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A D M I N I S T R I V I A

Project #3 is due Sun April 7, 2024 @ 11:59pm

Mid-Term

→ See me during OH for exam viewing

Final Exam

→ Thu May 2, 2024, @ 05:30pm-08:30pm 
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50 + 50,000 +  1,000,000 writes 
(write to temp file T1)
5 tuples per page in T1

1,000,000 + 2,000 writes
(FK join, 10K tuples in temp T2)

2,000 + 4 writes
(10K/500 = 20 emps per dept)

SELECT distinct ename 
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

EMP DEPT

πename

σdname = ‘Toy’

×

σEMP.did = DEPT.did

3

4 reads, 1 write

Total: 2M I/Os

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered nonclustered nonclustered

clustered nonclustered
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SELECT distinct ename 
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

4

Total: 54K I/Os

Page NL, write to temp T1
50 + 50,000 + 2000 writes

Read temp T1
2,000 reads +4 writes

Read temp T2
4 reads + 1 writes

EMP DEPT

πename

σdname = ‘Toy’

⋈EMP.did = DEPT.did

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered nonclustered nonclustered

clustered nonclustered
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SELECT distinct ename 
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

5

Total: 7,159 I/Os

Sort-merge join (50 buffers)
3*(|Emp|+|Dept|) 

= 3150 + 2000 writes

Read temp T1
2,000 reads +4 writes

Read temp T2
4 reads + 1 writes

EMP DEPT

πename

σdname = ‘Toy’

⋈EMP.did = DEPT.did

Total: 3,151 I/Os

w/ Materialization

w/ Pipelining

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered nonclustered nonclustered

clustered nonclustered
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DEPTEMP

SELECT distinct ename 
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

6

Total: 37 I/Os

Access: Index (name)

3 reads + 1 write

Read temp T1, NL-IDX Join

1 + 3 (idx) + 20 (ptr chase) + 4 writes

Read temp T2
4 reads + 1 writes πename

σdname = ‘Toy’

EMPDEPT

⋈

Swap

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered nonclustered nonclustered

clustered nonclustered
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A n n o t a t e d  R A  Tr e e  a . k . a .  T h e  P h y s i c a l  P l a n

7

πename

σdname = ‘Toy’

EMP

DEPT

⋈EMP.did = DEPT.did

Access Path: Unclustered B-tree
Estimates: output cardinality = 1, …

NL-IDX using unclustered index on EMP.id
Estimates: output cardinality = 20, …

Access Path: File Scan
Estimates: output cardinality = 10K

Pipeline

Pipeline

Simple projection
Estimates: output cardinality = 20, …

To the scheduler 
to run the query
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Q u e r y  O p t i m i z a t i o n  (Q O)

8

Entire search space very large, 

as QO is NP-hard (w.r.t. # joins)

p2

p1

pi

pn

p3

Subspace that a 
practical QO searches

1. Identify candidate equivalent trees 
(logical). It is an NP-hard problem, so 
the space is large.

2. For each candidate, find the execution 
plan tree (physical). We need to 
estimate the cost of each plan.

3. Choose the best overall (physical) plan.

Practically: Choose from a subset of all 

possible plans.
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LO G I C A L  V S .  P H Y S I C A L  P L A N S

The optimizer generates a mapping of a logical algebra 
expression to the optimal equivalent physical algebra 
expression.

Physical operators define a specific execution strategy 
using an access path.
→ They can depend on the physical format of the data that they 

process (i.e., sorting, compression).
→ Not always a 1:1 mapping from logical to physical.

9
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Q U E R Y  O P T I M I Z AT I O N

Heuristics / Rules

→ Rewrite the query to remove (guessed) inefficiencies; e.g, always do 
selections first, or push down projections as early as possible.

→ These techniques may need to examine catalog, but they do not need to 
examine data.

Cost-based Search

→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick the one with the 

lowest cost.

10
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P r e d i c a t e  P u s h d o w n

11

DEPT EMP

πename

σdname = ‘Toy’

⋈
DEPT

πename

σdname = ‘Toy’
EMP

⋈

πename (σdname = ‘Toy’ (DEPT ⋈ EMP)) πename (EMP ⋈ σdname = ‘Toy’ (DEPT))rewrite
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R e p l a c e  C a r t e s i a n  P r o d u c t

12

EMP DEPT

×

σEMP.did = DEPT.did

EMP DEPT

⋈EMP.did = DEPT.did

… (σDEPT.did = EMP.did (DEPT X EMP)) … (EMP ⋈did DEPT)rewrite
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P r o j e c t i o n  P u s h d o w n

