query Optimization (QO)

1. Identify candidate equivalent trees

(logical). It is an NP-hard problem, so Subspace that a
practical QO searches

the space is large.

2. For each candidate, find the execution
plan tree (physical). We need to
estimate the cost of each plan.

3. Choose the best overall (physical) plan.

Entire search space very large,

Practically: Choose from a subset of all a5 QO s NP-hard (wirt. #;joins)

possible plans.

$ZCMU-DB

15-445/645 (Spring 2024)

LOGICAL VS. PHYSICAL PLANS

The optimizer generates a mapping of a logical algebra
expression to the optimal equivalent physical algebra

expression.

Physical operators define a specific execution strategy

using an access path.
— They can depend on the physical format of the data that they
process (i.e., sorting, compression).

— Not always a 1:1 mapping from logical to physical.

$ZCMU-DB

15-445/645 (Spring 2024)

QUERY OPTIMIZATION

Heuristics / Rules

— Rewrite the query to remove (guessed) inefficiencies; e.g, always do
selections first, or push down projections as early as possible.

— These techniques may need to examine catalog, but they do not need to

examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick the one with the
lowest cost.

$ZCMU-DB

15-445/645 (Spring 2024)

Predicate Pushdown

f| p— f|

T j> T

O name - Toy X

g G @ B %MP
AR T

DEPT EMP DEPT

T e (O tname - 1oy (DEPT 4 EMP))@) Terae (EMP 54 O e _ 10y (DEPT))

$ZCMU-DB

15-445/645 (Spring 2024)

Replace Cartesian Product

1T :

([]
([]
([]
O :
EMP.did = DEPT.did ﬁ

I[: l l EMP.did = DEPT.did

X
AR AR

EMP DEPT EMP DEPT

... (Oberau-eveas (DEPT X EMP)) [:ID ...(EMP i, DEPT)

$ZCMU-DB

15-445/645 (Spring 2024)

Projection Pushdown

n nename
ename

) . E]

N AR

: EMP : 7tename, did
. D
EMP

7-[EMP.ename (oo Mg EMP) T[EMP,ename (o Mg (Tcename, did EMP))

Equivalence

Sp1 (0p2(R)) = 0p; (0p1(R)) (0 commutativity)

Spipp2 ... Apn (R) = 0p(opy(... Opy(R))) (cascading ©)

Hal(R) = Hal(HaZ(’ . 'Hak (R) .))9 a; = dit+1 (Cascading H)

R x S=S < R (join commutativity)

R (S T)=(R xS) x T (join associativity)

op (R X S)=(R Xp S), if P is a join predicate

op (R X' S) = op; (op2(R) Xpy Gp3(S)) , where P=pl A p2 A p3 A p4d

[Tar.a2...an(0p (R)) =[1a1.A2. An(Op (I 1a1.. An 1. BMR)), Where B1 ... BM are columns in P

$ZCMU-DB

15-445/645 (Spring 2024)

ARCHITECTURE OVERVIEW =R

- AR T = Cost

S picenop KA System 8 g Schema Info Model
Catalog ===
(ol

Estimates

Name—Internal ID

Binder

$ZCMU-DB

15-445/645 (Spring 2024)

QUERY OPTIMIZATION

Examples: predicate pushdown, replace
Heuristics / Rules cartesian product, projection pushdown ...

— Rewrite the query to remove inefficient patterns.
— These techniques may need to examine catalog, but they do
not need to examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.
— Enumerate multiple equivalent plans for a query and pick
the one with the lowest cost.

$ZCMU-DB

15-445/645 (Spring 2024)

COST-BASED QUERY OPTIMIZATION

Let’s start with a certain style of QO: cost-based, bottom-up QO

(the classic System-R optimizer approach)

Approach: Enumerate different plans for the query and estimate

their costs.

— Single relation.

— Multiple relations.
— Nested sub-queries.

[t chooses the best plan it has seen for the query after exhausting all
plans or some timeout.

$ZCMU-DB

15-445/645 (Spring 2024)

SINGLE-RELATION QUERY PLANNING

Pick the best access method.
— Sequential Scan

— Binary Search (clustered indexes)
— Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

$ZCMU-DB

15-445/645 (Spring 2024)

SYSTEM R OPTIMIZER

Break the query into blocks and generate the
logical operators for each block.

For each logical operator, generate a set of
A left-deep tree

physical operators that implement it. -
— All combinations of join algorithms and access paths /\ A bushy tree
A D D>
Then, iteratively construct a “left-deep” join /N\ C /Pd\ \/bd\
tree that minimizes the estimated amount of
A B A BC D

work to execute the plan. outer inner
System-R optimizer does

NOT consider this “shape”
£=CMU-DB

15-445/645 (Spring 2024)

SYSTEM R OPTIMIZER

SELECT ARTIST.NAME /
FROM ARTIST, APPEARS, ALBUM ARTIST: Sequential Scan

WHERE ARTIST.ID=APPEARS.ARTIST_ID APPEARS : Sequential Scan

AND APPEARS.ALBUM_ID=ALBUM.ID. ALBUM: Index Look—up on NAME
AND ALBUM.NAME=“Andy's OG Remix”

