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ADMINISTRIVIA

Project #3 is due Sun April 7, 2024 @ 11:59pm

Mid-Term

— See me during OH for exam viewing

Final Exam
— Thu May 2, 2024, @ 05:30pm-08:30pm




SELECT distinct ename Total: 2M 1/Os

FROM Emp E, Dept D _

WHERE E.did = D.did AND D.dname = ‘Toy’ 4 reads, 1 write Tcename
Catalog D

2,000 + 4 writes G
cIusied noZustered noncluste&d (10K/500 20 emps per dept) dname = ‘TOY;

EMP (ssn, ename, addr, sal, did)

1,000,000 + 2,000 writes D

10,000 records . G
1,000 pages (FK join, 10K tuples in temp T2) EMP.did = DEPT.did
A AT 50 + 50,000 + 1,000,000 writes D
DEPT (did, dname, floor, mgr) (write to temp file T'1)
500 records 5 tuples per page in T'1 @ %
50 pages
DEPT
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SELECT distinct ename
FROMEmpE, Dept D
WHERE E.did = D.did AND D.dname = “Toy’

Total: 54K 1/Os

Read temp T2

Catalog 4 reads + 1 writes ename
clustered nonclustered noncluste&d
A D
EMP (ssn, ename, addr, sal, did) Read temp T1
10,000 records 2,000 reads +4 writes dname = Toy
1,000 pages
clustered nonclustered Page NL’ erte to temp Tl N
A 50 + 50,000 + 2000 writes EMP.did = DEPT.did
DEPT (did, dname, floor, mgr)
500 records @ %
50 pages DEPT
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SELECT distinct ename w/ Materialization| Total: 7,159 1/Os
FROMEmpE, Dept D IEHER
WHERE E.did = D.did AND D.dname = “Toy w/ Pipelining| Total: 3,151 1/Os
Catalo ‘ Read temp T2
g 4 reads + 1 writes ename
clustered nonclustered noncluste&d
A D
EMP (ssn, ename, addr, sal, did) Read temp T'1
10,000 records 2,000-reads +4-writes dname = Ly
1,000 pages 7 . | |
s Sort-merge join (50 buffers)
clustered nonclustered
A 3*(IEmpl+|Dept]) X EMP.did = DEPT.did
DEPT (did, dname, floor, mgr) = 3150 + 1tes
500 records @ %
50 pages DEPT
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SELECT distinct ename
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = “Toy’

Total: 37 1/Os

Read temp T2
CatalOg 4 reads + 1 writes

clustered nonclustered nonclustered

S

€name

=

EMP (ssn, ename, addr, sal, did) | Read temp T1, NL-IDX Join

Q

dname = Toy’

10,000 records 1 + 3 (idx) + 20 (ptr chase) + 4 writes
1,000 pages | |
clustered nonclustered
A )\ Access: Index (name) N
DEPT (did, dname, floor, mgr) 3 reads + 1 write @ %
500 records DEIPT DMIPT
50 pages

X A

Swap
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Annotated RA Tree a.k.a. The Physical Plan

Simple projection TC

Estimates: output cardinality = 20, ...

ename

i | Pipeline

NL-IDX using unclustered index on EMP.id N To the scheduler
i 2 dinality = 20, ...
Estimates: output cardinality = 20, EMP.did = DEPT.did to run the query

Pipelineg %
EMP Access Path: File Scan

Access Path: Unclustered B-tree Estimates: output cardinality = 10K
Estimates: output cardinality = 1, ... dname = ‘Toy’

T

DEPT
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Query Optimization (QO)

1. Identify candidate equivalent trees

(logical). It is an NP-hard problem, so Subspace that a
practical QO searches

the space is large.

2. For each candidate, find the execution
plan tree (physical). We need to
estimate the cost of each plan.

3. Choose the best overall (physical) plan.

Entire search space very large,

Practically: Choose from a subset of all a5 QO s NP-hard (wirt. #;joins)

possible plans.
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LOGICAL VS. PHYSICAL PLANS

The optimizer generates a mapping of a logical algebra
expression to the optimal equivalent physical algebra

expression.

Physical operators define a specific execution strategy

using an access path.
— They can depend on the physical format of the data that they
process (i.e., sorting, compression).

— Not always a 1:1 mapping from logical to physical.
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QUERY OPTIMIZATION

Heuristics / Rules

— Rewrite the query to remove (guessed) inefficiencies; e.g, always do
selections first, or push down projections as early as possible.