13

πEMP.ename (… ⋈did EMP) rewrite

πename

EMP

⋈did

πename

⋈did

EMP

πename, did

πEMP.ename (… ⋈did (πename, did EMP))
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4/3/
24

E q u i v a l e n c e
sP1 (sP2(R)) ≡ sP2 (sP1(R))  (s commutativity)

sP1⋀P2 … ⋀Pn (R) ≡ sP1(sP2( … sPn(R)))  (cascading s)

∏a1(R) ≡ ∏a1(∏a2(…∏ak (R)…)), ai ⊆ ai+1 (cascading ∏)

R ⋈ S ≡ S ⋈ R (join commutativity)

R ⋈ (S ⋈ T) ≡ (R ⋈ S) ⋈ T (join associativity)

sP (R X S) ≡ (R ⋈P S), if P is a join predicate

sP (R X S) ≡ sP1 (sP2(R) ⋈P4  sP3(S)) , where P = p1 ∧ p2 ∧ p3 ∧ p4

∏A1,A2,…An(sP (R)) ≡ ∏A1,A2,…An(sP (∏A1,…An, B1,… BMR)), where B1 … BM are columns in P

…
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A RC H I T E C T U R E  OV E R V I E W

Parser

System

Catalog

Cost

Model

Binder

Optimizer

SQL Query1

Abstract

Syntax

Tree

2 Logical 

Plan

3

Physical 

Plan

4

Application

Name→Internal ID

Schema Info

Estimates

15
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Q U E R Y  O P T I M I Z AT I O N

Heuristics / Rules

→ Rewrite the query to remove inefficient patterns.
→ These techniques may need to examine catalog, but they do 

not need to examine data.

Cost-based Search

→ Use a model to estimate the cost of executing a plan.
→ Enumerate multiple equivalent plans for a query and pick 

the one with the lowest cost.

16

Examples: predicate pushdown, replace 
cartesian product, projection pushdown … 
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C O S T- B A S E D  Q U E R Y  O P T I M I Z AT I O N
Let’s start with a certain style of QO: cost-based, bottom-up QO 
(the classic System-R optimizer approach)

Approach: Enumerate different plans for the query and estimate 
their costs.
→ Single relation.
→ Multiple relations.
→ Nested sub-queries.

It chooses the best plan it has seen for the query after exhausting all 
plans or some timeout.

17
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S I N G L E - R E L AT I O N  Q U E R Y  P L A N N I N G

Pick the best access method.
→ Sequential Scan
→ Binary Search (clustered indexes)
→ Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

18
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S Y S T E M  R  O P T I M I Z E R

Break the query into blocks and generate the 
logical operators for each block.

For each logical operator, generate a set of 
physical operators that implement it.
→ All combinations of join algorithms and access paths

Then, iteratively construct a “left-deep” join 
tree that minimizes the estimated amount of 
work to execute the plan.

Selinger

19

BA

C

D

outer inner

A left-deep tree

BA DC

A bushy tree

System-R optimizer does
NOT consider this “shape”
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S Y S T E M  R  O P T I M I Z E R

Step #1: Choose the best access paths 
to each table 

Step #3: Determine the join ordering 
with the lowest cost

ARTIST: Sequential Scan
APPEARS: Sequential Scan
ALBUM: Index Look-up on NAME

ARTIST  ⨝ APPEARS ⨝ ALBUM
APPEARS ⨝ ALBUM   ⨝ ARTIST
ALBUM   ⨝ APPEARS ⨝ ARTIST
APPEARS ⨝ ARTIST  ⨝ ALBUM
ARTIST  ×  ALBUM   ⨝ APPEARS
ALBUM   × ARTIST  ⨝ APPEARS
⋮           ⋮          ⋮

Step #2: Enumerate all possible join 
orderings for tables

SELECT ARTIST.NAME
  FROM ARTIST, APPEARS, ALBUM
 WHERE ARTIST.ID=APPEARS.ARTIST_ID 
   AND APPEARS.ALBUM_ID=ALBUM.ID
   AND ALBUM.NAME=“Andy's OG Remix”
 ORDER BY ARTIST.ID

20
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S Y S T E M  R  O P T I M I Z E R

ARTIST ALBUM APPEARS

ARTIST ⨝ APPEARS ⨝ ALBUM

21
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S Y S T E M  R  O P T I M I Z E R

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) SM_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A2,A3) HASH_JOIN(A3,A2) SM_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

21
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S Y S T E M  R  O P T I M I Z E R

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

21



15-445/645 (Spring 2024)

S Y S T E M  R  O P T I M I Z E R

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) SM_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) SM_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •SM_JOIN(A3⨝A2,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ARTIST_ID=ARTIST.ID