ORDER BY ARTIST.ID

Step #1: Choose the best access paths ARTIST D APPEARS P ALBUM
i\each table APPEARS D4 ALBUM D4 ARTIST
ALBUM P APPEARS D ARTIST
APPEARS P ARTIST P ALBUM
orderings for tables ARTIST x ALBUM D APPEARS

Step #3: Determine the join ordering ALBUM x ARTIST P APPEARS
with the lowest cost ‘ : :

Step #2: Enumerate all possible join

$ZCMU-DB

15-445/645 (Spring 2024)

SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

ARTIST ALBUM APPEARS

£CMU-DB

15-445/645 (Spring 2024)

SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

ARTISTP<APPEARS ALBUMP<IAPPEARS APPEARSPALBUM
ALBUM ARTIST ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

HASH_JOIN(A1,A3) SM_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A2,A3) HASH_JOIN(A3,A2) SM_JOIN(A3,A2)
ARTIST.ID=APPEARS.ARTIST_ID APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
£2CMU-DB

15-445/645 (Spring 2024)

ARTISTPIAPPEARS
ALBUM

HASH_JOIN(A1,A3)

“~“-.__>

SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

ALBUMP<IAPPEARS
ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

HASH_JOIN(A2,A3)

ARTIST.ID=APPEARS.ARTIST_ID

$ZCMU-DB

15-445/645 (Spring 2024)

—

APPEARSPALBUM
ARTIST

SM_JOIN(A3,A2)

—

ARTIST ALBUM APPEARS

APPEARS . ALBUM_ID=ALBUM. ID

SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

APPEARS . ALBUM_ID=ALBUM. ID // \

ARPEARS . ARTIST_ID=ARTIST.ID
HASH_JOIN(A1 [><1A3,A2) SM_JOIN(A1D<IA3,A2) | HASH_JOIN(A2<IA3,A1) | SM_JOIN(A2D<IA3,A1) | HASH_JOIN(A31<IA2,A1) | SM_JOIN(A3p<A2,A1) ‘JKCIC
W APPEARS. ARTIST_IDAW V

ARTISTP<APPEARS ALBUMP<IAPPEARS APPEARSPALBUM
ALBUM ARTIST ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

SM_JOIN(A3,A2)

HASH_JOIN(A2,A3)

ARTIST.ID=APPEARS.ARTIST_ID \\ / APPEASS- ALEWRLTDSALBURLID

ARTIST ALBUM APPEARS

HASH_JOIN(A1,A3)

$ZCMU-DB

15-445/645 (Spring 2024)

SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

APPEARS . ALBUM_ID=ALBUM. ID /

APPEARS . ARTIST_ID=ARTIST.ID

HASH_JOIN(A3D<IA2,A1) XX

|

HASH_JOIN(A2D<IA3,A1)

HASH_JOIN(A1D<IA3,A2)

APPEARS . ARTIST_ID=ARTIST.ID

ARTISTP<APPEARS ALBUMP<IAPPEARS APPEARSPALBUM
ALBUM ARTIST ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

SM_JOIN(A3,A2)

HASH_JOIN(A2,A3)

ARTIST.ID=APPEARS.ARTIST_ID \\ / APPEASS- ALEWRLTDSALBURLID

ARTIST ALBUM APPEARS

HASH_JOIN(A1,A3)

$ZCMU-DB

15-445/645 (Spring 2024)

SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

HASH_JOIN(A2D<IA3,A1)

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMP<IAPPEARS
ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

HASH_JOIN(A2,A3)

ARTIST ALBUM APPEARS

$ZCMU-DB

15-445/645 (Spring 2024)

SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

The query has ORDER BY on ARTIST. ID
HASH. TOINCAZDAZ, A1) but the plans do not carry an explicit

notion of the sorting properties.
APPEARS . ARTIST_ID=ARTIST.ID

ALBUMP<IAPPEARS
ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

HASH_JOIN(A2,A3)

\

ARTIST ALBUM APPEARS

$ZCMU-DB

15-445/645 (Spring 2024)

ARTIST P APPEARS X ALBUM H

Hash Join ...
Estimates: output cardinality = ... M v(N
artist_id

ALBUMDIAPPEARS D Hash Join ... C b Artists File Scan

year, artist_name, album_name

HASH_JOIN(A2><IA3,A1)

ARTIST output cardinality = ... output cardinality = 10K
album id
ALBUM. ID=APPEARS . ALBUM_ID @ %
HASH_JOIN(A2,A3) AppearsFile Scan
Unclustered B-tree output cardinality = 10K
output cardinality = ... genre = ‘Blues’
ARTIST ALBUM APPEARS i i
Album

$ZCMU-DB

15-445/645 (Spring 2024)

MULTI-RELATION QUERY PLANNING

We just saw an
example of this,
the System R | — Start with nothing and then build up the plan to get

Choice #1: Bottom-up Optimization

_ approach to the outcome that you want.

Choice #2: Top-down Optimization

— Start with the outcome that you want, and then
work down the tree to find the optimal plan that

gets you to that goal.

