
Intro to Database
Systems (15-445/645)

SPRING 2024 Prof. Jignesh Patel

Lecture #16

Concurrency
Control
Theory

15-445/645 (Spring 2024)

A D M I N I S T R I V I A

Project #3 is due Sun April 7, 2024 @ 11:59pm
→ Q&A Session TBD

Final Exam

→ Thu May 2, 2024 @ 05:30pm-08:30pm
→ If you need (medical-based) accommodations, let the Profs

know.
→ Don’t make travel plans before the final exam.

2

15-445/645 (Spring 2024)

Concurrency Control

Recovery

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

C O U R S E S TAT U S

A DBMS’s concurrency control
and recovery components
permeate throughout the design
of its entire architecture.

3

15-445/645 (Spring 2024)

T R A N S AC T I O N M A N AG E M E N T

4

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

Bank Balance : $100

Sufficient funds?

Read Balance: $100
You

Pay $25
Yes

15-445/645 (Spring 2024)

T R A N S AC T I O N M A N AG E M E N T

4

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

Bank Balance : $100

Sufficient funds?

New balance: $75

Bank Balance : $75!

Read Balance: $100
You

Pay $25
Yes

15-445/645 (Spring 2024)

T R A N S AC T I O N M A N AG E M E N T

4

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

Bank Balance : $100

Sufficient funds?

New balance: $75

Bank Balance : $75!

Read Balance: $100
You

Pay $25
Yes

15-445/645 (Spring 2024)

T R A N S AC T I O N M A N AG E M E N T

7

Bank Balance : $100
You Your Significant Other

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

15-445/645 (Spring 2024)

T R A N S AC T I O N M A N AG E M E N T

7

Bank Balance : $100

Read Balance: $100 Read Balance: $100
You Your Significant Other

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

15-445/645 (Spring 2024)

T R A N S AC T I O N M A N AG E M E N T

7

Bank Balance : $100

Sufficient funds?Sufficient funds?

Read Balance: $100 Read Balance: $100
You Your Significant Other

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

15-445/645 (Spring 2024)

T R A N S AC T I O N M A N AG E M E N T

7

Bank Balance : $100

Sufficient funds?Sufficient funds?

Read Balance: $100 Read Balance: $100
You Your Significant Other

Pay $25
Yes

Pay $25
Yes

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

15-445/645 (Spring 2024)

T R A N S AC T I O N M A N AG E M E N T

7

Bank Balance : $100

Sufficient funds?Sufficient funds?

New balance: $75New balance: $75

Read Balance: $100 Read Balance: $100
You Your Significant Other

Pay $25
Yes

Pay $25
Yes

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

15-445/645 (Spring 2024)

T R A N S AC T I O N M A N AG E M E N T

7

Bank Balance : $100

Sufficient funds?Sufficient funds?

New balance: $75New balance: $75

Bank Balance : $75!

Read Balance: $100 Read Balance: $100
You Your Significant Other

Pay $25
Yes

Pay $25
Yes

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

15-445/645 (Spring 2024)

T R A N S AC T I O N M A N AG E M E N T

7

Bank Balance : $100

Sufficient funds?Sufficient funds?

New balance: $75New balance: $75

Bank Balance : $75!

Read Balance: $100 Read Balance: $100
You Your Significant Other

Pay $25
Yes

Pay $25
Yes

Read (A);
Check (A > $25);
Pay ($25);
A = A – 25;
Write (A);

15-445/645 (Spring 2024)

S T R AW M A N S Y S T E M

Execute each txn one-by-one (i.e., serial order) as they
arrive at the DBMS.
→ One and only one txn can be running simultaneously in the DBMS.

Before a txn starts, copy the entire database to a new file
and make all changes to that file.
→ If the txn completes successfully, overwrite the original file with

the new one.
→ If the txn fails, just remove the dirty copy.

14

15-445/645 (Spring 2024)

P RO B L E M S TAT E M E N T

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

→ Better utilization/throughput
→ Increased response times to users.

