
Intro to Database
Systems (15-445/645)

SPRING 2024 Prof. Jignesh Patel

Lecture #17

Two-Phase
Locking

15-445/645 (Spring 2024)

L A S T C L A S S

Conflict Serializable

→ Verify using either the “swapping” method or dependency
graphs.

→ Any DBMS that says that they support “serializable”
isolation does this.

View Serializable

→ No efficient way to verify.
→ No DBMS that supports this.

2

15-445/645 (Spring 2024)

O B S E R VAT I O N

We need a way to guarantee that all execution
schedules are correct (i.e., serializable) without
knowing the entire schedule ahead of time.

Solution: Use locks to protect database objects.

3

15-445/645 (Spring 2024)

Lock Manager

E X E C U T I N G W I T H LO C K S

5

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule

T1 T2
T
IM

E

15-445/645 (Spring 2024)

Lock Manager

E X E C U T I N G W I T H LO C K S

5

Granted (T1→A)
BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule

T1 T2
T
IM

E

15-445/645 (Spring 2024)

Lock Manager

E X E C U T I N G W I T H LO C K S

5

Granted (T1→A)

Denied!

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule

T1 T2
T
IM

E

15-445/645 (Spring 2024)

Lock Manager

E X E C U T I N G W I T H LO C K S

5

Granted (T1→A)

Denied!

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule

T1 T2
T
IM

E

15-445/645 (Spring 2024)

Lock Manager

E X E C U T I N G W I T H LO C K S

5

Granted (T1→A)

Denied!

Released (T1→A)

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule

T1 T2
T
IM

E

15-445/645 (Spring 2024)

Lock Manager

E X E C U T I N G W I T H LO C K S

5

Granted (T1→A)

Denied!

Granted (T2→A)

Released (T1→A)

Released (T2→A)

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule

T1 T2
T
IM

E

15-445/645 (Spring 2024)

TO DAY ' S AG E N DA

Lock Types

Two-Phase Locking

Deadlock Detection + Prevention

Hierarchical Locking

10

15-445/645 (Spring 2024)

LO C K S V S . L ATC H E S

Locks Latches

Separate… User transactions Threads
Protect… Database Contents In-Memory Data Structures
During… Entire Transactions Critical Sections
Modes… Shared, Exclusive, Update,

Intention
Read, Write

Deadlock Detection & Resolution Avoidance
…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

Source: Goetz Graefe

11

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

15-445/645 (Spring 2024)

B A S I C LO C K T Y P E S

S-LOCK: Shared locks for reads.
X-LOCK: Exclusive locks for writes.

Shared Exclusive

Shared ✔ X
Exclusive X X

Compatibility Matrix

12

15-445/645 (Spring 2024)

B A S I C LO C K T Y P E S

S-LOCK: Shared locks for reads.
X-LOCK: Exclusive locks for writes.

Shared Exclusive

Shared ✔ X
Exclusive X X

Compatibility Matrix

13

15-445/645 (Spring 2024)

E X E C U T I N G W I T H LO C K S

Transactions request locks (or upgrades).

Lock manager grants or blocks requests.

Transactions release locks.

Lock manager updates its internal lock-table.
→ It keeps track of what transactions hold what locks and

what transactions are waiting to acquire any locks.

14

15-445/645 (Spring 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

E X E C U T I N G W I T H LO C K S

T1 T2
T
IM

E

10

15-445/645 (Spring 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

E X E C U T I N G W I T H LO C K S

Granted (T1→A)

T1 T2
T
IM

E

10

15-445/645 (Spring 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

E X E C U T I N G W I T H LO C K S

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

10

15-445/645 (Spring 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

E X E C U T I N G W I T H LO C K S

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

T1 T2
T
IM

E

10

15-445/645 (Spring 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

E X E C U T I N G W I T H LO C K S

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

10

15-445/645 (Spring 2024)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

E X E C U T I N G W I T H LO C K S

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

10

15-445/645 (Spring 2024)

C O N C U R R E N C Y C O N T RO L P ROTO C O L

Two-phase locking (2PL) is a concurrency control
protocol that determines whether a txn can access
an object in the database at runtime.