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

BOTTOM-UP OPTIMIZATION

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL,
Postgres, most open-source DBMSs.

TOP-DOWN OPTIMIZATION

Start with a logical plan of what we want the query
to be. Perform a branch-and-bound search to

traverse the plan tree by converting logical operators

into physical operators.
— Keep track of global best plan during search.

— Treat physical properties of data as first-class entities Graefe
during planning.

Example: MSSQL, Greenplum, CockroachDB

$ZCMU-DB

15-445/645 (Spring 2024)

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

$ZCMU-DB

15-445/645 (Spring 2024)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

£CMU-DB

15-445/645 (Spring 2024)

ORDER-BY (ARTIST.ID)

* ARTIST P APPEARS P4 ALBUM

ARTISTPIAPPEARS

ALBUMPIAPPEARS

ARTISTPALBUM

ARTIST

ALBUM

APPEARS

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

$ZCMU-DB

15-445/645 (Spring 2024)

ORDER-BY (ARTIST.ID)

* ARTIST P APPEARS P4 ALBUM

SM_JOIN(A1D<A2,A3)

ARTISTPIAPPEARS

ALBUMPIAPPEARS

ARTISTPALBUM

ARTIST

ALBUM

APPEARS

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

$ZCMU-DB

15-445/645 (Spring 2024)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM

ARTIST ALBUM APPEARS

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

$ZCMU-DB

15-445/645 (Spring 2024)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM
ARTIST ALBUM APPEARS

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

$ZCMU-DB

15-445/645 (Spring 2024)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

/‘ i

*ARTIST[XIAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM

ARTIST

ALBUM APPEARS

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

/ i

-

RTISTPAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM

HASH_JOIN(A1,A2)

ARTIST

ALBUM APPEARS

$ZCMU-DB

15-445/645 (Spring 2024)

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

/‘ i

ARTISTPAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM

HASH_JOIN(A1,A2)

$ZCMU-DB

15-445/645 (Spring 2024)

—

ARTIST

ALBUM APPEARS

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

*ARTIST[XIAPPEARS ALBUMP<IAPPEARS ARTISTPMALBUM
HASH_JOIN(A1,A2)
L
ARTIST ALBUM APPEARS

$ZCMU-DB

15-445/645 (Spring 2024)

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

/ i

ARTISTPAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM

HASH_JOIN(A1,A2)

$ZCMU-DB

15-445/645 (Spring 2024)

ARTIST

ALBUM APPEARS

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical->Physical:
JOIN(A,B) to HASH_JOIN(A,B) /ﬂf T

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMDd%PPEARS ARTISTIXIALBUM

€«)
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)
HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB

15-445/645 (Spring 2024)

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes
and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer’ rules
that require input to have

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

/

SM_JOIN(A1D<A2,A3)

i

ARTISTPIAPPEARS

ALBUMP<

PPEARS

ARTISTPALBUM

HASH_JOIN(A1,A2)

certain properties.

$ZCMU-DB

15-445/645 (Spring 2024)

SM_JOIN(A1,A2)

ARTIST

ALBUM

APPEARS

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes » ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.
— Logical-Logical: HASH_JOIN(A1>4A2,A3)

JOIN(A,B) to JOIN(B,A)
— Logical->Physical:
JOINCA,B) to HASH_JOIN(A,B) /,f T

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMD4+PPEARS ARTISTIXIALBUM

€«)
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)
HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB

15-445/645 (Spring 2024)

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes » ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.

— Logical-Logical: HASH_JOIN(dA2,A3)
JOIN(A,B) to JOIN(B,A)

— Logical->Physical:
JOIN(A,B) to HASH_JOIN(A,B) / {

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMDd%PPEARS ARTISTIXIALBUM

€«)
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)
HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB

15-445/645 (Spring 2024)

TOP-DOWN OPTIMIZATION
ARTIST P<d APPEARS P ALBUM
» ORDER-BY(ARTIST.ID)
and traverse the tree.
— Logical—-Logical: QUICKSORT (A1.ID) HASH_JOIN(>dA2,A3)

JOIN(A,B) to JOIN(B,A)
— Logical->Physical:
JOINCA,B) to HASH_JOIN(A,B) /,f T

Invoke rules to create new nodes

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMN‘#PP EARS ARTISTIXIALBUM

€«)
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)
HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB

15-445/645 (Spring 2024)

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.

— Logical-Logical: QUICKSORT(A1.ID)
JOINCA,B) to JOIN(B,A)

— Logical->Physical:
JOIN(A,B) to HASH_JOIN(A,B) / {

HASH_JOIN/ ~dA2,A3)

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMD4+PPEARS ARTISTIXIALBUM

€«)
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)
HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB

15-445/645 (Spring 2024)

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.

— Logical-Logical: QUICKSORT (A1.ID) HASH_JOIN(>dA2,A3)
JOIN(CA,B) to JOIN(B,A)

: . . SM_JOIN(A1PIA2,A3)
y LogscalRlysicat

JOIN(A,B) to HASH_JOIN(A,B) /g, T

ARTISTPAPPEARS ALBUMD4+PPEARS ARTISTIXIALBUM
—

Can create “enforcer” rules
that require input to have
certain properties.