But we also would like:

→ Correctness
→ Fairness

15

15-445/645 (Spring 2024)

P RO B L E M S TAT E M E N T

Arbitrary interleaving of operations can lead to:
→ Temporary Inconsistency (ok, unavoidable)
→ Permanent Inconsistency (bad!)

We need formal correctness criteria to determine
whether an interleaving is valid.

16

15-445/645 (Spring 2024)

D E F I N I T I O N S

A txn may carry out many operations on the data
retrieved from the database

The DBMS is only concerned about what data is
read/written from/to the database.
→ Changes to the “outside world” are beyond the scope of the

DBMS.

17

15-445/645 (Spring 2024)

F O R M A L D E F I N I T I O N S

Database: A fixed set of named data objects (e.g., A, B, C, …).
→ We do not need to define what these objects are now.
→ We will discuss how to handle inserts/deletes next week.

Transaction: A sequence of read and write operations
(R(A), W(B), …)
→ DBMS’s abstract view of a user program

18

15-445/645 (Spring 2024)

T R A N S AC T I O N S I N S Q L

A new txn starts with the BEGIN command.

The txn stops with either COMMIT or ABORT:
→ If commit, the DBMS either saves all the txn’s changes or aborts it.

→ If abort, all changes are undone so that it’s like as if the txn never
executed at all.

Abort can be either self-inflicted or caused by the DBMS.

19

15-445/645 (Spring 2024)

C O R R E C T N E S S C R I T E R I A : AC I D

Atomicity All actions in txn happen, or none happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

20

15-445/645 (Spring 2024)

C O R R E C T N E S S C R I T E R I A : AC I D

Atomicity All actions in txn happen, or none happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

20

Redo/Undo
mechanism

Integrity
Constraints

Concurrency
Control

Redo/Undo
mechanism

Key constraints, CHECKS, TRIGGERS, …
hold before and after the txn completes.

15-445/645 (Spring 2024)

TO DAY ' S AG E N DA

Atomicity

Consistency

Isolation

Durability

22

15-445/645 (Spring 2024)

ATO M I C I T Y O F T R A N S AC T I O N S

Two possible outcomes of executing a txn:
→ Commit after completing all its actions.
→ Abort (or be aborted by the DBMS) after executing some

actions.

DBMS guarantees that txns are atomic.
→ From user's point of view: txn always either executes all its

actions or executes no actions at all.

A 23

15-445/645 (Spring 2024)

ATO M I C I T Y O F T R A N S AC T I O N S

Scenario #1:

→ We take $100 out of an account, but then the DBMS aborts the txn before
we transfer it.

Scenario #2:

→ We take $100 out of an account, but then there is a power failure before we
transfer it.

What should be the correct state of the account after both txns abort?

A 24

15-445/645 (Spring 2024)

M E C H A N I S M S F O R E N S U R I N G ATO M I C I T Y

Approach #1: Logging

→ DBMS logs all actions so that it can undo the actions of aborted
transactions.

→ Maintain undo records both in memory and on disk.
→ Think of this like the black box in airplanes…

Logging is used by almost every DBMS.
→ Audit Trail
→ Efficiency Reasons

A 25

15-445/645 (Spring 2024)

M E C H A N I S M S F O R E N S U R I N G ATO M I C I T Y

Approach #2: Shadow Paging

→ DBMS makes copies of pages and txns make changes to those copies.
Only when the txn commits is the page made visible to others.

→ Originally from IBM System R.

Few systems do this:
→ CouchDB
→ Tokyo Cabinet
→ LMDB (OpenLDAP)

A 26

15-445/645 (Spring 2024)

C O N S I S T E N C Y

The database accurately models the real world.
→ SQL has methods to specify integrity constraints (e.g., key definitions,

CHECK and ADD CONSTRAINT) and the DBMS will enforce them.
→ Responsibility of the Application to define these constraints.
→ DBMS ensures that all ICs are true before and after the transaction ends.

A note on Eventual Consistency.
→ A committed transaction may see inconsistent results; e.g., may not see

the updates of an older committed transaction.
→ Difficult for application programmers to reason about such semantics.
→ The trend is to move away from such models.