The protocol does not need to know all the queries
that a txn will execute ahead of time.

21

15-445/645 (Spring 2024)

T W O - P H A S E LO C K I N G

Phase #1: Growing

→ Each txn requests the locks that it needs from the DBMS’s
lock manager.

→ The lock manager grants/denies lock requests.

Phase #2: Shrinking

→ The txn is allowed to only release/downgrade locks that
it previously acquired. It cannot acquire new locks.

22

15-445/645 (Spring 2024)

T W O - P H A S E LO C K I N G

The txn is not allowed to acquire/upgrade locks
after the growing phase finishes.

#

o

f

L

o
c

k
s

TIME

Growing Phase Shrinking Phase

Transaction Lifetime

23

15-445/645 (Spring 2024)

T W O - P H A S E LO C K I N G

The txn is not allowed to acquire/upgrade locks
after the growing phase finishes.

TIME

Transaction Lifetime

#

o

f

L

o
c

k
s

2PL Violation!

Growing Phase Shrinking Phase

24

15-445/645 (Spring 2024)

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

E X E C U T I N G W I T H 2 P L
Schedule

T1 T2
T
IM

E

15

15-445/645 (Spring 2024)

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

E X E C U T I N G W I T H 2 P L

Granted (T1→A)

Schedule

T1 T2
T
IM

E

15

15-445/645 (Spring 2024)

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

E X E C U T I N G W I T H 2 P L

Granted (T1→A)

Denied!

Schedule

T1 T2
T
IM

E

15

15-445/645 (Spring 2024)

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

E X E C U T I N G W I T H 2 P L

Granted (T1→A)

Denied!

Released (T1→A)

Schedule

T1 T2
T
IM

E

15

15-445/645 (Spring 2024)

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

E X E C U T I N G W I T H 2 P L

Granted (T1→A)

Denied!

Released (T2→A)

Released (T1→A)

Granted (T2→A)

Schedule

T1 T2
T
IM

E

15

15-445/645 (Spring 2024)

T W O - P H A S E LO C K I N G

2PL on its own is sufficient to guarantee conflict
serializability because it generates schedules whose
precedence graph is acyclic.

But it is subject to cascading aborts.

30

15-445/645 (Spring 2024)

Schedule

T1 T2

2 P L – C A S C A D I N G A B O RT S

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.

Any information about T1
cannot be “leaked” to the
outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

T
IM

E

17

15-445/645 (Spring 2024)

Schedule

T1 T2

2 P L – C A S C A D I N G A B O RT S

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.

Any information about T1
cannot be “leaked” to the
outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

T
IM

E

ABORT

17

15-445/645 (Spring 2024)

Schedule

T1 T2

2 P L – C A S C A D I N G A B O RT S

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.

Any information about T1
cannot be “leaked” to the
outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

T
IM

E

ABORT

17

15-445/645 (Spring 2024)

Schedule

T1 T2

2 P L – C A S C A D I N G A B O RT S

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.

Any information about T1
cannot be “leaked” to the
outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

T
IM

E

ABORT

17

15-445/645 (Spring 2024)

Schedule

T1 T2

2 P L – C A S C A D I N G A B O RT S

This is a permissible schedule in
2PL, but the DBMS has to also
abort T2 when T1 aborts.

Any information about T1
cannot be “leaked” to the
outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

This is all wasted work!

T
IM

E

ABORT

17

15-445/645 (Spring 2024)

2 P L O B S E R VAT I O N S

There are potential schedules that are serializable but would
not be allowed by 2PL because locking limits concurrency.
→ Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

36

15-445/645 (Spring 2024)

S T RO N G S T R I C T T W O - P H A S E LO C K I N G

The txn is only allowed to release locks after it has
ended (i.e., committed or aborted).
Allows only conflict serializable schedules, but it is
often stronger than needed for some apps.

TIME

#

o

f

L

o
c

k
s

Release all locks at

end of txn.