APPEARS.ARTIST_ID=ARTIST.ID

21
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S Y S T E M  R  O P T I M I Z E R

ARTIST ALBUM APPEARS

ARTIST⨝APPEARS
ALBUM

ALBUM⨝APPEARS
ARTIST

APPEARS⨝ALBUM
ARTIST • • •

HASH_JOIN(A1,A3) HASH_JOIN(A2,A3) SM_JOIN(A3,A2) • • •

HASH_JOIN(A1⨝A3,A2) HASH_JOIN(A2⨝A3,A1) HASH_JOIN(A3⨝A2,A1) • • •

ARTIST ⨝ APPEARS ⨝ ALBUM

ARTIST.ID=APPEARS.ARTIST_ID

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ALBUM_ID=ALBUM.ID

APPEARS.ARTIST_ID=ARTIST.ID

APPEARS.ARTIST_ID=ARTIST.ID

21
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S Y S T E M  R  O P T I M I Z E R

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

21
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S Y S T E M  R  O P T I M I Z E R

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID

APPEARS.ARTIST_ID=ARTIST.ID

21

The query has ORDER BY on ARTIST.ID 
but the plans do not carry an explicit 
notion of the sorting properties.
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28

Πyear, artist_name, album_name 

σgenre = ‘Blues’

Appears

Album

⋈album_id

Unclustered B-tree
output cardinality = …

Hash Join …
output cardinality =  …

File Scan
output cardinality = 10K

Artists

⋈artist_id

Hash Join …
Estimates: output cardinality =  …

File Scan
output cardinality = 10K

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS
ARTIST

HASH_JOIN(A2,A3)

HASH_JOIN(A2⨝A3,A1)

ARTIST ⨝ APPEARS ⨝ ALBUM

ALBUM.ID=APPEARS.ALBUM_ID
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M U LT I - R E L AT I O N  Q U E R Y  P L A N N I N G

Choice #1: Bottom-up Optimization

→ Start with nothing and then build up the plan to get 
to the outcome that you want.

Choice #2: Top-down Optimization

→ Start with the outcome that you want, and then 
work down the tree to find the optimal plan that 
gets you to that goal.

29

We just saw an 
example of this, 

the System R 
approach
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B OT TO M - U P  O P T I M I Z AT I O N

Use static rules to perform initial optimization.
Then use dynamic programming to determine
the best join order for tables using a divide-and-
conquer search method

Examples: IBM System R, DB2, MySQL, 
Postgres, most open-source DBMSs.

30
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TO P - D O W N  O P T I M I Z AT I O N

Start with a logical plan of what we want the query 
to be. Perform a branch-and-bound search to 
traverse the plan tree by converting logical operators 
into physical operators.
→ Keep track of global best plan during search.
→ Treat physical properties of data as first-class entities 

during planning.

Example: MSSQL, Greenplum, CockroachDB

Graefe

31



15-445/645 (Spring 2024)

TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

SM_JOIN(A1,A2)

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)

32
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TO P - D O W N  O P T I M I Z AT I O N
ARTIST ⨝ APPEARS ⨝ ALBUM

ORDER-BY(ARTIST.ID)
Invoke rules to create new nodes 
and traverse the tree.
→ Logical→Logical:

JOIN(A,B) to JOIN(B,A)
→ Logical→Physical: 

JOIN(A,B) to HASH_JOIN(A,B)

Can create “enforcer” rules
that require input to have 
certain properties.

ARTIST ALBUM APPEARS

SM_JOIN(A1⨝A2,A3)

HASH_JOIN(A1,A2)

ALBUM⨝APPEARS ARTIST⨝ALBUMARTIST⨝APPEARS

HASH_JOIN(A1⨝A2,A3)

SM_JOIN(A1,A2)
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TO P - D O W N  O P T I M I Z AT I O N
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L i f e  s o  f a r  …  s i n g l e  b l o c k  Q O

Often, we get nested queries.
→ We could optimize each block using the methods we have discussed.
→ However, this may be inefficient since we optimize each block 

separately without a global approach.

What if we could flatten a nested query into a single block 
and optimize it? 
→ Then, apply single-block query optimization methods.
→ Even if one can’t flatten to a single block, flattening to fewer blocks 

is still beneficial.
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N E S T E D  S U B - Q U E R I E S

The DBMS treats nested sub-queries in the where 
clause as functions that take parameters and return 
a single value or set of values.