C 27

15-445/645 (Spring 2024)

I S O L AT I O N O F T R A N S AC T I O N S

Users submit txns, and each txn executes as if it were
running by itself.
→ Easier programming model to reason about.

But the DBMS achieves concurrency by interleaving the
actions (reads/writes of DB objects) of txns.

We need a way to interleave txns but still make it appear
as if they ran one-at-a-time.

I 28

15-445/645 (Spring 2024)

M E C H A N I S M S F O R E N S U R I N G I S O L AT I O N

A concurrency control protocol is how the DBMS decides the
proper interleaving of operations from multiple transactions.

Two categories of protocols:
→ Pessimistic: Don’t let problems arise in the first place.
→ Optimistic: Assume conflicts are rare; deal with them after they happen.

I 29

15-445/645 (Spring 2024)

E X A M P L E

Assume at first A and B each have $1000.

T1 transfers $100 from A’s account to B’s

T2 credits both accounts with 6% interest.

BEGIN
A=A-100
B=B+100
COMMIT

T1
BEGIN
A=A*1.06
B=B*1.06
COMMIT

T2

I 30

15-445/645 (Spring 2024)

E X A M P L E

Assume at first A and B each have $1000.

What are the possible outcomes of running T1 and T2?

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T1 T2

I 31

15-445/645 (Spring 2024)

E X A M P L E

Assume at first A and B each have $1000.

What are the possible outcomes of running T1 and T2?

Many! But A+B should be:
→ $2000*1.06=$2120

There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together.

But the net effect must be equivalent to these two
transactions running serially in some order.

I 32

15-445/645 (Spring 2024)

E X A M P L E

Legal outcomes:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes
before T2 or vice versa.

→ A+B=$2120
→ A+B=$2120

I 33

15-445/645 (Spring 2024)

S E R I A L E X E C U T I O N E X A M P L E

≡

A=954, B=1166 A=960, B=1160

T
IM

E

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule Schedule

I 34

15-445/645 (Spring 2024)

S E R I A L E X E C U T I O N E X A M P L E

≡

A=954, B=1166 A=960, B=1160

T
IM

E

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule Schedule

A+B=$2120

I 34

15-445/645 (Spring 2024)

I N T E R L E AV I N G T R A N S AC T I O N S

We interleave txns to maximize concurrency.
→ Slow disk/network I/O.
→ Multi-core CPUs.

When one txn stalls because of a resource (e.g., page
fault), another txn can continue executing and make
forward progress.

I 36

15-445/645 (Spring 2024)

I N T E R L E AV I N G E X A M P L E (G O O D)

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡
BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E

37

15-445/645 (Spring 2024)

I N T E R L E AV I N G E X A M P L E (G O O D)

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡
BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E

A+B=$2120

37

15-445/645 (Spring 2024)

I N T E R L E AV I N G E X A M P L E (B A D)

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Off by $6!

Schedule

T1 T2

A=954, B=1160

A+B=$2114

I

T
IM

E

39

15-445/645 (Spring 2024)

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

DBMS View

T1 T2

I N T E R L E AV I N G E X A M P L E (B A D)

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge whether a

schedule is correct?

If the schedule is equivalent to
some serial execution.

40

15-445/645 (Spring 2024)

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

DBMS View

T1 T2

I N T E R L E AV I N G E X A M P L E (B A D)

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge whether a

schedule is correct?

If the schedule is equivalent to
some serial execution.

40

15-445/645 (Spring 2024)

I N T E R L E AV I N G E X A M P L E (B A D)

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge whether a

schedule is correct?

If the schedule is equivalent to
some serial execution.

40

15-445/645 (Spring 2024)

F O R M A L P RO P E RT I E S O F S C H E D U L E S

Serial Schedule

→ A schedule that does not interleave the actions of
different transactions.

Equivalent Schedules

→ For any database state, the effect of executing the first
schedule is identical to the effect of executing the second
schedule.