Growing Phase Shrinking Phase

19

15-445/645 (Spring 2024)

S T RO N G S T R I C T T W O - P H A S E LO C K I N G

A schedule is strict if a value written by a txn is not
read or overwritten by other txns until that txn finishes.

Advantages:
→ Does not incur cascading aborts.
→ Aborted txns can be undone by just restoring original values of

modified tuples.

38

15-445/645 (Spring 2024)

E X A M P L E S

T1 – Move $100 from Andy’s account (A) to his
bookie’s account (B).
T2 – Compute the total amount in all accounts and
return it to the application.

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
ECHO A+B
COMMIT

T1 T2

39

15-445/645 (Spring 2024)

Schedule

T1 T2

N O N - 2 P L E X A M P L E

A=1000, B=1000

Initial Database State

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

T
IM

E

22

15-445/645 (Spring 2024)

Schedule

T1 T2

N O N - 2 P L E X A M P L E

A=1000, B=1000

Initial Database State

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

T
IM

E

22

15-445/645 (Spring 2024)

Schedule

T1 T2

N O N - 2 P L E X A M P L E

A=1000, B=1000

Initial Database State

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

T
IM

E

22

15-445/645 (Spring 2024)

Schedule

T1 T2

N O N - 2 P L E X A M P L E

A=1000, B=1000

Initial Database State

A+B=1900

T2 Output

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

T
IM

E

22

15-445/645 (Spring 2024)

2 P L E X A M P L E

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
ECHO A+B
COMMIT

Schedule

T1 T2 A=1000, B=1000

Initial Database State

A+B=2000

T2 Output

T
IM

E

44

15-445/645 (Spring 2024)

S T RO N G S T R I C T 2 P L E X A M P L E

BEGIN
X-LOCK(A)
R(A)
A=A-100
W(A)
X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
ECHO A+B
UNLOCK(A)
UNLOCK(B)
COMMIT

Schedule

T1 T2 A=1000, B=1000

Initial Database State
T
IM

E

23

15-445/645 (Spring 2024)

S T RO N G S T R I C T 2 P L E X A M P L E

BEGIN
X-LOCK(A)
R(A)
A=A-100
W(A)
X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
ECHO A+B
UNLOCK(A)
UNLOCK(B)
COMMIT

Schedule

T1 T2 A=1000, B=1000

Initial Database State
T
IM

E

23

15-445/645 (Spring 2024)

S T RO N G S T R I C T 2 P L E X A M P L E

BEGIN
X-LOCK(A)
R(A)
A=A-100
W(A)
X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
ECHO A+B
UNLOCK(A)
UNLOCK(B)
COMMIT

Schedule

T1 T2 A=1000, B=1000

Initial Database State

A+B=2000

T2 Output

T
IM

E

23

15-445/645 (Spring 2024)

All Schedules

U N I V E R S E O F S C H E D U L E S

View Serializable

Conflict Serializable

No Cascading

Aborts

Strong Strict 2PL

Serial

48

15-445/645 (Spring 2024)

2 P L O B S E R VAT I O N S

There are potential schedules that are serializable but would
not be allowed by 2PL because locking limits concurrency.
→ Most DBMSs prefer correctness before performance.

May still have “dirty reads”.
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

49

15-445/645 (Spring 2024)

Schedule

T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

I T J U S T G OT R E A L

T
IM

E

26

15-445/645 (Spring 2024)

Schedule

T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

I T J U S T G OT R E A L

Granted (T1→A)

T
IM

E

26

15-445/645 (Spring 2024)

Schedule

T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

I T J U S T G OT R E A L

Granted (T1→A)

Granted (T2→B)

T
IM

E

26

15-445/645 (Spring 2024)

Schedule

T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

I T J U S T G OT R E A L

Granted (T1→A)

Denied!

Granted (T2→B)

T
IM

E

26

15-445/645 (Spring 2024)

Schedule

T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

I T J U S T G OT R E A L

Granted (T1→A)

Denied!

Granted (T2→B)

Denied!T
IM

E

26

15-445/645 (Spring 2024)

Schedule

T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

I T J U S T G OT R E A L

Granted (T1→A)

Denied!