— These techniques may need to examine catalog, but they do not need to

examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.

— Enumerate multiple equivalent plans for a query and pick the one with the
lowest cost.
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Predicate Pushdown

f| p— f|

T j> T

O name - Toy X

g G @ B %MP
AR T

DEPT EMP DEPT

T e (O tname - 1oy (DEPT 4 EMP))@) Terae (EMP 54 O e _ 10y (DEPT))
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Replace Cartesian Product

1T :

([ ]
([ ]
([ ]
O :
EMP.did = DEPT.did ﬁ

I[: l l EMP.did = DEPT.did

X
AR AR

EMP DEPT EMP DEPT

... (Oberau-eveas (DEPT X EMP)) [:ID ...(EMP i, DEPT)
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Projection Pushdown

n nename
ename

) . E]

N AR

: EMP : 7tename, did
. D
EMP

7-[EMP.ename ( oo Mg EMP) T[EMP,ename ( o Mg (Tcename, did EMP))




Equivalence

Sp1 (0p2(R)) = 0p; (0p1(R)) (0 commutativity)

Spipp2 ... Apn (R) = 0p(opy( ... Opy(R))) (cascading ©)

Hal(R) = Hal(HaZ(’ . 'Hak (R) . ))9 a; = dit+1 (Cascading H)

R x S=S < R (join commutativity)

R (S T)=(R xS) x T (join associativity)

op (R X S)=(R Xp S), if P is a join predicate

op (R X' S) = op; (op2(R) Xpy Gp3(S)) , where P=pl A p2 A p3 A p4d

[Tar.a2...an(0p (R)) =[1a1.A2. An(Op (I 1a1.. An 1. BMR)), Where B1 ... BM are columns in P
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ARCHITECTURE OVERVIEW =R

- AR T = Cost

S picenop KA System 8 g Schema Info Model
Catalog ===
(ol

Estimates

Name—Internal ID

Binder
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QUERY OPTIMIZATION

Examples: predicate pushdown, replace
Heuristics / Rules cartesian product, projection pushdown ...

— Rewrite the query to remove inefficient patterns.
— These techniques may need to examine catalog, but they do
not need to examine data.

Cost-based Search

— Use a model to estimate the cost of executing a plan.
— Enumerate multiple equivalent plans for a query and pick
the one with the lowest cost.
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COST-BASED QUERY OPTIMIZATION

Let’s start with a certain style of QO: cost-based, bottom-up QO

(the classic System-R optimizer approach)

Approach: Enumerate different plans for the query and estimate

their costs.

— Single relation.

— Multiple relations.
— Nested sub-queries.

[t chooses the best plan it has seen for the query after exhausting all
plans or some timeout.
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SINGLE-RELATION QUERY PLANNING

Pick the best access method.
— Sequential Scan

— Binary Search (clustered indexes)
— Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.
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SYSTEM R OPTIMIZER

Break the query into blocks and generate the
logical operators for each block.

For each logical operator, generate a set of
A left-deep tree

physical operators that implement it. -
— All combinations of join algorithms and access paths /\ A bushy tree
A D D>
Then, iteratively construct a “left-deep” join /N\ C /Pd\ \/bd\
tree that minimizes the estimated amount of
A B A BC D

work to execute the plan. outer inner
System-R optimizer does

NOT consider this “shape”
£=CMU-DB
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SYSTEM R OPTIMIZER

SELECT ARTIST.NAME /
FROM ARTIST, APPEARS, ALBUM ARTIST: Sequential Scan

WHERE ARTIST.ID=APPEARS.ARTIST_ID APPEARS : Sequential Scan

AND APPEARS.ALBUM_ID=ALBUM.ID. ALBUM: Index Look—up on NAME
AND ALBUM.NAME=“Andy's OG Remix”

ORDER BY ARTIST.ID

Step #1: Choose the best access paths ARTIST D APPEARS P ALBUM
i\each table APPEARS D4 ALBUM D4 ARTIST
ALBUM P APPEARS D ARTIST
APPEARS P ARTIST P ALBUM
orderings for tables ARTIST x ALBUM D APPEARS

Step #3: Determine the join ordering ALBUM  x ARTIST P APPEARS
with the lowest cost ‘ : :

Step #2: Enumerate all possible join
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SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

ARTIST ALBUM APPEARS
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SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

