—
jamegie |ntro to Database

University Systems (15-445/645)

Lecture #16

Concurrency
Control
Theory

SPRING 2024)) Prof. Jignesh Patel

$ZCMU-DB

15-445/645 (Spring 2024)

ADMINISTRIVIA

Project #3 is due Sun April 7, 2024 @ 11:59pm
— Q&A Session TBD

Final Exam
— Thu May 2, 2024 @ 05:30pm-08:30pm
— If you need (medical-based) accommodations, let the Profs

know.

— Don’t make travel plans before the final exam.

COURSE STA

Query Planning
A DBMS'’s concurrency control Concurrency Control

and recovery components Operator Execution

permeate throughout the design
of its entire architecture. Access Methods

Recovery

Buffer Pool Manager

Disk Manager

£CMU-DB

15-445/645 (Spring 2024)

TRANSACTION MANAGEMENT

Bank Balance : S100

Read (A); You
Check (A > S25); (Read Balance: $100 /
Zay '2‘5252); y (Sufficient funds?
— A —)5. es
Write (A); | s

$ZCMU-DB

15-445/645 (Spring 2024)

TRANSACTION MANAGEMENT

Read (A) y Bank Balance : $100
) ou

Check (A > S25); (Read Balance: $100 /
Pay ($25); Sufficient funds?

W e
A=A-25 =3 Pay $25
Write (A); (

New balance: $75

\ Bank Balance : $75!

$ZCMU-DB

15-445/645 (Spring 2024)

TRANSACTION MANAGEMENT

Read (A),' You Bank Balance : $100
Check (A > $25); (Read Balance: $100 4/
Pay ($25); Sufficient funds?
A=A-25 _»r. NES (
. Pay $25
Write e - i\:%
K, New balance: S75

\ Bank Balance : S75!

$ZCMU-DB

15-445/645 (Spring 2024)

TRANSACTION MANAGEMENT

Read (A),' Bank Balance : $100
You Your Significant Other
Check (A > $25); A
Pay ($25);
A=A-25;
Write (A);

$ZCMU-DB

15-445/645 (Spring 2024)

TRANSACTION MANAGEMENT

Read (A),' Bank Balance : $100
heck (A > $25): You </\> Your Significant Other
Check (A >); Read Balance: $100 Read Balance: $100
Pay (525);
A=A-25;
Write (A);

$ZCMU-DB

15-445/645 (Spring 2024)

TRANSACTION MANAGEMENT

Read (A); Bank Balance : $100
Check (A > $25): You A, Your Significant Other
eck (A>); (Read Balance: $100 Read Balance: $100)
Pa 25);
Y (S) Sufficient funds? Sufficient funds?
A=A-25;
Write (A);

$ZCMU-DB

15-445/645 (Spring 2024)

TRANSACTION MANAGEMENT

Read (A);

Check (A > $25);
Pay (525);
A=A-25;
Write (A);

$ZCMU-DB

15-445/645 (Spring 2024)

Yes

You

Bank Balance : S100

Your Significant Other

Read Balance: S100

-

Read Balance: S100

Sufficient funds?

Q
Q

Pay $25

Sufficient funds?

Pay $25

TRANSACTION MANAGEMENT

Read (A),‘ Bank Balance : $100
Check (A > $25 You A, Your Significant Other
eck (A>); (Read Balance: S100 Read Balance: S100)
Pay ($25); = =
Sufficient funds? Sufficient funds?
A=A-25; Yes(> e) Yes
Write (A); (ey ay 925)
New balance: $75 New balance: $75

$ZCMU-DB

15-445/645 (Spring 2024)

TRANSACTION MANAGEMENT

Read (A);

Check (A > $25);
Pay (525);
A=A-25;
Write (A);

$ZCMU-DB

15-445/645 (Spring 2024)

Yes

Bank Balance : S100

You

Your Significant Other

Read Balance: S100

-

Read Balance: S100

Sufficient funds?

Sufficient funds?

Pay $25

Pay $25

> Yes

Q
Q
C

New balance: S75

New balance: S75

)

—

Bank Balance : S75!

TRANSACTION MANAGEMENT

Read (A);

Check (A > $25);
Pay (525);
A=A-25;
Write (A);

$ZCMU-DB

15-445/645 (Spring 2024)

Yes

Bank Balance : S100

You

Your Significant Other

Read Balance: S100

-

Read Balance: S100

Sufficient funds?

Sufficient funds?

Pay $25

Pay $25

> Yes

Q
Q
C

New balance: S75

New balance: S75

)

—

Bank Balance : S75!

=

STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as they
arrive at the DBMS.

— One and only one txn can be running simultaneously in the DBMS.

Before a txn starts, copy the entire database to a new file

and make all changes to that file.
— If the txn completes successfully, overwrite the original file with
the new one.

— If the txn fails, just remove the dirty copy.

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

W hy do we want that?

— Better utilization/throughput
— Increased response times to users.

But we also would like:

— Correctness
— Fairness

PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
— Temporary Inconsistency (ok, unavoidable)

— Permanent Inconsistency (bad!)

We need formal correctness criteria to determine

whether an interleaving is valid.

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

DEFINITIONS

A txn may carry out many operations on the data

retrieved from the database

The DBMS is only concerned about what data is

read/written from/to the database.

— Changes to the “outside world” are beyond the scope of the
DBMS.

FORMAL DEFINITIONS

Database: A fixed set of named data objects (e.g., A, B, C, ...).

— We do not need to define what these objects are now.

— We will discuss how to handle inserts/deletes next week.

Transaction: A sequence of read and write operations

(RCA), W(B), ...)