Granted (T2→B)

Denied!T
IM

E

26

15-445/645 (Spring 2024)

2 P L D E A D LO C K S

A deadlock is a cycle of transactions waiting for
locks to be released by each other.

Two ways of dealing with deadlocks:
→ Approach #1: Deadlock Detection

→ Approach #2: Deadlock Prevention

56

15-445/645 (Spring 2024)

D E A D LO C K D E T E C T I O N

The DBMS creates a waits-for graph to keep track of
what locks each txn is waiting to acquire:
→ Nodes are transactions
→ Edge from Ti to Tj if Ti is waiting for Tj to release a lock.

The system periodically checks for cycles in waits-for
graph and then decides how to break it.

57

15-445/645 (Spring 2024)

D E A D LO C K D E T E C T I O N

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

Schedule

T1 T2 T3

Waits-For Graph

29

15-445/645 (Spring 2024)

D E A D LO C K D E T E C T I O N

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

Schedule

T1 T2 T3

Waits-For Graph

29

15-445/645 (Spring 2024)

D E A D LO C K D E T E C T I O N

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

Schedule

T1 T2 T3

Waits-For Graph

29

15-445/645 (Spring 2024)

D E A D LO C K D E T E C T I O N

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

Schedule

T1 T2 T3

Waits-For Graph

29

15-445/645 (Spring 2024)

D E A D LO C K H A N D L I N G

When the DBMS detects a deadlock, it will select a “victim” txn
to rollback to break the cycle.

The victim txn will either restart or abort (more common)
depending on how it was invoked.

There is a trade-off between the frequency of checking for
deadlocks and how long txns wait before deadlocks are broken.

62

15-445/645 (Spring 2024)

D E A D LO C K H A N D L I N G : V I C T I M S E L E C T I O N

Selecting the proper victim depends on a lot of different
variables….
→ By age (lowest timestamp)
→ By progress (least/most queries executed)
→ By the # of items already locked
→ By the # of txns that we have to rollback with it

We also should consider the # of times a txn has been
restarted in the past to prevent starvation.

63

15-445/645 (Spring 2024)

D E A D LO C K H A N D L I N G : RO L L B AC K L E N G T H

After selecting a victim txn to abort, the DBMS can also
decide on how far to rollback the txn's changes.

Approach #1: Completely

→ Rollback entire txn and tell the application it was aborted.

Approach #2: Partial (Savepoints)

→ DBMS rolls back a portion of a txn (to break deadlock) and then
attempts to re-execute the undone queries.

64

15-445/645 (Spring 2024)

D E A D LO C K P R E V E N T I O N

When a txn tries to acquire a lock that is held by
another txn, the DBMS kills one of them to prevent a
deadlock.

This approach does not require a waits-for graph or
detection algorithm.

65

15-445/645 (Spring 2024)

D E A D LO C K P R E V E N T I O N

Assign priorities based on timestamps:
→ Older Timestamp = Higher Priority (e.g., T1 > T2)

Wait-Die (“Old Waits for Young”)

→ If requesting txn has higher priority than holding txn, then requesting

txn waits for holding txn.
→ Otherwise requesting txn aborts.

Wound-Wait (“Young Waits for Old”)

→ If requesting txn has higher priority than holding txn, then holding txn
aborts and releases lock.

→ Otherwise requesting txn waits.

66

15-445/645 (Spring 2024)

D E A D LO C K P R E V E N T I O N

BEGIN

X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮ BEGIN

X-LOCK(A)
 ⋮

Wait-Die

T1 waits

Wound-Wait

T2 aborts

T1 T2

T1 T2

38

15-445/645 (Spring 2024)

D E A D LO C K P R E V E N T I O N

BEGIN

X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮ BEGIN

X-LOCK(A)
 ⋮

Wait-Die

T1 waits

Wound-Wait

T2 aborts

Wait-Die

T2 aborts

Wound-Wait

T2 waits

T1 T2

T1 T2

38

15-445/645 (Spring 2024)

D E A D LO C K P R E V E N T I O N

Why do these schemes guarantee no deadlocks?

Only one “type” of direction allowed when waiting for a lock.