ARTISTP<APPEARS ALBUMP<IAPPEARS APPEARSPALBUM
ALBUM ARTIST ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

HASH_JOIN(A1,A3) SM_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A2,A3) HASH_JOIN(A3,A2) SM_JOIN(A3,A2)
ARTIST.ID=APPEARS.ARTIST_ID APPEARS . ALBUM_ID=ALBUM. ID

ARTIST ALBUM APPEARS
£2CMU-DB
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ARTISTPIAPPEARS
ALBUM

HASH_JOIN(A1,A3)

“~“-.__>

SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

ALBUMP<IAPPEARS
ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

HASH_JOIN(A2,A3)

ARTIST.ID=APPEARS.ARTIST_ID
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APPEARSPALBUM
ARTIST

SM_JOIN(A3,A2)

—

ARTIST ALBUM APPEARS

APPEARS . ALBUM_ID=ALBUM. ID



SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

APPEARS . ALBUM_ID=ALBUM. ID // \

ARPEARS . ARTIST_ID=ARTIST.ID
HASH_JOIN(A1 [><1A3,A2) SM_JOIN(A1D<IA3,A2) | HASH_JOIN(A2<IA3,A1) | SM_JOIN(A2D<IA3,A1) | HASH_JOIN(A31<IA2,A1) | SM_JOIN(A3p<A2,A1) ‘JKCIC
W APPEARS. ARTIST_IDAW V

ARTISTP<APPEARS ALBUMP<IAPPEARS APPEARSPALBUM
ALBUM ARTIST ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

SM_JOIN(A3,A2)

HASH_JOIN(A2,A3)

ARTIST.ID=APPEARS.ARTIST_ID \\ / APPEASS- ALEWRLTDSALBURLID

ARTIST ALBUM APPEARS

HASH_JOIN(A1,A3)
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SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

APPEARS . ALBUM_ID=ALBUM. ID /

APPEARS . ARTIST_ID=ARTIST.ID

HASH_JOIN(A3D<IA2,A1) XX

|

HASH_JOIN(A2D<IA3,A1)

HASH_JOIN(A1D<IA3,A2)

APPEARS . ARTIST_ID=ARTIST.ID

ARTISTP<APPEARS ALBUMP<IAPPEARS APPEARSPALBUM
ALBUM ARTIST ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

SM_JOIN(A3,A2)

HASH_JOIN(A2,A3)

ARTIST.ID=APPEARS.ARTIST_ID \\ / APPEASS- ALEWRLTDSALBURLID

ARTIST ALBUM APPEARS

HASH_JOIN(A1,A3)
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SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

HASH_JOIN(A2D<IA3,A1)

APPEARS . ARTIST_ID=ARTIST.ID

ALBUMP<IAPPEARS
ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

HASH_JOIN(A2,A3)

ARTIST ALBUM APPEARS
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SYSTEM R OPTIMIZER

ARTIST P APPEARS P< ALBUM

The query has ORDER BY on ARTIST. ID
HASH. TOINCAZDAZ, A1) but the plans do not carry an explicit

notion of the sorting properties.
APPEARS . ARTIST_ID=ARTIST.ID

ALBUMP<IAPPEARS
ARTIST

ALBUM. ID=APPEARS . ALBUM_ID

HASH_JOIN(A2,A3)

\

ARTIST ALBUM APPEARS
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ARTIST P APPEARS X ALBUM H

Hash Join ...
Estimates: output cardinality = ... M v( N
artist_id

ALBUMDIAPPEARS D Hash Join ... C b Artists File Scan

year, artist_name, album_name

HASH_JOIN(A2><IA3,A1)

ARTIST output cardinality = ... output cardinality = 10K
album id
ALBUM. ID=APPEARS . ALBUM_ID @ %
HASH_JOIN(A2,A3) AppearsFile Scan
Unclustered B-tree output cardinality = 10K
output cardinality = ... genre = ‘Blues’
ARTIST ALBUM APPEARS i i
Album
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MULTI-RELATION QUERY PLANNING

We just saw an
example of this,
the System R | — Start with nothing and then build up the plan to get

Choice #1: Bottom-up Optimization

\_ approach to the outcome that you want.

Choice #2: Top-down Optimization

— Start with the outcome that you want, and then
work down the tree to find the optimal plan that

gets you to that goal.

$ZCMU-DB
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$ZCMU-DB
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BOTTOM-UP OPTIMIZATION

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL,
Postgres, most open-source DBMSs.