I 43

15-445/645 (Spring 2024)

F O R M A L P RO P E RT I E S O F S C H E D U L E S

Serializable Schedule

→ A schedule that is equivalent to some serial execution of the transactions.
→ If each transaction preserves consistency, every serializable schedule

preserves consistency.

Serializability is a less intuitive notion of correctness compared to
txn initiation time or commit order, but it provides the DBMS
with more flexibility in scheduling operations.
→ More flexibility means better parallelism.

I 44

15-445/645 (Spring 2024)

C O N F L I C T I N G O P E R AT I O N S

We need a formal notion of equivalence that can be implemented
efficiently based on the notion of “conflicting” operations.

Two operations conflict if:
→ They are by different transactions,
→ They are on the same object and one of them is a write.

Interleaved Execution Anomalies

→ Read-Write Conflicts (R-W)
→ Write-Read Conflicts (W-R)
→ Write-Write Conflicts (W-W)

I 45

15-445/645 (Spring 2024)

R E A D -W R I T E C O N F L I C T S

Unrepeatable Read: Txn gets different values when reading the
same object multiple times.

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

T1 T2

I 46

15-445/645 (Spring 2024)

R E A D -W R I T E C O N F L I C T S

Unrepeatable Read: Txn gets different values when reading the
same object multiple times.

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

T1 T2

I 46

15-445/645 (Spring 2024)

R E A D -W R I T E C O N F L I C T S

Unrepeatable Read: Txn gets different values when reading the
same object multiple times.

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

T1 T2

I 46

15-445/645 (Spring 2024)

R E A D -W R I T E C O N F L I C T S

Unrepeatable Read: Txn gets different values when reading the
same object multiple times.

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

I 46

15-445/645 (Spring 2024)

R E A D -W R I T E C O N F L I C T S

Unrepeatable Read: Txn gets different values when reading the
same object multiple times.

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

I 46

15-445/645 (Spring 2024)

W R I T E - R E A D C O N F L I C T S

Dirty Read: One txn reads data written by another txn that has
not committed yet.

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

I 51

15-445/645 (Spring 2024)

W R I T E - R E A D C O N F L I C T S

Dirty Read: One txn reads data written by another txn that has
not committed yet.

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10

I 51

15-445/645 (Spring 2024)

W R I T E - R E A D C O N F L I C T S

Dirty Read: One txn reads data written by another txn that has
not committed yet.

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

I 51

15-445/645 (Spring 2024)

W R I T E - R E A D C O N F L I C T S

Dirty Read: One txn reads data written by another txn that has
not committed yet.

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12

I 51

15-445/645 (Spring 2024)

W R I T E - R E A D C O N F L I C T S

Dirty Read: One txn reads data written by another txn that has
not committed yet.

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I 51

15-445/645 (Spring 2024)

W R I T E - R E A D C O N F L I C T S

Dirty Read: One txn reads data written by another txn that has
not committed yet.

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I 51

15-445/645 (Spring 2024)

W R I T E - R E A D C O N F L I C T S

Dirty Read: One txn reads data written by another txn that has
not committed yet.

BEGIN
R(A)
W(A)

ABORT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I 51

15-445/645 (Spring 2024)

W R I T E -W R I T E C O N F L I C T S

Lost Update: One txn overwrites uncommitted data from another
uncommitted txn.

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

T1 T2

I 58

15-445/645 (Spring 2024)

W R I T E -W R I T E C O N F L I C T S

Lost Update: One txn overwrites uncommitted data from another
uncommitted txn.

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Bob
$19

T1 T2

$10

Alice

I 58

15-445/645 (Spring 2024)

W R I T E -W R I T E C O N F L I C T S

Lost Update: One txn overwrites uncommitted data from another
uncommitted txn.

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Bob
$19

T1 T2

$10

Alice

I 58

15-445/645 (Spring 2024)

F O R M A L P RO P E RT I E S O F S C H E D U L E S

Given these conflicts, we now can understand what it means for a
schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:
→ Conflict Serializability

→ View Serializability

Most DBMSs try to

support this.

No DBMS can do this.