Two Approaches:
→ Rewrite to de-correlate and/or flatten them.
→ Decompose nested query and store results in a temporary 

table.
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N E S T E D  S U B - Q U E R I E S :  R E W R I T E

SELECT name FROM sailors AS S
 WHERE EXISTS (
    SELECT * FROM reserves AS R
     WHERE S.sid = R.sid
       AND R.day = '2022-10-25'
 )

SELECT name
  FROM sailors AS S, reserves AS R
 WHERE S.sid = R.sid
   AND R.day = '2022-10-25'
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D E C O M P O S I N G  Q U E R I E S

For harder queries, the optimizer breaks up 
queries into blocks and then concentrates on 
one block at a time.

Sub-queries are written to temporary tables 
that are discarded after the query finishes.
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D E C O M P O S I N G  Q U E R I E S

SELECT S.sid, MIN(R.day)
  FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
   AND R.bid = B.bid
   AND B.color = 'red'
   AND S.rating = (SELECT MAX(S2.rating)
                     FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Nested Block

54



15-445/645 (Spring 2024)

D E C O M P O S I N G  Q U E R I E S

SELECT S.sid, MIN(R.day)
  FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
   AND R.bid = B.bid
   AND B.color = 'red'
   AND S.rating = (SELECT MAX(S2.rating)
                     FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Nested Block

SELECT MAX(rating) FROM sailors
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D E C O M P O S I N G  Q U E R I E S

SELECT S.sid, MIN(R.day)
  FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
   AND R.bid = B.bid
   AND B.color = 'red'
   AND S.rating = (SELECT MAX(S2.rating)
                     FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

SELECT MAX(rating) FROM sailors

###
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D E C O M P O S I N G  Q U E R I E S

SELECT S.sid, MIN(R.day)
  FROM sailors S, reserves R, boats B
 WHERE S.sid = R.sid
   AND R.bid = B.bid
   AND B.color = 'red'
   AND S.rating = (SELECT MAX(S2.rating)
                     FROM sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Outer Block

SELECT MAX(rating) FROM sailors

###
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E X P R E S S I O N  R E W R I T I N G

An optimizer transforms a query’s expressions 
(e.g., WHERE/ON clause predicates) into the 
minimal set of expressions.

Implemented using if/then/else clauses or a 
pattern-matching rule engine.
→ Search for expressions that match a pattern.
→ When a match is found, rewrite the expression.
→ Halt if there are no more rules that match.
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E X P R E S S I O N  R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;
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E X P R E S S I O N  R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;
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E X P R E S S I O N  R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A WHERE NOW() IS NULL;

SELECT * FROM A WHERE false;
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E X P R E S S I O N  R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;SELECT * FROM A WHERE false;

SELECT * FROM A WHERE RANDOM() IS NULL;

SELECT * FROM A WHERE false;
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E X P R E S S I O N  R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
 WHERE val BETWEEN 1 AND 100
    OR val BETWEEN 50 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE RANDOM() IS NULL;

SELECT * FROM A WHERE false;
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E X P R E S S I O N  R E W R I T I N G

Impossible / Unnecessary Predicates

Merging Predicates

SELECT * FROM A WHERE 1 = 0;

SELECT * FROM A
 WHERE val BETWEEN 1 AND 150;

SELECT * FROM A WHERE false;

SELECT * FROM A WHERE RANDOM() IS NULL;

SELECT * FROM A WHERE false;
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H o w  d o  w e  c a l c u l a t e  t h e  c o s t  o f  t h e  p l a n s ?

We have formulas for the operator 
algorithms (e.g. the cost formulaes 
for hash join, sort merge join, …), 
but we also need to estimate the 
size of the output that an operator 
produces.
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C O S T  E S T I M AT I O N

The DBMS uses a cost model to predict the 
behavior of a query plan given a database state.
→ This is an internal cost that allows the DBMS to 

compare one plan with another.

It is too expensive to run every possible plan to 
determine this information, so the DBMS need a 
way to derive this information.
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C O S T  M O D E L  C O M P O N E N T S

Choice #1: Physical Costs

→ Predict CPU cycles, I/O, cache misses, RAM consumption,  
network messages…

→ Depends heavily on hardware.

Choice #2: Logical Costs

→ Estimate output size per operator.
→ Independent of the operator algorithm.
→ Need estimations for operator result sizes.
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P O S TG R E S  C O S T  M O D E L

Uses a combination of CPU and I/O costs that are weighted by 
“magic” constant factors.

Default settings are obviously for a disk-resident database without 
a lot of memory:
→ Processing a tuple in memory is 400x faster than reading a tuple from disk.
→ Sequential I/O is 4x faster than random I/O.
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S TAT I S T I C S

The DBMS stores internal statistics about tables, 
attributes, and indexes in its internal catalog.