TOP-DOWN OPTIMIZATION

Start with a logical plan of what we want the query
to be. Perform a branch-and-bound search to

traverse the plan tree by converting logical operators

into physical operators.
— Keep track of global best plan during search.

— Treat physical properties of data as first-class entities Graefe
during planning.

Example: MSSQL, Greenplum, CockroachDB
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TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

$ZCMU-DB
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ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)




TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

£CMU-DB
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ORDER-BY (ARTIST.ID)

* ARTIST P APPEARS P4 ALBUM

ARTISTPIAPPEARS

ALBUMPIAPPEARS

ARTISTPALBUM

ARTIST

ALBUM

APPEARS




TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)
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ORDER-BY (ARTIST.ID)

* ARTIST P APPEARS P4 ALBUM

SM_JOIN(A1D<A2,A3)

ARTISTPIAPPEARS

ALBUMPIAPPEARS

ARTISTPALBUM

ARTIST

ALBUM

APPEARS




TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)
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ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM

ARTIST ALBUM APPEARS




TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

$ZCMU-DB
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ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM
ARTIST ALBUM APPEARS




TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)
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ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

/‘ i

*ARTIST[XIAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM

ARTIST

ALBUM APPEARS




TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

/ i

-

RTISTPAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM

HASH_JOIN(A1,A2)

ARTIST

ALBUM APPEARS
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TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

/‘ i

ARTISTPAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM

HASH_JOIN(A1,A2)
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ARTIST
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TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

*ARTIST[XIAPPEARS ALBUMP<IAPPEARS ARTISTPMALBUM
HASH_JOIN(A1,A2)
L
ARTIST ALBUM APPEARS
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TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

SM_JOIN(A1D<A2,A3)

/ i

ARTISTPAPPEARS ALBUMPIAPPEARS ARTISTIXIALBUM

HASH_JOIN(A1,A2)
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TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical->Physical:
JOIN(A,B) to HASH_JOIN(A,B) /ﬂf T

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMDd%PPEARS ARTISTIXIALBUM

€« )
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)
HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB
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TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes
and traverse the tree.

— Logical—Logical:
JOIN(A,B) to JOIN(B,A)

— Logical-Physical:
JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer’ rules
that require input to have

ARTIST P APPEARS P4 ALBUM
ORDER-BY (ARTIST.ID)

/

SM_JOIN(A1D<A2,A3)

i

ARTISTPIAPPEARS

ALBUMP<

PPEARS

ARTISTPALBUM

HASH_JOIN(A1,A2)

certain properties.
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SM_JOIN(A1,A2)

ARTIST

ALBUM

APPEARS




TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes » ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.
— Logical-Logical: HASH_JOIN(A1>4A2,A3)

JOIN(A,B) to JOIN(B,A)
— Logical->Physical:
JOINCA,B) to HASH_JOIN(A,B) /,f T

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMD4+PPEARS ARTISTIXIALBUM

€« )
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)
HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB
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TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes » ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.

— Logical-Logical: HASH_JOIN( dA2,A3)
JOIN(A,B) to JOIN(B,A)

— Logical->Physical:
JOIN(A,B) to HASH_JOIN(A,B) / {

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMDd%PPEARS ARTISTIXIALBUM

€« )
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)
HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB
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TOP-DOWN OPTIMIZATION
ARTIST P<d APPEARS P ALBUM
» ORDER-BY(ARTIST.ID)
and traverse the tree.
— Logical—-Logical: QUICKSORT (A1.ID) HASH_JOIN( >dA2,A3)

JOIN(A,B) to JOIN(B,A)
— Logical->Physical:
JOINCA,B) to HASH_JOIN(A,B) /,f T

Invoke rules to create new nodes

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMN‘#PP EARS ARTISTIXIALBUM

€« )
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)
HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB
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TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.

— Logical-Logical: QUICKSORT(A1.ID)
JOINCA,B) to JOIN(B,A)

— Logical->Physical:
JOIN(A,B) to HASH_JOIN(A,B) / {

HASH_JOIN/ ~dA2,A3)

SM_JOIN(A1D<A2,A3)

ARTISTPAPPEARS ALBUMD4+PPEARS ARTISTIXIALBUM

€« )
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)
HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
$ZCMU-DB
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TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.