When a txn restarts, what is its (new) priority?

Its original timestamp to prevent it from getting starved for
resources like an old man at a corrupt senior center.

69

15-445/645 (Spring 2024)

O B S E R VAT I O N

All these examples have a one-to-one mapping from
database objects to locks.

If a txn wants to update one billion tuples, then it must
acquire one billion locks.

Acquiring locks is a more expensive operation than
acquiring a latch even if that lock is available.

70

15-445/645 (Spring 2024)

LO C K G R A N U L A R I T I E S

When a txn wants to acquire a “lock”, the DBMS can decide the
granularity (i.e., scope) of that lock.
→ Attribute? Tuple? Page? Table?

The DBMS should ideally obtain fewest number of locks that a
txn needs.

Trade-off between parallelism versus overhead.
→ Fewer Locks, Larger Granularity vs. More Locks, Smaller Granularity.

71

15-445/645 (Spring 2024)

DATA B A S E LO C K H I E R A RC H Y

Database

Table 1 Table 2

Attr 1 Attr 2 Attr n…

Page 1 Page 2 Page 3 Page n…

Tuple 1 Tuple 2 Tuple n…Tuple 3

39

15-445/645 (Spring 2024)

DATA B A S E LO C K H I E R A RC H Y

Database

Table 1 Table 2

Attr 1 Attr 2 Attr n…

T1

Page 1 Page 2 Page 3 Page n…

Tuple 1 Tuple 2 Tuple n…Tuple 3

39

15-445/645 (Spring 2024)

DATA B A S E LO C K H I E R A RC H Y

Database

Table 1 Table 2

Attr 1 Attr 2 Attr n…

T1

Page 1 Page 2 Page 3 Page n…

Tuple 1 Tuple 2 Tuple n…Tuple 3

39

15-445/645 (Spring 2024)

DATA B A S E LO C K H I E R A RC H Y

Database

Table 1 Table 2

Attr 1 Attr 2 Attr n…

T1

Page 1 Page 2 Page 3 Page n…

Tuple 1 Tuple 2 Tuple n…Tuple 3

Very Common

Slightly Rare

Common

Rare

Very Common

39

15-445/645 (Spring 2024)

I N T E N T I O N LO C K S

An intention lock allows a higher-level node to be locked in
shared or exclusive mode without having to check all
descendent nodes.

If a node is locked in an intention mode, then some txn is doing
explicit locking at a lower level in the tree.

76

15-445/645 (Spring 2024)

I N T E N T I O N LO C K S

Intention-Shared (IS)

→ Indicates explicit locking at lower level with S locks.
→ Intent to get S lock(s) at finer granularity.

Intention-Exclusive (IX)

→ Indicates explicit locking at lower level with X locks.
→ Intent to get X lock(s) at finer granularity.

Shared+Intention-Exclusive (SIX)

→ The subtree rooted by that node is locked explicitly in S mode and
explicit locking is being done at a lower level with X locks.

77

15-445/645 (Spring 2024)

C O M PAT I B I L I T Y M AT R I X

IS IX S SIX X
IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×
X × × × × ×

T
1
 H

ol
ds

T
2
 Wants

78

15-445/645 (Spring 2024)

LO C K I N G P ROTO C O L

Each txn obtains appropriate lock at highest level of
the database hierarchy.

To get S or IS lock on a node, the txn must hold at
least IS on parent node.

To get X, IX, or SIX on a node, must hold at least IX
on parent node.

79

15-445/645 (Spring 2024)

E X A M P L E

T1 – Get the balance of Andy’s off-shore bank account.

T2 – Increase bookie’s account balance by 1%.

What locks should these txns obtain?

→ Exclusive + Shared for leaf nodes of lock tree.
→ Special Intention locks for higher levels.

80

15-445/645 (Spring 2024)

E X A M P L E – T W O - L E V E L H I E R A RC H Y

Table R

Tuple 2Tuple 1 Tuple n…

T1

Read Andy’s record in R.