I 61

15-445/645 (Spring 2024)

C O N F L I C T S E R I A L I Z A B L E S C H E D U L E S

Two schedules are conflict equivalent iff:
→ They involve the same actions of the same transactions.
→ Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:
→ S is conflict equivalent to some serial schedule.
→ Intuition: You can transform S into a serial schedule by swapping

consecutive non-conflicting operations of different transactions.

I 62

15-445/645 (Spring 2024)

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(B)

R(A)
W(A)

W(B)

Schedule

T1 T2

I

T
IM

E

63

15-445/645 (Spring 2024)

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

W(A)

R(A)
R(B)

W(B)

Schedule

T1 T2

I

T
IM

E

63

15-445/645 (Spring 2024)

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

W(A)

R(A)
R(B)

W(B)

Schedule

T1 T2

I

T
IM

E

63

15-445/645 (Spring 2024)

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

W(A)
R(A)

R(B)

W(B)

Schedule

T1 T2

I

T
IM

E

63

15-445/645 (Spring 2024)

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

W(A)
R(A)

R(B)

W(B)

Schedule

T1 T2

I

T
IM

E

63

15-445/645 (Spring 2024)

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(A)
R(B)

W(B)
W(A)

Schedule

T1 T2

I

T
IM

E

63

15-445/645 (Spring 2024)

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(A)
R(B)

W(B)
W(A)

Schedule

T1 T2

I

T
IM

E

63

15-445/645 (Spring 2024)

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

R(B)

W(A)
R(A)

W(B)

Schedule

T1 T2

I

T
IM

E

63

15-445/645 (Spring 2024)

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

≡
BEGIN
R(A)
W(A)

COMMIT

BEGIN

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

R(B)

W(A)
R(A)

W(B)

Schedule

T1 T2

Serial Schedule

T1 T2

I

T
IM

E

63

15-445/645 (Spring 2024)

Schedule

T1 T2

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)

W(A)
COMMIT

BEGIN

R(A)
W(A)

COMMITT
IM

E

I 72

15-445/645 (Spring 2024)

Schedule

T1 T2

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)

W(A)
COMMIT

BEGIN

R(A)
W(A)

COMMITT
IM

E

I 72

15-445/645 (Spring 2024)

Schedule

T1 T2

Serial Schedule

T1 T2

C O N F L I C T S E R I A L I Z A B I L I T Y I N T U I T I O N

BEGIN
R(A)

W(A)
COMMIT

BEGIN

R(A)
W(A)

COMMIT

BEGIN
R(A)
W(A)
COMMIT BEGIN

R(A)
W(A)
COMMIT

≢

T
IM

E

I 72

15-445/645 (Spring 2024)

S E R I A L I Z A B I L I T Y

Swapping operations is easy when there are
only two txns in the schedule. It’s
cumbersome when there are many txns.

Are there faster algorithms to figure this out

other than transposing operations?

I 75

15-445/645 (Spring 2024)

D E P E N D E N C Y G R A P H S

One node per txn.

Edge from Ti to Tj if:
→ An operation Oi of Ti conflicts with an

operation Oj of Tj and
→ Oi appears earlier in the schedule than Oj.

Also known as a precedence graph.
A schedule is conflict serializable iff its
dependency graph is acyclic.

Ti Tj

I

Dependency Graph

76

15-445/645 (Spring 2024)

E X A M P L E # 1

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

Schedule

T1 T2

Dependency Graph

I

T
IM

E

77

15-445/645 (Spring 2024)

E X A M P L E # 1

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

Schedule

T1 T2

Dependency Graph

I

T
IM

E

77

15-445/645 (Spring 2024)

E X A M P L E # 1

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A
Schedule

T1 T2

Dependency Graph

I

T
IM

E

77

15-445/645 (Spring 2024)

E X A M P L E # 1

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A
Schedule

T1 T2

Dependency Graph

I

T
IM

E

77

15-445/645 (Spring 2024)

E X A M P L E # 1

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

Schedule

T1 T2

Dependency Graph

I

T
IM

E

77

15-445/645 (Spring 2024)

E X A M P L E # 1

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

The cycle in the graph

reveals the problem.