— Logical-Logical: QUICKSORT (A1.ID) HASH_JOIN( >dA2,A3)
JOIN(CA,B) to JOIN(B,A)

: . . SM_JOIN(A1PIA2,A3)
y LogscalRlysicat

JOIN(A,B) to HASH_JOIN(A,B) /g, T

ARTISTPAPPEARS ALBUMD4+PPEARS ARTISTIXIALBUM
—

Can create “enforcer” rules
that require input to have
certain properties.

SM_JOIN(A1,A2)

——

ARTIST ALBUM APPEARS

HASH_JOIN(A1,A2)
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TOP-DOWN OPTIMIZATION

Invoke rules to create new nodes ARTIST D APPEARS < ALBUM
ORDER-BY(ARTIST.ID)

and traverse the tree.
— Logical-Logical: QUICKSORT (A1.ID) HASH_JOIN( >dA2,A3)
JOIN(A,B) to JOIN(B,A)
— Logical->Physical: nash_ 301 I oda2, A3)
JOIN(A,B) to HASH_JOIN(A,B) /

SM_JOIN(A1D<A2,A3)

i

ARTISTPAPPEARS ALBUMD4+PPEARS ARTISTIXIALBUM

€« )
Can create “enforcer” rules L

that require input to have
certain properties.

SM_JOIN(A1,A2)

HASH_JOIN(A1,A2)

ARTIST ALBUM APPEARS
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Life so far ... single block QO

Often, we get nested queries.

— We could optimize each block using the methods we have discussed.

— However, this may be inefficient since we optimize each block
separately without a global approach.

What if we could flatten a nested query into a single block
and optimize it?

— Then, apply single-block query optimization methods.

— Even if one can't flatten to a single block, flattening to fewer blocks

is still beneficial.

$ZCMU-DB
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NESTED SUB-QUERIES

The DBMS treats nested sub-queries in the where
clause as functions that take parameters and return

a single value or set of values.

Two Approaches:

— Rewrite to de-correlate and/or flatten them.

— Decompose nested query and store results in a temporary
table.

$ZCMU-DB

15-445/645 (Spring 2024)



NESTED SUB-QUERIES: REWRITE

SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE|S.sid = R.sid
AND R.day = '2022-10-25"

SELECT name

FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2022-10-25"

$ZCMU-DB
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DECOMPOSING QUERIES

For harder queries, the optimizer breaks up
queries into blocks and then concentrates on
one block at a time.

Sub-queries are written to temporary tables
that are discarded after the query finishes.
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DECOMPOSING QUERIES

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating =|(SELECT MAX(S2.rating)

FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1 /r

Nested Block
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DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors

SELECT S.sid, MIN(R.day)

FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid

AND R.bid = B.bid

AND B.color = 'red'

AND S.rating =|(SELECT MAX(S2.rating)

FROM sailors S2)

GROUP BY S.sid
HAVING COUNT(*) > 1 /r

Nested Block
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DECOMPOSING QUERIES

SELECT MAX(rating) FROM sailors —

SELECT S.sid, MIN(R.day)
FROM sailors S, reserves R, boats B
WHERE S.sid = R.sid
AND R.bid = B.bid
AND B.color = 'red'
AND S.rating = ### «

GROUP BY S.sid
HAVING COUNT(*) > 1

$ZCMU-DB
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Inner Block

DECOMPOSING QUERIES

SELECT

MAX(rating) FROM sailors

SELECT
FROM
WHERE
AND
AND
AND

GROUP
HAVING

S.sid, MIN(R.day)

sailors S, reserves R, boats B
S.sid = R.sid

R.bid = B.bid

B.color = 'red'’

S.rating = #ii «

BY S.sid
COUNT(*) > 1

Outer Block

$ZCMU-DB
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EXPRESSION REWRITING

An optimizer transforms a query’s expressions
(e.g., WHERE/ON clause predicates) into the

minimal set of expressions.

Implemented using if/then/else clauses or a

pattern-matching rule engine.

— Search for expressions that match a pattern.

— When a match is found, rewrite the expression.
— Halt if there are no more rules that match.




EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE |1 = 0
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE|NOW() IS NULL;

$ZCMU-DB
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE [RANDOM() IS NULL,;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE [RANDOM() IS NULL,;

Merging Predicates

SELECT * FROM A
WHERE val BETWEEN 1 AND 100
OR val BETWEEN 50 AND 150;
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EXPRESSION REWRITING

Impossible / Unnecessary Predicates
SELECT * FROM A WHERE false;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE [RANDOM() IS NULL,;

Merging Predicates

SELECT * FROM A
WHERE val BETWEEN 1 AND 150;
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How do we calculate the cost of the plans?