Different systems update them at different times.

Manual invocations:
→ Postgres/SQLite: ANALYZE
→ Oracle/MySQL: ANALYZE TABLE
→ SQL Server: UPDATE STATISTICS
→ DB2: RUNSTATS
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S E L E C T I O N  C A R D I N A L I T Y

The selectivity (sel) of a predicate P 
is the fraction of tuples that qualify.
Equality Predicate: A=constant
→ sel(A=constant) = #occurences/|R|
→ Example: sel(age=9) =

SELECT * FROM people 
 WHERE age = 9

Distinct values

of attribute

# of occurrences
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S E L E C T I O N  C A R D I N A L I T Y

Assumption #1: Uniform Data

→ The distribution of values (except for the heavy hitters) is the same.

Assumption #2: Independent Predicates

→ The predicates on attributes are independent

Assumption #3: Inclusion Principle

→ The domain of join keys overlap such that each key in the inner 
relation will also exist in the outer table.
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C O R R E L AT E D  AT T R I B U T E S

Consider a database of automobiles:
→ # of Makes = 10, # of Models = 100

 And the following query:
→  (make=“Honda” AND model=“Accord”)

With the independence and uniformity assumptions,  the 
selectivity is:
→ 1/10 × 1/100 = 0.001

But since only Honda makes Accords the real selectivity is 
1/100 = 0.01
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S TAT I S T I C S

Choice #1: Histograms

→ Maintain an occurrence count per value (or range of values) 
in a column.

Choice #2: Sketches

→ Probabilistic data structure that gives an approximate count 
for a given value.

Choice #3: Sampling

→ DBMS maintains a small subset of each table that it then 
uses to evaluate expressions to compute selectivity.
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H I S TO G R A M S
Our formulas are nice, but we assume that data 
values are uniformly distributed.
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15 Keys × 32-bits = 60 bytes

Distinct values of attribute

# of occurrences
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Non-Uniform Approximation

E Q U I -W I DT H  H I S TO G R A M
Maintain counts for a group of values instead of 
each unique key. All buckets have the same width 
(i.e., same # of value).

Bucket #1
Count=8

Bucket #2
Count=4

Bucket #3
Count=15

Bucket #4
Count=3

Bucket #5
Count=14

Bucket Ranges
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E Q U I - D E P T H  H I S TO G R A M S
Vary the width of buckets so that the total number 
of occurrences for each bucket is roughly the same.
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E Q U I - D E P T H  H I S TO G R A M S
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S K E TC H E S

Probabilistic data structures that generate 
approximate statistics about a data set.

Cost-model can replace histograms with sketches 
to improve its selectivity estimate accuracy.

Most common examples:
→ Count-Min Sketch (1988): Approximate frequency 

count of elements in a set.
→ HyperLogLog (2007): Approximate the number of 

distinct elements in a set.
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S A M P L I N G

Modern DBMSs also collect samples 
from tables to estimate selectivities.

Update samples when the underlying 
tables changes significantly.

⋮
1 billion tuples

1/3sel(age>50) =

SELECT AVG(age)
  FROM people 
 WHERE age > 50

id name age status
1001 Obama 61 Rested
1002 Kanye 45 Weird
1003 Tupac 25 Dead
1004 Bieber 28 Crunk
1005 Andy 41 Illin
1006 TigerKing 59 Jailed1001 Obama 61 Rested

1003 Tupac 25 Dead
1005 Andy 41 Illin

Table Sample
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C O N C L U S I O N

• Query optimization is critical for a database system. 

• SQL -> logical plan -> physical plan.

• Flatten queries before going to the optimization part. 
Expression handling is also important.

• QO enumeration can be bottom-up or top-down.

• Need to cost each plan, so need cost-estimation methods. 
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E s s e n t i a l  Q u e r y  O p t i m i z a t i o n  p a p e r s
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S u g g e s t i o n s  i f  yo u  a r e  g o i n g  t o  b u i l d  a  Q O

Rule 1: Read lots of papers, especially from the 80s & 90s.

→ Expect new combinations, only partially new core inventions.

Rule 2: Early on, test various workloads on the QO. 

→ QOs harden over time as they “see” new workloads. Let them see more ASAP.

Rule 3: Throw away the initial one (or two) and start anew.

→  The hard part is going to be nitty-gritty details like data structures and 
pointers to shared objects; e.g., the list of predicates and the query graph 
structure,  … You will NOT get this right in the first pass. Don’t try to patch; 
be prepared to rewrite. 
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N E X T  C L A S S

Transactions!
→ aka the second hardest part about database systems
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