— DBMS'’s abstract view of a user program

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

TRANSACTIONS IN SQL

A new txn starts with the BEGIN command.

The txn stops with either COMMIT or ABORT:
— If commit, the DBMS either saves all the txn’s changes or aborts it.

— If abort, all changes are undone so that it’s like as if the txn never

executed at all.

Abort can be either self-inflicted or caused by the DBMS.

$ZCMU-DB

15-445/645 (Spring 2024)

CORRECTNESS CRITERIA: ACID

Atomicity Allactions in txn happen, or none happen.
“All or nothing...”

Consistency If each txn is consistent and the DB starts

consistent, then it ends up consistent.
‘It looks correct to me...”

Isolation Execution of one txn is isolated from that

of other txns.
“All by myself...”

Durability Ifatxn commits, its effects persist.
“Twill survive...”

CORRECTNESS CRITERIA: ACID

Atomicity Allactions in txn happen, or none happen.
“All or nothing...”

Redo/Undo
mechanism

Integrity L
[Constraints Consistency If each txn is consistent and the DB starts
Keyiconstigints, CHECKS, TRIGGERS, ... consistent, then it ends up consistent.
hold before and after the txn completes. B »
It looks correct to me...
[Concurrency .
Conrol > Jgolation Execution of one txn is isolated from that
of other txns.
“All by myself...”
[Redo/ UndoL — . . .
mechanism Durablllty [f a txn commits, its effects persist.

“I will survive...”
£ CMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

TODAY'S AGENDA

Atomicity
Consistency
[solation

Durability

ﬂ ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:
— Commit after completing all its actions.
— Abort (or be aborted by the DBMS) after executing some

actions.

DBMS guarantees that txns are atomic.

— From user's point of view: txn always either executes all its

actions or executes no actions at all.

$ZCMU-DB

15-445/645 (Spring 2024)

ﬂ ATOMICITY OF TRANSACTIONS

Scenario #1:

— We take $100 out of an account, but then the DBMS aborts the txn before

we transfer it.

Scenario #2:

— We take $100 out of an account, but then there is a power failure before we

transfer it.

W hat should be the correct state of the account after both txns abort?

$ZCMU-DB

15-445/645 (Spring 2024)

ﬂMECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging

— DBMS logs all actions so that it can undo the actions of aborted
transactions.

— Maintain undo records both in memory and on disk.

— Think of this like the black box in airplanes...

Logging is used by almost every DBMS.
— Audit Trail

— Efficiency Reasons

$ZCMU-DB

15-445/645 (Spring 2024)

ﬂMECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to those copies.
Only when the txn commits is the page made visible to others.

— Originally from IBM System R.

Few systems do this:
— CouchDB

— Tokyo Cabinet
— LMDB (OpenLDAP)

$ZCMU-DB

15-445/645 (Spring 2024)

ﬁ CONSISTENCY

The database accurately models the real world.

— SQL has methods to specify integrity constraints (e.g., key definitions,
CHECK and ADD CONSTRAINT) and the DBMS will enforce them.

— Responsibility of the Application to define these constraints.

— DBMS ensures that all ICs are true before and after the transaction ends.

A note on Eventual Consistency.

— A committed transaction may see inconsistent results; e.g., may not see
the updates of an older committed transaction.

— Difficult for application programmers to reason about such semantics.

— The trend is to move away from such models.

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it were

running by itself,

— Easier programming model to reason about.

But the DBMS achieves concurrency by interleaving the

actions (reads/writes of DB objects) of txns.

We need a way to interleave txns but still make it appear

as if they ran one-at-a-time.

$ZCMU-DB

"MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the DBMS decides the

proper interleaving of operations from multiple transactions.

Two categories of protocols:
— Pessimistic: Don't let problems arise in the first place.

— Optimistic: Assume conflicts are rare; deal with them after they happen.

15-445/645 (Spring 2024)

" EXAMPLE

Assume at first A and B each have $1000.
T, transfers $100 from A’s account to B’s

T, credits both accounts with 6% interest.

T, T,
BEGIN BEGIN
A=A-100 A=A*1.06
B=B+100 B=B*1.06
COMMIT COMMIT

£CMU-DB

15-445/645 (Spring 2024)

EXAMPLE

Assume at first A and B each have $1000.

W hat are the possible outcomes of running T, and T,?

T,

T,

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

£CMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

EXAMPLE

Assume at first A and B each have $1000.
W hat are the possible outcomes of running T, and T,?

Many! But A+B should be:
— $2000%*1.06=$2120

There is no guarantee that T, will execute before T, or

vice-versa, if both are submitted together.

But the net effect must be equivalent to these two

transactions running serially in some order.

" EXAMPLE

Legal outcomes:
— A=954,B=1166 = A+B=$2120
— A=960,B=1160 = A+B=$2120

The outcome depends on whether T, executes

before T, or vice versa.