We have formulas for the operator ?
algorithms (e.g. the cost formulaes ﬁ

for hash join, sort merge join, ...), X 5

but we also need to estimate the &I %

size of the output that an operator A 9) oredicate
produces. ﬁ

B
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COST ESTIMATION

The DBMS uses a cost model to predict the

behavior of a query plan given a database state.
— This is an internal cost that allows the DBMS to

compare one plan with another.

[t is too expensive to run every possible plan to
determine this information, so the DBMS need a

way to derive this information.
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COST MODEL COMPONENTS

Choice #1: Physical Costs
— Predict CPU cycles, I/O, cache misses, RAM consumption,

network messages...
— Depends heavily on hardware.

Choice #2: Logical Costs

— Estimate output size per operator.

— Independent of the operator algorithm.
— Need estimations for operator result sizes.




POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are weighted by
“magic’ constant factors.

Default settings are obviously for a disk-resident database without

a lot of memory:
— Processing a tuple in memory is 400x faster than reading a tuple from disk.
— Sequential I/0 is 4x faster than random I/0.
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POSTGRES COST MODEL

Uses a combination of CPU and I/O costs that are weighted by
“magic’ constant factors.

Default settings are obviously for a disk-resident database without

a lot of memory:
— Processing a tuple in memory is 400x faster than reading a tuple from disk.
— Sequential I/0 is 4x faster than random I/0.
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Us

6«

19.7.2. Planner Cost Constants

The cost variables described in this section are measured on an arbitrary scale. Only their relative
values matter, hence scaling them all up or down by the same factor will result in no change in the
planner's choices. By default, these cost variables are based on the cost of sequential page fetches;
that is, seq_page cost is conventionally set to 1.0 and the other cost variables are set with
reference to that. But you can use a different scale if you prefer, such as actual execution times in
milliseconds on a particular machine.

Note: Unfortunately, there is no well-defined method for determining ideal values for the
cost variables. They are best treated as averages over the entire mix of queries that a

particular installation will receive. This means that changing them on the basis of just a few
experiments is very risky.

S€q_page_cost (floating point)

Sets the planner's estimate of the cost of a disk page fetch that is part of a series of
sequential fetches. The default is 1.0. This value can be overridden for tables and indexes in
a particular tablespace by setting the tablespace parameter of the same name (see ALTER
TABLESPACE).

random_page_cost (floating point)

$ZCMU-DB
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STATISTICS

The DBMS stores internal statistics about tables,
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:

— Postgres/SQLite: ANALYZE

— Oracle/ MySQL: ANALYZE TABLE
— SQL Server: UPDATE STATISTICS
— DB2: RUNSTATS

$ZCMU-DB
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SELECTION CARDINALITY

The selectivity (sel) of a predicate P

is the fraction of tuples that qualify. SELECT * FROM people
WHERE age = 9

Equality Predicate: A=constant
— sel(A=constant) = #occurences/|R]|

#qfoamujffgzgéo
5 Distinct values
0 - of attribute

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
age
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SELECTION CARDINALITY

The selectivity (sel) of a predicate P

is the fraction of tuples that qualify. SELECT * FROM people
WHERE age = 9

Equality Predicate: A=constant

— sel(A=constant) = #occurences/|R]|
— Example: sel(age=9) =

#of occurgl 0
5 Distinct values
0 - of attribute

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
age
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SELECTION CARDINALITY

The selectivity (sel) of a predicate P

is the fraction of tuples that qualify. SELECT * FROM people
WHERE age = 9

Equality Predicate: A=constant

— sel(A=constant) = #occurences/|R]|
— Example: sel(age=9) =

#of occur@j_ 0
5

O ]

SC(age=9)=4

of attribute

Distinct values]

1 2 3 4 5 6 7 8
age

9110 11 12 13 14 15
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SELECTION CARDINALITY

The selectivity (sel) of a predicate P

is the fraction of tuples that qualify. SELECT * FROM people
WHERE age = 9

Equality Predicate: A=constant

— sel(A=constant) = #occurences/|R]|
— Example: sel(age=9) = 4/45

#of occur@j_ 0
5

O ]

SC(age=9)=4

of attribute

Distinct values]

1 2 3 4 5 6 7 8
age

9110 11 12 13 14 15

$ZCMU-DB

15-445/645 (Spring 2024)



$ZCMU-DB

SELECTION CARDINALITY

Assumption #1: Uniform Data

— The distribution of values (except for the heavy hitters) is the same.