SM_JOIN(A1,A2)

——

ARTIST ALBUM APPEARS

HASH_JOIN(A1,A2)

$ZCMU-DB

15-445/645 (Spring 2024)

TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.
— Logical-Logical: QUICKSORT (A1.ID) HASH_JOIN(>dA2,A3)
JOIN(A,B) to JOIN(B,A)
— Logical->Physical: nash_ 301 I oda2, A3)
JOIN(A,B) to HASH_JOIN(A,B) /

SM_JOIN(A1D<A2,A3)

i

ARTISTPAPPEARS ALBUMD4+PPEARS ARTISTIXIALBUM

€«)
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)

HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB

15-445/645 (Spring 2024)

Life so far ... single block QO

Often, we get nested queries.

— We could optimize each block using the methods we have discussed.

— However, this may be inefficient since we optimize each block
separately without a global approach.

What if we could flatten a nested query into a single block
and optimize it?

— Then, apply single-block query optimization methods.

— Even if one can't flatten to a single block, flattening to fewer blocks

is still beneficial.

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return

a single value or set of values.

Two Approaches:

— Rewrite to de-correlate and/or flatten them.

— Decompose nested query and store results in a temporary
table.

$ZCMU-DB

15-445/645 (Spring 2024)

NESTED SUB-QUERIES: REWRITE

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE|S.sid = R.sid
AND R.day = '2022-10-25"

SELECT name

FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2022-10-25"

$ZCMU-DB

15-445/645 (Spring 2024)

DECOMPOSING QUERIES

For harder queries, the optimizer breaks up
queries into blocks and then concentrates on
one block at a time.

Sub-queries are written to temporary tables
that are discarded after the query finishes.

$ZCMU-DB

15-445/645 (Spring 2024)

DECOMPOSING QUERIES

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating =|(SELECT MAX(S2.rating)

FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1 /r

Nested Block

$ZCMU-DB

15-445/645 (Spring 2024)

DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating =|(SELECT MAX(S2.rating)

FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1 /r

Nested Block

$ZCMU-DB

15-445/645 (Spring 2024)

DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors —

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = ### «

GROUP BY S.sid
HAVING COUNT(*) > 1

$ZCMU-DB

15-445/645 (Spring 2024)

Inner Block

DECOMPOSING QUERIES

SELECT

MAX(rating) FROM sailors

SELECT
FROM
WHERE
AND
AND
AND

GROUP
HAVING

S.sid, MIN(R.day)

sailors S, reserves R, boats B
S.sid = R.sid

R.bid = B.bid

B.color = 'red'’

S.rating = #ii «

BY S.sid
COUNT(*) > 1

Outer Block

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

EXPRESSION REWRITING

An optimizer transforms a query’s expressions
(e.g., WHERE/ON clause predicates) into the

minimal set of expressions.

Implemented using if/then/else clauses or a

pattern-matching rule engine.

— Search for expressions that match a pattern.

— When a match is found, rewrite the expression.
— Halt if there are no more rules that match.

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE |1 = 0

$ZCMU-DB

15-445/645 (Spring 2024)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

$ZCMU-DB

15-445/645 (Spring 2024)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE|NOW() IS NULL;

$ZCMU-DB

15-445/645 (Spring 2024)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

$ZCMU-DB

15-445/645 (Spring 2024)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE [RANDOM() IS NULL,;

$ZCMU-DB

15-445/645 (Spring 2024)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE [RANDOM() IS NULL,;

Merging Predicates

SELECT * FROM A
WHERE val BETWEEN 1 AND 100
OR val BETWEEN 50 AND 150;

$ZCMU-DB

15-445/645 (Spring 2024)

EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE [RANDOM() IS NULL,;

Merging Predicates

SELECT * FROM A
WHERE val BETWEEN 1 AND 150;

$ZCMU-DB

15-445/645 (Spring 2024)

How do we calculate the cost of the plans?

We have formulas for the operator ?
algorithms (e.g. the cost formulaes ﬁ

for hash join, sort merge join, ...), X 5

but we also need to estimate the &I %

size of the output that an operator A 9) oredicate
produces. ﬁ

B

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

COST ESTIMATION

The DBMS uses a cost model to predict the

behavior of a query plan given a database state.
— This is an internal cost that allows the DBMS to

compare one plan with another.

[t is too expensive to run every possible plan to
determine this information, so the DBMS need a

way to derive this information.

$ZCMU-DB

15-445/645 (Spring 2024)

COST MODEL COMPONENTS

Choice #1: Physical Costs
— Predict CPU cycles, I/O, cache misses, RAM consumption,

network messages...
— Depends heavily on hardware.

Choice #2: Logical Costs

— Estimate output size per operator.

— Independent of the operator algorithm.
— Need estimations for operator result sizes.

POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are weighted by
“magic’ constant factors.

Default settings are obviously for a disk-resident database without

a lot of memory:
— Processing a tuple in memory is 400x faster than reading a tuple from disk.
— Sequential I/0 is 4x faster than random I/0.