£CMU-DB

15-445/645 (Spring 2024)

" SERIAL EXECUTION EXAMPLE

Schedule Schedule
ST TS T ~ R YA R s\
i T, T, i I T, T, I
| [BEGIN : | BEGIN :
1] A=A-100 i ! A=Ax1.06 | I
| | B=B+100 : , B=B*1.06 | |
1| COMMIT o | COMMIT !
: BEGIN | == 1|BEGIN !
[A=A%1.06 | | 1| A=A-100 !
: B=B*1.06 : : B=B+100 :
L COMMIT - 1 | COMMIT i
[! ! i
[! i i
: A=954, B=1166 : : A=960, B=1160 :
\ J \ J

$ZCMU-DB

15-445/645 (Spring 2024)

" SERIAL EXECUTION EXAMPLE

A=954, B=1166 [«

8§ F F F F 8 B 8 8§ § B

» A=960, B=1160

Schedule Schedule
S OSAZ N) N) N
: T1 Tz | : T1 T2 |
1 | BEGIN : i BEGIN l
: A=A-100 I : A=A%1.06 | I
| | B=B+100 : , B=B*1.06 | |
1 | COMMIT 1 o ! COMMIT I
: BEGIN | == 1|BEGIN !
] A=A%1.06 | I 1 | A=A-100 I
: B=B*1.06 : : B=B+100 :
] COMMIT I I | COMMIT 1
i i i I
i i i I
| 1 | |
| I | I
\ / \ /

$2CMU-DB A+B=$2120

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

INTERLEAVING TRANSACTIONS

We interleave txns to maximize concurrency.
— Slow disk/network 1/0O.
— Multi-core CPUs.

When one txn stalls because of a resource (e.g., page
fault), another txn can continue executing and make

forward progress.

" INTERLEAVING EXAMPLE (GOOD)

Schedule Schedule

Faa il antnis i > K win iy /i v >
: T, T, I : T, T, i

| i
1 | BEGIN : 1 | BEGIN I
| A=A-100 : I | A=A-100 :
| el N ot :

=A%
: - COMMIT

| | B=B+100 | - BEGIN !
1 | COMMIT i i A=A%1.06 | 1
: B=B*1.06 : : B=Bx1.06 :
i COMMIT : ! COMMIT i
1 | | |
1 | | |
: A=954, B=1166 ! : A=960, B=1160 !
\ / \ /

$ZCMU-DB

15-445/645 (Spring 2024)

" INTERLEAVING EXAMPLE (GOOD)

Schedule Schedule

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=Ax1.06

B=B*1.06>
COMMIT

A=954, B=1166 |¢

NN N N B BN BN BN EEN BN BN B S . . -

A+B=$2120

o)
m
()
-
=

%
(O)
*
S
(&)
\- NN BN BN BN SN SN BN BN BN B B BN B e e .
,—--------~

BEGIN
A=Ax1.06
B=B*1.06
COMMIT

» A=960, B=1160

\---------'

’----

£CMU-DB

15-445/645 (Spring 2024)

" INTERLEAVING EXAMPLE (BAD)

A=954, B=1160

___5Schedule
1 T T,]
| [BEGIN :
1| A=A-100 [
- BEGIN | | A=954, B=1166
: A=Ax1.06 : E 2
B=Bx1.06
| comrr | | or
|| B=5+100 | A=960, B=1160
1 | COMMIT i
| |
| 1
| I
\ J

£CMU-DB

15-445/645 (Spring 2024)

" INTERLEAVING EXAMPLE (BAD)

Schedule DBMS View
U N ke ~ o e ~\
[T T, I : T T, :
| [BEGIN : | | BEGIN I
| A=A-100 I | R(A) :
, BEGIN : 1| W(A) I
[A=Ax1.06 | I : BEGIN :
: B=Bx1.06 : ! R(A)]
[COMMIT i l W(A) |
| B=B+100 ! : R(B) !
1 | COMMIT " I W(B) I
[i ! COMMIT I
! ' I | R(B) :
| — At |
I A=954, B=1160 : L | wes) i
N e e -/ | | coMMIT i
VN N N -’
A+B=$2114

£CMU-DB

15-445/645 (Spring 2024)

" INTERLEAVING EXAMPLE (BAD)

Schedule DBMS View

U N ke ~ o e ~\
[T T, I : T T, :
| [BEGIN : | | BEGIN I
L A=A-100 et :rjR(A) :
, BEGIN : W(A) I
[A=Ax1.06 ! BEGIN :
: B=B*1.06 =~ R(A) .
[COMMIT i W(A) |
| B=B+100 ! . R(B) !
I | COMMIT \' I W(B) I
: N COMMIT |
,) N , R(B) I
| A=954, B=1160 ! ™~ (s) i
N e e -/ | | coMMIT i

VN N N -’/

A+B=$2114

£CMU-DB

15-445/645 (Spring 2024)

" INTERLEAVING EXAMPLE (BAD)

A=954, B=1160

Schedule
SN W s AN N
| T T, i

| o

|| BEGIN i How do we judge whether a
! BEGIN | schedule is correct?
| A=A%1.06 | I
: B=B*1.06 | |
! 100 COMMIT ! If the schedule is equivalent to
| | commIT I some serial execution.
] :
| |
| |
\ 4

A+B=%$2114

$ZCMU-DB

15-445/645 (Spring 2024)

" FORMAL PROPERTIES OF SCHEDULES

Serial Schedule

— A schedule that does not interleave the actions of

different transactions.

Equivalent Schedules

— For any database state, the effect of executing the first
schedule is identical to the effect of executing the second

schedule.

$ZCMU-DB

15-445/645 (Spring 2024)

" FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

— A schedule that is equivalent to some serial execution of the transactions.
— If each transaction preserves consistency, every serializable schedule

preserves COIlSiSteIlCY.

Serializability is a less intuitive notion of correctness compared to
txn initiation time or commit order, but it provides the DBMS

with more flexibility in scheduling operations.

— More flexibility means better parallelism.

$ZCMU-DB

15-445/645 (Spring 2024)

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be implemented

efficiently based on the notion of “conflicting” operations.

Two operations conflict if:

— They are by different transactions,

— They are on the same object and one of them is a write.