45

15-445/645 (Spring 2024)

E X A M P L E – T W O - L E V E L H I E R A RC H Y

Table R

Tuple 2Tuple 1 Tuple n…

T1

Read

Read Andy’s record in R.

45

15-445/645 (Spring 2024)

E X A M P L E – T W O - L E V E L H I E R A RC H Y

Table R

Tuple 2Tuple 1 Tuple n…

T1

Read

Read Andy’s record in R.

45

15-445/645 (Spring 2024)

E X A M P L E – T W O - L E V E L H I E R A RC H Y

Table R

Tuple 2Tuple 1 Tuple n…

T1

Read

Read Andy’s record in R.

45

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T W O - L E V E L H I E R A RC H Y

Table R

Tuple 2Tuple 1 Tuple n…

T1

IS
T1

Read

Read Andy’s record in R.

45

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T W O - L E V E L H I E R A RC H Y

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

Read

Read Andy’s record in R.

45

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T W O - L E V E L H I E R A RC H Y

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

T2

Write

Update bookie’s record in R.

45

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T W O - L E V E L H I E R A RC H Y

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

T2

X
T2IX

T2

Write

Update bookie’s record in R.

45

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Assume three txns execute at same time:
→ T1 – Scan all tuples in R and update one tuple.
→ T2 – Read a single tuple in R.
→ T3 – Scan all tuples in R.

89

Table R

Tuple 2Tuple 1 Tuple n…

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple nTuple 2 …

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

Tuple 2

Scan all tuples in R and
update one tuple.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

Read Read+Write

Tuple 2

Read

Scan all tuples in R and
update one tuple.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

Tuple 2

Scan all tuples in R and
update one tuple.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

SIX
T1

Tuple 2

Scan all tuples in R and
update one tuple.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

Tuple 2

Scan all tuples in R and
update one tuple.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1

Tuple 2

Read a single tuple in R.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1

Read

Tuple 2

Read a single tuple in R.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1IS

T2

Tuple 2

Read a single tuple in R.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Tuple 2

Read a single tuple in R.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Read

T3

Tuple 2

Read Read

Scan all tuples in R.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

Tuple 2

Scan all tuples in R.

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

Tuple 2

Scan all tuples in R.

S

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

T3

Tuple 2

Scan all tuples in R.

S

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

E X A M P L E – T H R E E T X N S

Table R

Tuple 1 Tuple n

T3

Tuple 2

Scan all tuples in R.

S
T3

…

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

15-445/645 (Spring 2024)

LO C K E S C A L AT I O N

The DBMS can automatically switch to coarser-grained
locks when a txn acquires too many low-level locks.

This reduces the number of requests that the lock
manager must process.

105

15-445/645 (Spring 2024)

LO C K I N G I N P R AC T I C E

Applications typically don't acquire a txn's locks manually
(i.e., explicit SQL commands).

Sometimes you need to provide the DBMS with hints to
help it to improve concurrency.
→ Update a tuple after reading it.

Explicit locks are also useful when doing major changes to
the database.

106

15-445/645 (Spring 2024)

LO C K TA B L E

Explicitly locks a table. Not part of the SQL standard.
→ Postgres/DB2/Oracle Modes: SHARE, EXCLUSIVE
→ MySQL Modes: READ, WRITE

107

LOCK TABLE <table> IN <mode> MODE;

LOCK TABLE <table> <mode>;

SELECT 1 FROM <table> WITH (TABLOCK, <mode>);

15-445/645 (Spring 2024)

S E L E C T. . . F O R U P DAT E

Perform a select and then sets an exclusive lock on
the matching tuples.

Can also set shared locks:
→ Postgres: FOR SHARE
→ MySQL: LOCK IN SHARE MODE

108

SELECT * FROM <table>
 WHERE <qualification> FOR UPDATE;

15-445/645 (Spring 2024)

C O N C L U S I O N

2PL is used in almost every DBMS.

Automatically generates correct interleaving:
→ Locks + protocol (2PL, SS2PL ...)
→ Deadlock detection + handling
→ Deadlock prevention

109

15-445/645 (Spring 2024)

N E X T C L A S S

Timestamp Ordering Concurrency Control

110