$ZCMU-DB

15-445/645 (Spring 2024)

POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are weighted by
“magic’ constant factors.

Default settings are obviously for a disk-resident database without

a lot of memory:
— Processing a tuple in memory is 400x faster than reading a tuple from disk.
— Sequential I/0 is 4x faster than random I/0.

$ZCMU-DB

15-445/645 (Spring 2024)

Us

6«

19.7.2. Planner Cost Constants

The cost variables described in this section are measured on an arbitrary scale. Only their relative
values matter, hence scaling them all up or down by the same factor will result in no change in the
planner's choices. By default, these cost variables are based on the cost of sequential page fetches;
that is, seq_page cost is conventionally set to 1.0 and the other cost variables are set with
reference to that. But you can use a different scale if you prefer, such as actual execution times in
milliseconds on a particular machine.

Note: Unfortunately, there is no well-defined method for determining ideal values for the
cost variables. They are best treated as averages over the entire mix of queries that a

particular installation will receive. This means that changing them on the basis of just a few
experiments is very risky.

S€q_page_cost (floating point)

Sets the planner's estimate of the cost of a disk page fetch that is part of a series of
sequential fetches. The default is 1.0. This value can be overridden for tables and indexes in
a particular tablespace by setting the tablespace parameter of the same name (see ALTER
TABLESPACE).

random_page_cost (floating point)

$ZCMU-DB

15-445/645 (Spring 2024)

STATISTICS

The DBMS stores internal statistics about tables,
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:

— Postgres/SQLite: ANALYZE

— Oracle/ MySQL: ANALYZE TABLE
— SQL Server: UPDATE STATISTICS
— DB2: RUNSTATS

$ZCMU-DB

15-445/645 (Spring 2024)

SELECTION CARDINALITY

The selectivity (sel) of a predicate P

is the fraction of tuples that qualify. SELECT * FROM people
WHERE age = 9

Equality Predicate: A=constant
— sel(A=constant) = #occurences/|R]|

#qfoamujffgzgéo
5 Distinct values
0 - of attribute

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
age

$ZCMU-DB

15-445/645 (Spring 2024)

SELECTION CARDINALITY

The selectivity (sel) of a predicate P

is the fraction of tuples that qualify. SELECT * FROM people
WHERE age = 9

Equality Predicate: A=constant

— sel(A=constant) = #occurences/|R]|
— Example: sel(age=9) =

#of occurgl 0
5 Distinct values
0 - of attribute

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
age

$ZCMU-DB

15-445/645 (Spring 2024)

SELECTION CARDINALITY

The selectivity (sel) of a predicate P

is the fraction of tuples that qualify. SELECT * FROM people
WHERE age = 9

Equality Predicate: A=constant

— sel(A=constant) = #occurences/|R]|
— Example: sel(age=9) =

#of occur@j_ 0
5

O]

SC(age=9)=4

of attribute

Distinct values]

1 2 3 4 5 6 7 8
age

9110 11 12 13 14 15

$ZCMU-DB

15-445/645 (Spring 2024)

SELECTION CARDINALITY

The selectivity (sel) of a predicate P

is the fraction of tuples that qualify. SELECT * FROM people
WHERE age = 9

Equality Predicate: A=constant

— sel(A=constant) = #occurences/|R]|
— Example: sel(age=9) = 4/45

#of occur@j_ 0
5

O]

SC(age=9)=4

of attribute

Distinct values]

1 2 3 4 5 6 7 8
age

9110 11 12 13 14 15

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

SELECTION CARDINALITY

Assumption #1: Uniform Data

— The distribution of values (except for the heavy hitters) is the same.

Assumption #2: Independent Predicates

— The predicates on attributes are independent

Assumption #3: Inclusion Principle

— The domain of join keys overlap such that each key in the inner
relation will also exist in the outer table.

15-445/645 (Spring 2024)

CORRELATED ATTRIBUTES

Consider a database of automobiles:
— # of Makes = 10, # of Models = 100

And the following query:

— (make=“Honda” AND model=“Accord”)

With the independence and uniformity assumptions, the
selectivity is:

— 1/10x 1/100 = 0.001

But since only Honda makes Accords the real selectivity is
1/100 = 0.01

£=CMU-DB Source: Guy Lohman

15-445/645 (Spring 2024)

http://wp.sigmod.org/?p=1075

$ZCMU-DB

15-445/645 (Spring 2024)

STATISTICS

Choice #1: Histograms
— Maintain an occurrence count per value (or range of values)

in a column.

Choice #2: Sketches

— Probabilistic data structure that gives an approximate count
for a given value.

Choice #3: Sampling
— DBMS maintains a small subset of each table that it then

uses to evaluate expressions to compute selectivity.

HISTOGRAMS

Our formulas are nice, but we assume that data
values are uniformly distributed.

Histogram
of occurrences 10
~ 5
0 -

1 2 3 45 6 7 8 9 1011 12 13 14 15

Distinct values of attribute

15 Keys x 32-bits = 60 bytes

$ZCMU-DB

15-445/645 (Spring 2024)

EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of
each unique key. All buckets have the same width
(i.e., same # of value).