Interleaved Execution Anomalies
— Read-WTrite Conflicts (R-W)

— Write-Read Conflicts (W-R)
— Write-Write Conflicts (W-W)

$ZCMU-DB

15-445/645 (Spri

ng 2024)

" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when reading the

same object multiple times.

\
i LS
| | BEGIN I
1| R(A) :
! BEGIN I
. R(A) :
: W(A) !
- COMMIT !
1 | R(A) I
1 | commIT !
I

A S N A /'

$ZCMU-DB

15-445/645 (Spring 2024)

" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when reading the

same object multiple times.

\
| i
I'| BEGIN |

$10 R(A) :
! BEGIN l
. R(A) :
! W(A) i
| commrT | I
1 | R(A) I
1 | commIT !
|
\ S N A /'

$ZCMU-DB

15-445/645 (Spring 2024)

" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when reading the

same object multiple times.

\
S T, |
| BEGIN !

$10 R(A) :
! BEGIN i
I R(A)

U W(A)

| commrT |}
1 | R(A) I
1 | commIT !
]

) /'

$ZCMU-DB

15-445/645 (Spring 2024)

$10
$19

" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when reading the

same object multiple times.

O/ LB -
JE N
! | BEGIN I
$10 4mmR(A) I
! BEGIN !
I R(A)
I W(A)
| commrT |}
$19 ERR(A) .
| | coMMIT :
! [
A S N A /

$ZCMU-DB

15-445/645 (Spring 2024)

$10
$19

" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values when reading the

same object multiple times.

$10
$19

$ZCMU-DB

15-445/645 (Spring 2024)

" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn that has

not committed yet.

\
. .|
| | BEGIN I
1| R(A) :
: W(A) BEGIN 0
. R(A) :
: W(A) I
I COMMIT :
! ABORT :
! I
! [
A S N A /

$ZCMU-DB

15-445/645 (Spring 2024)

" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn that has

not committed yet.

VA ammiay— o e N S ‘\
i LS
! | BEGIN I
$10 R(A) I
: W(A) BEGIN 0
. R(A) :
I W(A) I
| commrT | I
| ABORT i
| :
A S N A /'

$ZCMU-DB

15-445/645 (Spring 2024)

" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn that has

not committed yet.

BEGIN
R(A)
W(A)
COMMIT
ABORT

&P
—)
N O
=20 W
~ M
> > o
-
=
-------_,

’----

$ZCMU-DB

15-445/645 (Spring 2024)

" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn that has

not committed yet.

S N
| BEGIN !
$10 R(A) :
$12 W(A) BEGIN |
: R(A) D $12
I W(A) I
| commrT | I
| | ABORT .
| |
\~ ______________ /l

$ZCMU-DB

15-445/645 (Spring 2024)

" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn that has

not committed yet.

i
R(A) z $12
W(A) $14

ABORT

’----

$ZCMU-DB

15-445/645 (Spring 2024)

" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn that has

not committed yet.

i
R(A) z $12
W(A) : $14

$ZCMU-DB

15-445/645 (Spring 2024)

" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another txn that has

not committed yet.

$12
$14

$ZCMU-DB

15-445/645 (Spring 2024)

" WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted data from another

uncommitted txn.

\
i LS
| | BEGIN I
1| W(A) :
! BEGIN I
. W(A) :
: W(B) !
- COMMIT !
1 | W(B) I
1 | commIT !
I

A S N A /'

$ZCMU-DB

15-445/645 (Spring 2024)

" WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted data from another

uncommitted txn.

|
Alice ﬁI»wcm

COMMIT

$ZCMU-DB

15-445/645 (Spring 2024)

| W(A) : $19
| W(B) Bob

" WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted data from another

uncommitted txn.

)
T, :
i
$10 !
BEGIN I
W(A) $19
W(B) Bob
COMMIT :
Alice i
:
|

eCcMOUDB TEmmEmEmEmEmEEmEmEmEmsEmes=

15-445/645 (Spring 2024)

" FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what it means for a

schedule to be serializable.

— This is to check whether schedules are correct.

— This is not how to generate a correct schedule.

There are different levels of serializability:

— Conflict Serializability. Most DBMSs try to
support this.

— View Serializability
]

No DBMS can do this.

$ZCMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:

— They involve the same actions of the same transactions.

— Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:

— S is conflict equivalent to some serial schedule.
— Intuition: You can transform S into a serial schedule by swapping

consecutive non-conflicting operations of different transactions.

$ZCMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

Schedule
o e i e =g
X T, !
| | BEGIN BEGIN |
1| R(A) :
BRI |
! oy |
I\ R(B)/ |
1| W(B) :
| | commIT i
L R(B) :
: W(B) i
L COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

Schedule
Y N /T TTyY " ‘\
! T, T, !
| | BEGIN BEGIN |
1| R(A) :
1wy i
[R(A) :
1| R(B) ,
: W(A) i
1| W(B) :
| | commIT i
L R(B) :
: W(B) i
L COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

Schedule
Y N /T TTyY " ‘\
! T, T, !
| | BEGIN BEGIN |
1| R(A) :
: W(A) :

R(A
) R(B)/) :
: W(A) i
1| W(B) :
| | commIT i
L R(B) :
: W(B) i
L COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

Schedule
Y N /T TTyY " ‘\
! T, T, !
| | BEGIN BEGIN |
1| R(A) :
1WAy i
1 | R(B) :
[R(A) ,
: W(A) i
1| W(B) :
| | commIT i
L R(B) :
: W(B) i
L COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

Schedule

Y N /T TTyY " ‘\
! T, T, !
| | BEGIN BEGIN |
1| R(A) :
1WAy i
1 | R(B) :
’ W ||

W i
ey e™| |
| | commIT i
L R(B) :
: W(B) i
L COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