Assumption #2: Independent Predicates

— The predicates on attributes are independent

Assumption #3: Inclusion Principle

— The domain of join keys overlap such that each key in the inner
relation will also exist in the outer table.
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CORRELATED ATTRIBUTES

Consider a database of automobiles:
— # of Makes = 10, # of Models = 100

And the following query:

— (make=“Honda” AND model=“Accord”)

With the independence and uniformity assumptions, the
selectivity is:

— 1/10x 1/100 = 0.001

But since only Honda makes Accords the real selectivity is
1/100 = 0.01

£=CMU-DB Source: Guy Lohman
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STATISTICS

Choice #1: Histograms
— Maintain an occurrence count per value (or range of values)

in a column.

Choice #2: Sketches

— Probabilistic data structure that gives an approximate count
for a given value.

Choice #3: Sampling
— DBMS maintains a small subset of each table that it then

uses to evaluate expressions to compute selectivity.




HISTOGRAMS

Our formulas are nice, but we assume that data
values are uniformly distributed.

Histogram
# of occurrences 10
~ 5
0 -

1 2 3 45 6 7 8 9 1011 12 13 14 15

Distinct values of attribute

15 Keys x 32-bits = 60 bytes
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EQUI-WIDTH HISTOGRAM

Maintain counts for a group of values instead of
each unique key. All buckets have the same width
(i.e., same # of value).

Non-Uniform Approximation

10
5
Bucket Ranges | -
12 3 45 6 7 8 91011 12 13 14 15
Buck'et #1 Buck'et #2 Buck!et #3 Buck'et #4 Buck'et #5
Count=8 Count=4 Count=15 Count=3 Count=14
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EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

Histogram (Quantiles)
10

1 2 3 45 6 7 8 9 1011 12 13 14 15
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EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

Histogram (Quantiles)
10
5
O |
1.2 3 45 6 7 8 9 10 11 12 13 14 15
Buck'et #1 Buck!:t #2 Buck'et #3 Buck'et #4
Count=12 Count=12 Count=9 Count=12
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EQUI-DEPTH HISTOGRAMS

Vary the width of buckets so that the total number
of occurrences for each bucket is roughly the same.

Histogram (Quantiles)
15
10 -
0 -
1-5 6-8 9-13 14-15
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SKETCHES

Probabilistic data structures that generate
approximate statistics about a data set.

Cost-model can replace histograms with sketches
to improve its selectivity estimate accuracy.

Most common examples:
— Count-Min Sketch (1988): Approximate frequency

count of elements in a set.
— HyperLogLog (2007): Approximate the number of

distinct elements in a set.
$2CMU-DB
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SAMPLING

Modern DBMSs also collect samples
from tables to estimate selectivities.

Update samples when the underlying

tables changes significantly.

sel(age>50) =1/3

$ZCMU-DB
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Table Sample

1001 |[Obama 61 Rested
1003 [Tupac 25 Dead
1005 |[Andy 41 I1lin

¥ ¥

SELECT AVG(age)
FROM people
WHERE age > 50

id name age status
1001 |Obama 61 Rested
1002 |Kanye 45 Weird
1003 [Tupac 25 Dead
1004 |Bieber 28 Crunk
1005 [Andy 41 I1lin
1006 |[TigerKing|59 Jailed
1 billion tuples




CONCLUSION

* Query optimization is critical for a database system.
* SQL -> logical plan -> physical plan.

* Flatten queries before going to the optimization part.
Expression handling is also important.

* QO enumeration can be bottom-up or top-down.

* Need to cost each plan, so need cost-estimation methods.
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4 Kl
(QSuggestions if you are going to build a QO

Rule 1: Read lots of papers, especially from the 80s & 90s.

— Expect new combinations, only partially new core inventions.

Rule 2: Early on, test various workloads on the QO.

— QOs harden over time as they “see” new workloads. Let them see more ASAP.

Rule 3: Throw away the initial one (or two) and start anew.

— The hard part is going to be nitty-gritty details like data structures and
pointers to shared objects; e.g., the list of predicates and the query graph
structure, ... You will NOT get this right in the first pass. Don’t try to patch;
be prepared to rewrite.
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NEXT CLASS

Transactions!
— aka the second hardest part about database systems
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