Non-Uniform Approximation

10
5
Bucket Ranges | -
12 3 45 6 7 8 91011 12 13 14 15
Buck'et #1 Buck'et #2 Buck!et #3 Buck'et #4 Buck'et #5
Count=8 Count=4 Count=15 Count=3 Count=14

$ZCMU-DB

15-445/645 (Spring 2024)

EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

Histogram (Quantiles)
10

1 2 3 45 6 7 8 9 1011 12 13 14 15

$ZCMU-DB

15-445/645 (Spring 2024)

EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

Histogram (Quantiles)
10
5
O |
1.2 3 45 6 7 8 9 10 11 12 13 14 15
Buck'et #1 Buck!:t #2 Buck'et #3 Buck'et #4
Count=12 Count=12 Count=9 Count=12

$ZCMU-DB

15-445/645 (Spring 2024)

EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

Histogram (Quantiles)
15
10 -
0 -
1-5 6-8 9-13 14-15

$ZCMU-DB

15-445/645 (Spring 2024)

SKETCHES

Probabilistic data structures that generate
approximate statistics about a data set.

Cost-model can replace histograms with sketches
to improve its selectivity estimate accuracy.

Most common examples:
— Count-Min Sketch (1988): Approximate frequency

count of elements in a set.
— HyperLogLog (2007): Approximate the number of

distinct elements in a set.
$2CMU-DB

15-445/645 (Spring 2024)

https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://en.wikipedia.org/wiki/HyperLogLog

SAMPLING

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying

tables changes significantly.

sel(age>50) =1/3

$ZCMU-DB

15-445/645 (Spring 2024)

Table Sample

1001 |[Obama 61 Rested
1003 [Tupac 25 Dead
1005 |[Andy 41 I1lin

¥ ¥

SELECT AVG(age)
FROM people
WHERE age > 50

id name age status
1001 |Obama 61 Rested
1002 |Kanye 45 Weird
1003 [Tupac 25 Dead
1004 |Bieber 28 Crunk
1005 [Andy 41 I1lin
1006 |[TigerKing|59 Jailed
1 billion tuples

CONCLUSION

* Query optimization is critical for a database system.
* SQL -> logical plan -> physical plan.

* Flatten queries before going to the optimization part.
Expression handling is also important.

* QO enumeration can be bottom-up or top-down.

* Need to cost each plan, so need cost-estimation methods.

$ZCMU-DB

15-445/645 (Spring 2024)

A
An Overview of Query Optimization in Relational Systems

Surajit Chaudhuri
Microsoft Research

+1-(426)-703-1938
surajitc@microsoft.com

1. OBJECTIVE
There has been extensive work in query optimi
carly “70s, It is hard o capture the breadih and dept
body of work in & short articl, Therefor, have decided o focus
ey oo o opdnizaion of SOL et b eiuomt
dauabase systems and present my biased and incomplete view of
s i, The gos of i il ot t b comprebcaive, bt Merge-doin
nfer to_explain the foundations and present samplings of (A.xeB.x)

f this large Index tested Loop
by (A.x = C.x)

Index Scan ¢

contributors in this area whose work I have failed to explicily
sore Sore

rading technieal precision forease of resentation.

2. INTRODUCTION

Relational query languages provide a highlevel “declarative”

Iterface 1o access data stored in rlational databases, Over time,

SQL [41) has emerged as the standard for relational query

languages, Two_key components of the query cvaluation
A o

Table Scan A Table Scan B

Figure 1. Operator Tree

component of a SQL

the query execution engine.
qery cxseukn enghe lpleness 8 st of phyical

as hw and is vapomw:e for generating an aﬂckm execution

The Volcano Optimizer Generator: Extensibility and Efficient Search

Goetz Graefe William J. McKenna
Portland State University University of Colorado at Boulder
gracfe@ cs.pdx.cdu bill@ cs.colorado.edu
First, this new optimizer generator had (0 be usable both in
Emerging database application domains demand rot only the Volcano project with the existing query execution
new functionality but also high performance. To satisfy softwae as well a in other projects as a stand-alone tool.
these two. requirements, the Volcano. project provides i i
effcien, extensible 0ols for query and request processing, optimization time and in memory consumption for th
particularly for object-oriented and scientfic database scarch. Third, it m lo provide el eticien, i
Systems. One of these tools is a new optimizer generato
b 1 d optin

. Fourth it had 1o permit use of

o s ar pansloed 5 e optnier enerden iy hesic and-da model semanics o e e Scuch

optimizer source code. Compared with our earlier EX- and o prune futile parts of the search space. Finally, it

ODUS apmie generaor protoye, the serch engne s b 1o sipor feilecot models it pemit genrating
ible and.

wer upport
Jor non-trivial cost models and for physical pmp”nu his paper, we descibe the Volcano Opimizer Gen-
ich will soon fulfil all the

ck as st onder. A¢ the g ine, b s o, i all the requirements above,
ffcent s i conbines imining, et Sesions tohnes e i conceps of the Volcano op-
ow hd been s oly for relotional selecprojecijon tmiaes generato and enumerais Faciliie for taloing &

pinisaion, wih goat-dreced search and branchand. new opimE. Secion S Garises te opinizes e