Schedule
Y N /T TTyY " ‘\
! T, T, !
| | BEGIN BEGIN |
1| R(A) :
1WAy i
1 | R(B) :
[R(A) ,
: W(B) i
[W(A) :
| | commIT i
L R(B) :
: W(B) i
L COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

Schedule
o e i e =g
X T, !
| | BEGIN BEGIN |
1| R(A) :
D WA |
HE® ey |
! W(B)A/v |
[W(A) :
| | commIT i
L R(B) :
: W(B) i
L COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

Schedule
Y N /T TTyY " ‘\
! T, T, !
| | BEGIN BEGIN |
1| R(A) :
1WAy i
1 | R(B) :
1| wW(B) ,
: R(A) i
L W(A) :
| | commIT i
L R(B) :
: W(B) i
L COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

’

£CMU-DB

15-445/645 (Spring 2024)

Schedule Serial Schedule
) No e) ~\ o e el e e e ~
s T; T, | 15,0 T oY)
| | BEGIN BEGIN | | | BEGIN :
1| R(A) : 1 | R(A) !
| Wem)] [W(A) I
1 | R(B) | 1 |RGB) |
: W(B) | = 1| W(B) :
: R(A) [| | COMMIT BEGIN I
I W(A) : . R(A) |
! | commIT ! | W(A) .
[R(B) : ! R(B) l
! W(B) i I W(B) :
| commrt | | | COMMIT | I
\ ’ \ 1

72
" CONFLICT SERIALIZABILITY INTUITION

____Schedule __
T, T,
BEGIN BEGIN
R(A)
R(A)
W(A)
W(A)

COMMIT COMMIT

’---------\

\---------’

’

£CMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

Schedule

]

BEGIN BEGIN
R(A)
RCA)

WCA)
WA /V
COMMI?QQOMMIT
X Al 2

’---------\
\---------’

’

£CMU-DB

15-445/645 (Spring 2024)

" CONFLICT SERIALIZABILITY INTUITION

’

£CMU-DB

15-445/645 (Spring 2024)

Schedule Serial Schedule
) No e) ~\ AT e e e e e 3\
1 T, T, : : T, T, I
| | BEGIN BEGIN | | | BEGIN :
1| RCA) : 1| RCA) l
! R(A)] | WCA) I
i W(A) ! | | COMMIT BEGIN I
: W(A)A/v : E I R(A) :
| commrPggmi®ommrr I ! WCA) |
[: l commIT ||
: > I I !
] i ! I
] i ! I
] i ! I
L ! : I
\ L \ !

" SERIALIZABILITY

Swapping operations is easy when there are
only two txns in the schedule. It’s

cumbersome when there are many txns.

Are there faster algorithms to figure this out

other than transposing operations?

$ZCMU-DB

15-445/645 (Spring 2024)

" DEPENDENCY GRAPHS

One node per txn. __Dependency Graph
Edge from T; to Tj if: i i
— An operation 0; of T; conflicts with an : :

operation 0; of T; and B et g

— 0, appears earlier in the schedule than 0;.

Also known as a precedence graph.

A schedule is conflict serializable iff its

dependency graph is acyclic.

$ZCMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #1

Schedule Dependency Graph
Ve mink i) abaly At v ~ AR e =y e e \
JR R : |
| | BEGIN BEGIN | ! !
1| R(A) : | |
1 W) i ! !
[RCA) - i I
: W(A) I I I
I R(B) ! N\).
] W(B) i
: coMMIT | I
1| R(B) :
1| W) i
1 | COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #1

Schedule Dependency Graph
PN ER - ~\ P A s iniminl vl \ulab dule \
i T [Pk S : :
| | BEGIN BEGIN | ! !
1| R(A) : | |
- WA -l i ! !
[RCA) - i I
: W(A) I I I
I R(B) ' N S\ Y,
I W(B) :
: coMMIT | I
1| R(B) :
1| W) i
1 | COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #1

Schedule Dependency Graph
TR ~\ VA2l ik v el \
T PR ! A !
| | BEGIN BEGIN | ! !
1| RCA) : I .
TG | ! l
[RCA) - I :
: W(A) I I I
| R(B) ' _).
| W(B) o lea) X oo/ S
: coMMIT | I
1| R(B) :
1| W) i
1 | COMMIT]

\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #1

Schedule Dependency Graph
" -------------- ~\ IN" "/ [Y N/ \
l T T, ! : A !
| | BEGIN BEGIN | ! !
ks ‘ () &)
W i
I YO | |
: W(A) I I I
| R(E) ! __ Lo N__ ;
W(B -
|
COMMIT i
| R(B)/ :
1| W) !
1 | COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #1

Schedule Dependency Graph
TR ~\ VA2l ik v el \
! T, T, : : A :
| | BEGIN BEGIN | ! !
I | R(A) |] !
- WA -l i ! !
1| oe |RA) : I !
. W(A) i [!
[B !
. ,@‘ R(B) : __ L 2N ___ y
| / com |

COMMIT i
| R(B) :
1| W) !
1 | COMMIT]
\ 4

’

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #1

Schedule Dependency Graph
NS) ~\ .) N \
o) T, T, : A !
| | BEGIN BEGIN | ! !
1| R(A) : | |
TG . ! !
1| oe |RA) - i I
I W(A) I I I
[B !
. ,@, R(B) ! Sl . ;
[W(B) , N
: / COMMIT I The cycle in the graph
! R(B) : reveals the problem.
1| VB : The output of T; depends on
1 | COMMIT F .