The output of T
1
 depends on

T
2
, and vice-versa.

Schedule

T1 T2

Dependency Graph

I

T
IM

E

77

15-445/645 (Spring 2024)

E X A M P L E # 2 – T H R E E T R A N S AC T I O N S
Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

83

15-445/645 (Spring 2024)

E X A M P L E # 2 – T H R E E T R A N S AC T I O N S
Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

83

15-445/645 (Spring 2024)

E X A M P L E # 2 – T H R E E T R A N S AC T I O N S
Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

83

15-445/645 (Spring 2024)

E X A M P L E # 2 – T H R E E T R A N S AC T I O N S
Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

83

15-445/645 (Spring 2024)

E X A M P L E # 2 – T H R E E T R A N S AC T I O N S
Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

83

15-445/645 (Spring 2024)

E X A M P L E # 2 – T H R E E T R A N S AC T I O N S
Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

83

15-445/645 (Spring 2024)

E X A M P L E # 2 – T H R E E T R A N S AC T I O N S
Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

83

15-445/645 (Spring 2024)

E X A M P L E # 2 – T H R E E T R A N S AC T I O N S
Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

83

15-445/645 (Spring 2024)

E X A M P L E # 2 – T H R E E T R A N S AC T I O N S
Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

83

15-445/645 (Spring 2024)

E X A M P L E # 3 – I N C O N S I S T E N T A N A LY S I S

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Is it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

Schedule

T1 T2 A

Bif(A≥0): cnt++

if(B≥0): cnt++
ECHO cnt

I

T
IM

E
Dependency Graph

92

15-445/645 (Spring 2024)

V I E W S E R I A L I Z A B I L I T Y

Alternative (broader) notion of serializability.

Schedules S1 and S2 are view equivalent if:
→ If T1 reads initial value of A in S1, then T1 also reads initial value of A in S2.
→ If T1 reads value of A written by T2 in S1, then T1 also reads value of A written

by T2 in S2.
→ If T1 writes final value of A in S1, then T1 also writes final value of A in S2.

I 93

15-445/645 (Spring 2024)

V I E W S E R I A L I Z A B I L I T Y

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

94

15-445/645 (Spring 2024)

V I E W S E R I A L I Z A B I L I T Y

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A
T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

94

15-445/645 (Spring 2024)

V I E W S E R I A L I Z A B I L I T Y

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

94

15-445/645 (Spring 2024)

V I E W S E R I A L I Z A B I L I T Y

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

A

T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

94

15-445/645 (Spring 2024)

V I E W S E R I A L I Z A B I L I T Y

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A
AA

T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

94

15-445/645 (Spring 2024)

V I E W S E R I A L I Z A B I L I T Y

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A
AA

A

T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

94

15-445/645 (Spring 2024)

V I E W S E R I A L I Z A B I L I T Y

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡VIEW

Schedule

T1 T2 T3

Schedule

T1 T2 T3

I

T
IM

E

100

15-445/645 (Spring 2024)

V I E W S E R I A L I Z A B I L I T Y

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡VIEW

Schedule

T1 T2 T3

Schedule

T1 T2 T3

I

T
IM

E

100

15-445/645 (Spring 2024)

V I E W S E R I A L I Z A B I L I T Y

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡VIEW

Schedule

T1 T2 T3

Allows all conflict

serializable schedules

+ “blind writes”

Schedule

T1 T2 T3

I

T
IM

E

100

15-445/645 (Spring 2024)

S E R I A L I Z A B I L I T Y

View Serializability allows for (slightly) more
schedules than Conflict Serializability does.
→ But it is difficult to enforce efficiently.

Neither definition allows all schedules that you
would consider “serializable.”
→ This is because they don’t understand the meanings of

the operations or the data (recall example #3)

I 103

15-445/645 (Spring 2024)

S E R I A L I Z A B I L I T Y

In practice, Conflict Serializability is what
systems support because it can be enforced
efficiently.