Sound punin. Compared withather rle-basedoptinisregy in Sl Fuctonaly, xtenss

zation systems, it provides complete data model indepen- efficiency of the EXODUS and Volcano optimi

Gence and move natral extensiglity i Secton 4. Tn Section 5, we descrve

1. Introduction and cor researh int cxensile quey opimi-
‘While extensibilty s an important g nd o st S, We offer oxr. comceioas from

for many current database rosearch proj system g

prototypes, performance must not 5‘ w'ﬁ”d for two 2, The Outside View of the Volcano Optimiz-

reasons. Vi, data volumes stored in daiabase jrems er Generalo

The impl
operators, An as inpot one or more data streams
i prodiccs . ouput iy Exampies of physical
openkars s (i) son, sl sy ety newss-
oo oo, end sonmecgs ok, | s 1, sch apemos
Dhial cprtos sines ey ars no necesrly

vih ltona apestrs. The simplest vy to |Mnk of ph physlul

s Is 05

query, there can be a large mumber of possl
e algebraic representation

).

make possible. the_exccuion of sqL st

a5

Wistnld in Figure | Th g n an opertor oo reprsnt he
ota flow among the physical operators, We use. the

el opero uee aad secnion o Gt Sy o

nterchangeably. The exccution engine is responsible for the

cxcculon of the plan i TS I gonciog answes o the

For a given

‘operator trees that implement the algebraic expressic

feasible. We importance. Thus, query
sofer the reader 1o [20] for an overview of query cvaluation
techniques,

i T ko et i bl s € i 0
npu=m

can be
wansformed into many other Inpaﬂy eaivaien lgebric

lgebraic representation, there may be many
il e e sevel o algrths suppoed in 3
ase system.

Futhermore, the throughput or the response times for the
exccution of these plans may be widely differeat. Therefore, a
‘query, Therefore, the capabilities of the query mwﬂon engine .wﬂmnlls choice of an execution by the optimizer is D';R_ﬂul‘

opti cult
Scurch probem. T onfer 10 save s roblem, we necd 1o
provide:

o ot e o dirbatd o it or commercl advantgsand st
Tocwy estimation of the resources.

plan.

ml)x o w.uuw\ 1S
19RO WA 65800 nlorsss

esch plan in the search space. Inwitively, ths is an
needed for the execution of the

« An enwneration algorithm that can search through. the

1 s ion e e ks cpteis oo
s"w mmhd .::’3 of most existing database xyswm erator as scen nymepamwhou plmumng.dm
econd, in

systems must achieve at least the same.

amay o facilites given 0 the optmi i

e After cunmnng te design princpls of
tional software layers for database management must be. ,., VD,_,.D ptimizns gacrator, we disasss gencrstor -
i i ages nc and operation. Section 3 discusses the search stratcgy
mally not used in these application areas. Optimization uled by optimizers generated with the Volcano optimizer
and parallelization are prime candidates 10 provide these generator.

formance advaniages, and toos and techniques for op- Figure 1 shows-the_optimizer generalor paradigm.
timization and paraleliztion are crcial for the wider 1Se When the. DBMS software is being. buil, s model

of extensible database technology. ‘specification is translated into optimizer source code,
Fnr - number of mh projects, namely the Volcano which is then compiled and linked with the other DBMS
e, parallel query processor (4], the REVELATION
oomms pojct (1] and d opdniaion nd pralilizn ‘Model Speciication
Optimizer Generator
Optimizer Source Code:
| Compiler and Linker

Optimizer e

Query
Figure 1. The Generator Paradigm.

the optmizr genertor parigm, it vas difclt o con-
st ffiint, p.odmmwumy

0.3 e opimine getoraot, g sovesl
o mprovenens et e EXOBUS. povmpe.

1065.638295 809,00 © 1993 IEEE.

Access Path Selection
in a Relational Database Management System
. Griftiths Selingor
M. M. Aatranan
5. b chamberlin

20 Gl Price

I8 Research Division, San Jose, California 95183

ABSTRACT: Tn a high level query and data accoss pach for each table in the sy state
ranipulation language such es B0, Temests ment. the meny possivle

Coiintste hooses “the one
1 nccess costr
encire stacem

Researen nabor,

i

ptinizer cost formilas are introduced for

1. Introduction Single table queries, and section & dia-

the Joining of two or more cables,

Srsten R 15 an oxpocinental datebaso sur el el S e

agenent systen he | relational Ties (queries in predicates) are covered in
EeT ot iamhich has heenunder Sevelon: He