N T 7N L sz, and vice-versa.)

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph
l’ """""""" \‘ N2 (YN o \
D (D)
| | BEGIN ! : !
1 | R(A) 1 i 0
1| wea) BEGIN | | ! '
| R(A) | i :
: N O R
i BEGIN | COMMIT | _).
: R(B) " lee) XX lee) XX
[W(B) i
LI R(B) | COMMIT]
1| WEB) l
I | COMMIT !
T e A - _/

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph

R(A)

W(A) BEGIN
RCA)
W(A)

BEGIN | COMMIT

-----I

F-----

’_--------~
\---------‘

e e S J
R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph

l’ """""""" \‘ IN”=Z57Y N2 \
| T T804 T, 4 | G @ !
| | BEGIN ! : !
: R(A) : I A i

W(A) BEGIN l |
: \R(A) : : :
: W(A) ! I !
i BEGIN | COMMIT | _).
: R(B) " lee) XX lee) XX
[W(B) i
LI R(B) | COMMIT [
1| WEB) l
I | COMMIT [
T s I A — 7

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph

(A A e N N N /7 T TEmEmyY Nt I

e BEHONNG
BEGIN
R(A)

-----I

W(A) BEGIN
\R(A)
W(A)

BEGIN | COMMIT

F-----

’_--------~
\---------‘

e e S J
R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph

l’ """""""" \‘ IN”=Z57Y N2 \
| T T804 T, 4 | G @ !
| | BEGIN ! : !
1 | R(A) 1 i 0
1| wea) BEGIN | ! ! A I
1 R(A) 1 i :
: W | O
i BEGIN | COMMIT | _).
: R(B) " lee) XX lee) XX
[W(B)

: R(B)/ COMMIT :

1| WEB) l

I | COMMIT i

T ey I A 7

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph

l’ """""""" \‘ ’ \
| T1 Tz T3 I : :
| | BEGIN : ! !
1| R(A) I I 0
1| wea) BEGIN | ! ! I
| R(A) | i :
: W(A) ! I i
i BEGIN | COMMIT | \).
e :

i W(B)

! R(B)/ COMMIT :

1 | W(B) l

I | COMMIT [

N S N N 7

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #2 - THREE TRANSACTIONS

Schedule Dependency Graph
l’ """""""" \‘ ’ \
| T1 Tz T3 I : :
| | BEGIN : ! !
1| R(A) I I 0
1| wea) BEGIN | ! ! I
| R(A) | i :
: W(A) ! I i
i BEGIN | COMMIT | \).
e :
i W(B) i
! R(B)/COMMIT [
1 | W(B) l
I | COMMIT L
N S N N 7

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #2 - THREE TRANSACTIONS

Is this equivalent to a serial execution?

Schedule Dependency Graph
l’ """""""" \‘ ’ \
| T1 Tz T3 I : :
| | BEGIN : ! !
1| R(A) I I 0
1| wea) BEGIN | ! ! I
| R(A) | i :
: W(A) ! I i
i BEGIN | COMMIT | \).
e :
i W(B) i
! R(B)/COMMIT [
1 | W(B) l
I | COMMIT L
N S N N 7

£CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #2 - THREE TRANSACTIONS

Is this equivalent to a serial execution?

Schedule Dependency Graph

l’ """""""" \‘ ’ \
1 T, T, T3 I : :
| | BEGIN : ! !
1| R(A) L I I
1| wea) BEGIN | ! ! !
| R(A) | I I
: W(A) : I i
i BEGIN | COMMIT | \).
: °(5) :

: R/ﬁ$3«n :

: W(B) : Yes (TZ) T4, T3)

| LCOMMIT)} — Notice that T; should go after T,,

although it starts before it!
£2CMU-DB

15-445/645 (Spring 2024)

" EXAMPLE #3 - INCONSISTENT ANALYSIS

Schedule Dependency Graph
—————————————— ny ,----------——————-
T T, A
BEGIN BEGIN

F-----
-----I

+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
\

I I
if(B=0): cnt++

{ECHO cnt

[s it possible to modify only the
application logic so that schedule
produces a “correct” result but is

|
|
|
W(B) i , . \ 1.
COMMIT } still not conflict serializable?
P 4

£CMU-DB

15-445/645 (Spring 2024)

’

" VIEW SERIALIZABILITY

Alternative (broader) notion of serializability.

Schedules S, and S, are view equivalent if:

— If T, reads initial value of A in S,, then T, also reads initial value of A in S,.

— If T, reads value of A written by T, in S;, then T, also reads value of A written
by T, in S,.

— If T, writes final value of A in S,, then T, also writes final value of A in S,,.

$ZCMU-DB

15-445/645 (Spring 2024)

" VIEW SERIALIZABILITY

Schedule Dependency Graph

) NA e ™ NN XY

| T1 Tz T3 I : :

| | BEGIN ! | :

1|R(A) |BEGIN [I |

- W(A) ! i i

| BEGIN | | : :

1WAy : I I

. WCAY | : :

| | COMMIT | COMMIT | COMMIT | | I @ I
| |

| |

[i \ /

| |

| |

| I

\ J

£CMU-DB

15-445/645 (Spring 2024)

" VIEW SERIALIZABILITY

Schedule Dependency Graph

) NA e ™ ANV YV XY

1T T, LEN | A !