To allow more concurrency, some special cases
get handled separately at the application level.

I 104

15-445/645 (Spring 2024)

All Schedules

U N I V E R S E O F S C H E D U L E S

View Serializable

Conflict Serializable

I

Serial

105

15-445/645 (Spring 2024)

T R A N S AC T I O N D U R A B I L I T Y

All the changes of committed transactions should be
persistent.
→ No torn updates.
→ No changes from failed transactions.

The DBMS can use either logging or shadow paging to
ensure that all changes are durable.

D 106

15-445/645 (Spring 2024)

C O R R E C T N E S S C R I T E R I A : AC I D

Atomicity All actions in txn happen, or none happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

107

15-445/645 (Spring 2024)

C O N C L U S I O N

Concurrency control and recovery are among the most
important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and schedules

actions of different txns.
→ Ensures that resulting execution is equivalent to executing the

txns one after the other in some order.

108

15-445/645 (Spring 2024)

C O N C L U S I O N

Concurrency control and recovery are among the most
important functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock requests and schedules

actions of different txns.
→ Ensures that resulting execution is equivalent to executing the

txns one after the other in some order.

109

15-445/645 (Spring 2024)

110

https://jepsen.io/consistency

Bo
nu
s

https://jepsen.io/consistency

15-445/645 (Spring 2024)

P RO J E C T # 3 – Q U E R Y E X E C U T I O N

You will add support for executing queries in
BusTub.

BusTub now supports (basic) SQL with a
rule-based optimizer for converting AST into
physical plans.

Prompt: A realistic photo of a bath tub with wheels

and cartoon eyes driving down a city street.

https://15445.courses.cs.cmu.edu/fall2023/project3/

111

https://15445.courses.cs.cmu.edu/fall2022/project3/

15-445/645 (Spring 2024)

P RO J E C T # 3 – Q U E R Y E X E C U T I O N

112

15-445/645 (Spring 2024)

P RO J E C T # 3 – TA S K S

Plan Node Executors

→ Access Methods: Sequential Scan, Index Scan
→ Modifications: Insert, Delete, Update
→ Joins: Nest Loop Join, Hash Join
→ Miscellaneous: Window Aggregation, Aggregation, Limit, Sort, Top-k.

Optimizer Rule:

→ Convert a query with ORDER BY + LIMIT into a Top-k plan node.
→ Convert Nested Loops to Hash Join
→ Convert Sequential Scan to Index Scan

113

15-445/645 (Spring 2024)

P RO J E C T # 3 - L E A D E R B OA R D

The leaderboard requires you to add additional rules to the
optimizer to generate query plans.
→ It will be impossible to get a top ranking by just having the fastest

implementations in Project #1 + Project #2.

Tasks:
→ Window Aggregation to Top-k
→ Column Pruning
→ More Aggressive Predicate Pushdown
→ Bloom Filter for Hash Join

114

15-445/645 (Spring 2024)

D E V E LO P M E N T H I N T S

Implement the Insert and Sequential Scan executors first so that you
can populate tables and read from it.

Follow the Project Road Map rather than the order of the writeup.

You do not need to worry about transactions.

The aggregation hash table does not need to be backed by your buffer
pool (i.e., use STL)

Gradescope is for meant for grading, not debugging. Write your own

local tests.

115

15-445/645 (Spring 2024)

T H I N G S TO N OT E

Do not change any file other than the ones that you submit to
Gradescope.

Make sure you pull in the latest changes from the BusTub main
branch.

Post your questions on Piazza or come to TA office hours.

Compare against our solution in your browser!

116

https://15445.courses.cs.cmu.edu/fall2022/bustub/

15-445/645 (Spring 2024)

P L AG I A R I S M WA R N I N G

Your project implementation must be your own work.
→ You may not copy source code from other groups or the web.
→ Do not publish your implementation on Github.

Plagiarism will not be tolerated.
See CMU's Policy on Academic Integrity for additional
information.

117

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

15-445/645 (Spring 2024)

N E X T C L A S S

Two-Phase Locking

Isolation Levels

118