ment at the IEM San Jose Research Laboratory

2. Processing of an SQU statement

paper. fami Liarity
tionsl data model terminology & described
in'Coaa <7 and Date <B. The user
in sys Yo che unir 5.
fon, ans manipulation language SQL <>
Statenents in oL can be igmued bo
n-Tine a1 user-orfan rnina
interface and. from pvogrammh\g tanguages prograns and terminala are further dis-
suich s PL/T and Guaded in <2>. Only an overview of those
brocossirg steps that are Tolevant to
' Syaten 3 a user need not know how the access path sclection will bo discussed
tuples are physically stored and uhat 4
access paths are available (e.c. which col-
kave indexos). SO statemonts do not he four phases of statcment processing
roquire the user to specify anything about aro parsing, optimization, code encration,

are to be perforned. The System
2 optimizer chooses both join order and an

‘Copyrioht© 1979 by ho AGH, I, usod by pormission. P
o e B s cope s ke o oo
12 o e O irtAe o et or arectcommrca SV
i copes, show i nocs o v s page o e
oo ciay kg wih o ol aton
O i i e Prcseargs e 1972 AW SGHOD
Sttt o e parser returns withous
Digital recreation by i eremer pree B anceoren; the OPTTMIZER com
ieyd, Octoper 2002 CaiTad: The OPINIZER aceunul at

<atomen quory blocks
bocavse @ predicate may have one operand
which (s Ttaell a query.

nent. 1%
the nares

Of Nests and Trees: A Unified Approach to Processing Queries
“That Contain Nested Suhquc ‘Aggregates, and Quantifiers
Uneshwar Dayal
Computer Corporation of America
4 Cambridge Center
Cambridge, Massachusetts 02142-1489

Abstract SQL (CHAMT6, DATESS| snd DAPLEX [SHIPSI), (SMITSS)
nested subau

g query opimisrs o on Reit-Prjc Jin
e, owevr, vy aguags uch 5L snd
APLEK bave many poreil s (g, e e dups
o, i vbqvr, prpot, wtion i ki)
ible 2 sequences of Restrict, Project, and

optimiers ae seveely mited

tional algebra. Such languages pose
o et T smendis o

such queries
‘Consider,for example, the following relations:

EMP_(Emp#, Name, Dept, Sal)
DEPT (Deptf, Name, Loc, Mgr)

vy Icrtne the puce o nvin rsagis foropimisn

o Tl sy dhale ke selbicms of cling Query 1
The tion o the pupe b i demcnsruing

e ety nd descablny of developng 2 ntegrated rames

SELECT EName
ek o ptmiing Sl o SQL o eker ey gt FROM EMPE
Have simiiar fest WHERE EDept# [N
SELECT D.Depeft
FROM Dep D
1. Introduction WHERE D Toc = ‘Denver’ AND
E-Emp; o

Most research on query optimiaation hs focused on conjunc-

hat can easly be translated into The semant
restrict-project-join expressions of the relational algebra relati
[CODDT0]. However, practical query langusges, such as each tuple E of EMP, the inner block is

prcripion i aral, op
B blck (uha e

Uk cpuiivers e evaly e s the i for e

proceming tactics are and the folowing SQL query, which contains & nested subquery
block:

only
heration, th laee bloch contin tve

he optimiser considers strategies for eficiently

sclections and
i the) SELITS
In [KIM2], Kim showed that some nested
transformed into equivalent “canonical”
in nesting; for example, query 1 could be tr

query 2 (the queries are not quite
asue later):

granted provided that the copies are not made or distributed for Quey 2
direct commercial advantage, the VLDB copyright notice nd the SELECT

title of the publication and its date appear, and notice is given that FROM EMP E, DEPT D
copyiag is by permission of the Very Large Data Base Endow- WHERE IDQPQ#EDD!F‘AND
ment. To copy otherwise, or a foe andjor spe- ‘W»D-

cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

sqL
queries that did not
snsformed int

equivalent, but more on U

Surajit Chaudhuri: An Overview of
Query Optimization in Relational
Systems. PODS 1998: 34-43

£CMU-DB

15-445/645 (Spring 2024)

Goetz Graefe, William J.
McKenna: The Volcano Optimizer
Generator: Extensibility and
Efficient Search. ICDE 1993: 209-
218

Patricia G. Selinger, Morton M.
Astrahan, Donald D. Chamberlin,
Raymond A. Lorie, Thomas G.
Price: Access Path Selectionina
Relational Database
Management System. SIGMOD
Conference 1979:23-34

Umeshwar Dayal: Of Nests and
Trees: A Unified Approach to
Processing Queries That Contain
Nested Subqueries, Aggregates,
and Quantifiers. VLDB 1987: 197-
208

4 Kl
(QSuggestions if you are going to build a QO

Rule 1: Read lots of papers, especially from the 80s & 90s.

— Expect new combinations, only partially new core inventions.

Rule 2: Early on, test various workloads on the QO.

— QOs harden over time as they “see” new workloads. Let them see more ASAP.

Rule 3: Throw away the initial one (or two) and start anew.

— The hard part is going to be nitty-gritty details like data structures and
pointers to shared objects; e.g., the list of predicates and the query graph
structure, ... You will NOT get this right in the first pass. Don’t try to patch;
be prepared to rewrite.

$ZCMU-DB

15-445/645 (Spring 2024)

NEXT CLASS

Transactions!
— aka the second hardest part about database systems

£CMU-DB

15-445/645 (Spring 2024)