Ml | 1O ®

1 | R(A)SQ BEGIN [' ,

- W(A) ! i i

| BEGIN | | : :

1WAy : I I

. WCAY | : :

| | COMMIT | COMMIT | COMMIT | | I @ .
| |

|

[: \ /

| |

| |

| I

\ J

£CMU-DB

15-445/645 (Spring 2024)

" VIEW SERIALIZABILITY

Schedule Dependency Graph

) NA e ™ ANV YV XY

1T T, LEN | A !

| | BEGIN ! | :

1 | R(A)SQ BEGIN [I |

- W(A) ! i i

| BEGIN | | : :

1WAy : I I

. WA | 1 A !

| | COMMIT | COMMIT | COMMIT | | I G I
| |

| |

[i \ /

| |

| |

| I

\ J

£CMU-DB

15-445/645 (Spring 2024)

" VIEW SERIALIZABILITY

Schedule Dependency Graph

) NA e ™ ANV YV XY

1T T, LEN | A !

| | BEGIN ! | :

1 | R(A)SQ BEGIN [. |

- W(A) ! i A i

| BEGIN | | : :

1WAy : I I

. WA | 1 A !

| | COMMIT | COMMIT | COMMIT | | I G I
| |

| |

[i \ /

| |

| |

| I

\ J

£CMU-DB

15-445/645 (Spring 2024)

" VIEW SERIALIZABILITY

Schedule Dependency Graph

COMMIT | COMMIT | COMMIT

’-------\
\-------,

’_--------~
\---------‘

£CMU-DB

15-445/645 (Spring 2024)

" VIEW SERIALIZABILITY

Schedule Dependency Graph

COMMIT | COMMIT | COMMIT

’-------\
\-------,

’_--------~
\---------‘

£CMU-DB

15-445/645 (Spring 2024)

" VIEW SERIALIZABILITY

Schedule Schedule
" --------------- -\‘ " ---------------- \\
i T, T, T; 1 : T, T, T; I
| | BEGIN ! I | BEGIN :
1 | R(A) BEGIN [1| RCA) !
: W(A) ! 1| W(A) :
I BEGIN | 1| LIEW|T| commrt I
: W(A) : e | BEGIN :
[W(A) 1 : W(A) I
| | COMMIT | COMMIT | COMMIT ! , COMMIT !
[i I BEGIN |
L 1 : W(A) I
: : | COMMIT | |
[[| I
W 07— N\ |~ Y \ T L I N L -’

£CMU-DB

15-445/645 (Spring 2024)

" VIEW SERIALIZABILITY

Schedule Schedule
A T e e e e i o N e v aminanitmve S
| T T, T P T, T
| | BEGIN ! I | BEGIN :
: R(A) BEGIN : 1| RCA) !
W(A) 1| WCA)
[[I
| BEGIN | I VIEW[T | commrT |
o | IS]
|
|| COMMIT | COMMIT [eomzT"] | : COMMIT !
] , | | BEGEN~_ |
| L G P
[[i I
[L | I
W 07— N\ |~ Y \ T L I N L -’

£CMU-DB

15-445/645 (Spring 2024)

" VIEW SERIALIZABILITY

Schedule Schedule
LR IR VAR R WY AR YV AR R T Y N
I T T) : T T, T3 i
| | BEGIN I | BEGIN |
1| R(A) BEGIN 1| RCA) !
: W(A) 1| W(A) :
! | | COMMIT !
W(A) N I BEGIN
I C : W(A) I
| | COMMIT | COMMIT TCOMMET™ ! COMMIT !
| ! BECEN=~ |
| . Quew D
i Allows all conflict I
y serializable schedules [——— '/
N blind writes)

£CMU-DB

15-445/645 (Spring 2024)

2
SERIALIZABILITY

View Serializability allows for (slightly) more

schedules than Conflict Serializability does.

— But it is difficult to enforce efficiently.

Neither definition allows all schedules that you

would consider “serializable.”
— This is because they don’t understand the meanings of

the operations or the data (recall example #3)

$ZCMU-DB

15-445/645 (Spring 2024)

" SERIALIZABILITY

In practice, Conflict Serializability is what
systems support because it can be enforced

efficiently.

To allow more concurrency, some special cases

get handled separately at the application level.

$ZCMU-DB

15-445/645 (Spring 2024)

" UNIVERSE OF SCHEDULES

-
All Schedules View Serializable

Conflict Serializable

| Serial |

$2CMU-DB

15-445/645 (Spring 2024)

ﬂ TRANSACTION DURABILITY

All the changes of committed transactions should be

persistent.

— No torn updates.

— No changes from failed transactions.

The DBMS can use either logging or shadow paging to

ensure that all changes are durable.

$ZCMU-DB

15-445/645 (Spring 2024)

107

CORRECTNESS CRITERIA: ACID

Atomicity Allactions in txn happen, or none happen.
“All or nothing...”

Consistency If each txn is consistent and the DB starts

consistent, then it ends up consistent.
‘It looks correct to me...”

Isolation Execution of one txn is isolated from that

of other txns.
“All by myself...”

Durability Ifatxn commits, its effects persist.
- T will survive...”

15-445/645 (Spring 2024)

CONCLUSION

Concurrency control and recovery are among the most

important functions provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock requests and schedules
actions of different txns.

— Ensures that resulting execution is equivalent to executing the

txns one after the other in some order.

$ZCMU-DB

15-445/645 (Spring 2024)

ONCLUS

Concurrency control and recover

important functions provided by

Concurrency control is automati

— System automatically inserts lock/u

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Je

ey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,

Sanjay Ghemawar, Andrey Gubarev, Christopher Heiser; Peter Hochschild, Wilson Hsieh,

Sebastian Kanthak, Eugene Kogan, Hongyi Li,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szyn

Alexander Lloyd, Sergey Melnik, David Mwaura,

naniak,

Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It i
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions, This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This AP[
and its implementation are critical to supporting exter-

1 Introduction

tency over higher availability, as long as they can survive
1 or 2 datacenter failures,

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and in1ple:11enu‘ng important database
features on top of our dxslributed»syslcms infrastructure.
Even though many projects happily use Bigtable (9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
Wwide-area replication, (Similar claims have been made
by other authors (37).) Many applications at Google
have chosen to use Megastore [5) because of its semi.
relational data model and support for synchronous repli-
pite its relatively poor write throughput. As a
€, Spanner has evolved from a Bigtable-like

of transactions.

We believe it

Icati with per-
1s better to have application programmers dee.ﬂ o Eot_
formance problems due to overuse of transactloclilsh bo

' the lac
tlenecks arise, rather than always coding aroun

key-value store into a temporal multi-version
ata is stored in schematized semi-relational
is versioned, and each version is automati-
j@mped with its commit time; old versions of
ject to configurable garbage-collection poli-
dplications can read data at old timestamps.
iPorts general-purpose transactions, and pro-
based query language.

lally-distributed database, Spanner provides
esting features. First, the replication con-
br data can be dynmmcn]ly controlled at a
applications. Applications can specify con-
ftrol which datacenters contain which data,
is from its users (to control read latency),
as are from each other (to control write la-
OW many replicas are maintained (to con-

lynamically and transparently moved be-
ters by the system to balance resource us-
icenters. Second, Spanner has two features
It toimplement in a distributed database: jt

SO OSTT Z0T

$ZCMU-DB

15-445/645 (Spring 2024)

£CMU-DB

15-445/645 (Spring 2024)

Consistency Models

This clickable map (adapted from Bailis, Davidson, Fekete et al and Viotti & Vukolic) shows the
relationships between common consistency models for concurrent systems. Arrows show the rela-
tionship between consistency models. For inst strict serializable implies both serializability
and linearizability, linearizability impli quential istency, and so on. Colors show how

available each model is, for a distributed system on an asynchronous network.

Strict Serializable
Serializable Linearizable
Repeatable Snapshot Sequential
Read Isolation

f

Legend

Not available during some types of network failures. Some

Unavailable or all nodes must pause operations in order to ensure safety.

Available on every non-faulty node, so long as clients only
talk to the same servers, instead of switching to new ones.

Available on every non-faulty node, even when the network
is completely down.

https://jepsen.io/consistency

110

https://jepsen.io/consistency

111

PROJECT #3 - QUERY EXECUTION

You will add support for executing queries in
BusTub.

BusTub now supports (basic) SQL with a

rule-based optimizer for converting AST into

physical plans.

Prompt: A realistic photo of a bath tub with wheels
and cartoon eyes driving down a city street.

https://15445.courses.cs.cmu.edu/fall2023/project3/

$ZCMU-DB

15-445/645 (Spring 2024)

https://15445.courses.cs.cmu.edu/fall2022/project3/

PROJECT #3 - QUERY EXECUTION

SQL
Parser Binder
Query Processing T
(saL) Project 3
—l Optimizer Planner

Project 3 \

Query Execution Aggregation Scan Join
Project 4 Executors
Project 4 -
Transaction
Concurrency Control M
anager
Project 2
Table Heap
Storage
Buffer Pool Disk Manager
Manager

@CMU'DB Project 1

15-445/645 (Spring 2024)

PROJECT #3 - TASKS

Plan Node Executors

— Access Methods: Sequential Scan, Index Scan
— Modifications: Insert, Delete, Update
— Joins: Nest Loop Join, Hash Join

— Miscellaneous: Window Aggregation, Aggregation, Limit, Sort, Top-k.

Optimizer Rule:

— Convert a query with ORDER BY + LIMIT into a Top-k plan node.
— Convert Nested Loops to Hash Join

— Convert Sequential Scan to Index Scan

$ZCMU-DB

15-445/645 (Spring 2024)

114

PROJECT #3 - LEADERBOARD

The leaderboard requires you to add additional rules to the

optimizer to generate query plans.

— [t will be impossible to get a top ranking by just having the fastest

implementations in Project #1 + Project #2.

Tasks:
— Window Aggregation to Top-k

— Column Pruning
— More Aggressive Predicate Pushdown

— Bloom Filter for Hash Join

$ZCMU-DB

15-445/645 (Spring 2024)

DEVELOPMENT HINTS

Implement the Insert and Sequential Scan executors first so that you

can populate tables and read from it.

Follow the Project Road Map rather than the order of the writeup.
You do not need to worry about transactions.

The aggregation hash table does not need to be backed by your buffer
pool (i.e., use STL)

Gradescope is for meant for grading, not debugging. Write your own

local tests.
$2CMU-DB

15-445/645 (Spring 2024)

116

THINGS TO NOTE

Do not change any file other than the ones that you submit to

Gradescope.

Make sure you pull in the latest changes from the BusTub main

branch.
Post your questions on Piazza or come to TA office hours.

Compare against our solution in your browser!

$ZCMU-DB

15-445/645 (Spring 2024)

https://15445.courses.cs.cmu.edu/fall2022/bustub/

117

PLAGIARISM WARNING

Your project implementation must be your own work.
— You may not copy source code from other groups or the web.

— Do not publish your implementation on Github.

Plagiarism will not be tolerated.

See CMU's Policy on Academic Integrity for additional

information.

$ZCMU-DB

15-445/645 (Spring 2024)

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

Two-Phase Locking

Isolation Levels

£CMU-DB

15-445/645 (Spring 2024)

NEXT CLASS

