—
jamegie |ntro to Database

University Systems (15-445/645)

Lecture #23

Distributed
OLTP

Databases

SPRING 2024)) Prof. Jignesh Patel

$ZCMU-DB

15-445/645 (Spring 2024)

LAST CLASS

System Architectures
— Shared-Everything, Shared-Disk, Shared-Nothing

Partitioning/Sharding
— Hash, Range, Round Robin

Transaction Coordination
— Centralized vs. Decentralized

$ZCMU-DB

15-445/645 (Spring 2024)

OLTP VS. OLAP

On-line Transaction Processing (OLTP):

— Short-lived read/write txns.
— Small footprint.
— Repetitive operations.

On-line Analytical Processing (OLAP):
— Long-running, read-only queries.

— Complex joins.

— Exploratory queries.

DECENTRALIZED COORDINATOR

Partitions

Application
Server

-U.
~
A N

((

$2CMU-DB

15-445/645 (Spring 2024)

DECENTRALIZED COORDINATOR

Application
Server

$2CMU-DB

15-445/645 (Spring 2024)

Partitions

DECENTRALIZED COORDINATOR

Begin Request

N

W Primary Node

Application
Server

$2CMU-DB

15-445/645 (Spring 2024)

Partitions

P2

r

1

DECENTRALIZED COORDINATOR

W Primary Node | Partitions

Application
Server

C3CMU ‘DB

— | \’@
—

Query N /)

r \

@

DECENTRALIZED COORDINATOR

Application
Server

$2CMU-DB

15-445/645 (Spring 2024)

W Primary Node

Partitions

DECENTRALIZED COORDINATOR

W Primary Node | Partitions

Commit Request P>

T -

[Y

Application
Server

$2CMU-DB

15-445/645 (Spring 2024)

DECENTRALIZED COORDINATOR

Application
Server

$ZCMU-DB

15-445/645 (Spring 2024)

Partitions

W Primary Node
Commit Request
~ —>
Safe to commit?

L]
u
.
.
.
.

OBSERVATION

Recall that our goal is to have multiple physical
nodes appear as a single logical DBMS.

We have not discussed how to ensure that all
nodes agree to commit a txn and then to make

sure it does commit if the DBMS decides it should.

— What happens if a node fails?

— What happens if messages show up late?

— What happens if the system does not wait for every node
to agree to commit?

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

IMPORTANT ASSUMPTION

We will assume that all nodes in a distributed
DBMS are well-behaved and under the same

administrative domain.
— If we tell a node to commit a txn, then it will commit the
txn (if there is not a failure).

[f you do not trust the other nodes in a distributed
DBMS, then you need to use a Byzantine Fault

Tolerant protocol for txns (blockchain).

— Blockchains are NOT good for high-throughput OLTP
workloads (also they are not good for OLAP).

https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/Byzantine_fault

TODAY'S AGENDA

Replication
Atomic Commit Protocols

Consistency Issues (CAP / PACELC)
Google Spanner

£2CMU-DB
15-445/645 (Spri

ng 2024)

REPLICATION

The DBMS can replicate a database across

redundant nodes to increase availability.

— Partitioned vs. Non-Partitioned
— Shared-Nothing vs. Shared-Disk

Design Decisions:

— Replica Configuration
— Propagation Scheme
— Propagation Timing
— Update Method

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

REPLICA CONFIGURATIONS

Approach #1: Primary-Replica

— All updates go to a designated primary for each object.

— The primary propagates updates to its replicas by
shipping logs.

— Read-only txns may be allowed to access replicas.

— If the primary goes down, then hold an election to select
a new primary.

Approach #2: Multi-Primary

— Txns can update data objects at any replica.
— Replicas must synchronize with each other using an
atomic commit protocol.

REPLICA CONFIGURATIONS

Primary-Replica

4> \ e’

T —~

-’ -

— \ i’

Primary —~
Replicas

$ZCMU-DB

15-445/645 (Spring 2024)

REPLICA CONFIGURATIONS

Primary-Replica

| Writes

Reads
@
—~
Primary —~
Replicas

£2CMU-DB
15-445/645 (Spri

ng 2024)

REPLICA CONFIGURATIONS

Primary-Replica

| Writes
Reads

Replicas

£2CMU-DB
15-445/645 (Spri

ng 2024)

REPLICA CONFIGURATIONS

Primary-Replica

| Writes Reads
Reads

Replicas

£2CMU-DB
15-445/645 (Spri

ng 2024)

REPLICA CONFIGURATIONS

Primary-Replica Multi-Primary
~ Writes Reads |
Reads

Replicas

$ZCMU-DB

15-445/645 (Spring 2024)

£2CMU-DB
15-445/645 (Spri

ng 2024)

REPLICA CONFIGURATIONS

Primary-Replica

| Writes Reads
Reads

Replicas

Multi-Primary

Writes
Reads

£2CMU-DB
15-445/645 (Spri

ng 2024)

REPLICA CONFIGURATIONS

Primary-Replica

| Writes Reads
Reads

Replicas

Multi-Primary

Writes
Reads

£2CMU-DB
15-445/645 (Spri

ng 2024)

K-SAFETY

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per
data object that must always be available.

[f the number of replicas goes below this

threshold, then the DBMS halts execution and
takes itself offline.

PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can
send the acknowledgement to application.

Propagation levels:
— Synchronous (Strong Consistency)
— Asynchronous (Eventual Consistency)

$ZCMU-DB

15-445/645 (Spring 2024)

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

$ZCMU-DB

15-445/645 (Spring 2024)

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and :Commit;]‘?
then waits for them to acknowledge that "@ @

they fully applied (i.e., logged) the
changes.

$ZCMU-DB

15-445/645 (Spring 2024)

PROPAGATION SCHEME

Approach #1: Synchronous @

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

$ZCMU-DB

15-445/645 (Spring 2024)

PROPAGATION SCHEME

Approach #1: Synchronous —
— The primary sends updates to replicas and m
.nn P

then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

$ZCMU-DB

15-445/645 (Spring 2024)

PROPAGATION SCHEME

Flush!

Approach #1: Synchronous @

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

$ZCMU-DB

15-445/645 (Spring 2024)

PROPAGATION SCHEME

Approach #1: Synchronous — i
— The primary sends updates to replicas and @

then waits for them to acknowledge that

they fully applied (i.e., logged) the -

changes. ok o

$ZCMU-DB

15-445/645 (Spring 2024)

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

$ZCMU-DB

15-445/645 (Spring 2024)

Flush!

Commit? l

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

$ZCMU-DB

15-445/645 (Spring 2024)

Flush!

Commit? l

‘III

Ack Ack

SQS

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

$ZCMU-DB

15-445/645 (Spring 2024)

Commit?l
‘III EEER

Ack l Ack

Commit? l
EEEN *

‘lll

Ack

Flush!

$ZCMU-DB

15-445/645 (Spring 2024)

PROPAGATION TIMING

Approach #1: Continuous

— The DBMS sends log messages immediately as it
generates them.
— Also need to send a commit/abort message.

Approach #2: On Commit

— The DBMS only sends the log messages for a txn to the
replicas once the txn is commits.

— Do not waste time sending log records for aborted txns.

$ZCMU-DB

15-445/645 (Spring 2024)

ACTIVE VS. PASSIVE

Approach #1: Active-Active

— A txn executes at each replica independently.
— Need to check at the end whether the txn ends up with
the same result at each replica.

Approach #2: Active-Passive

— Each txn executes at a single location and propagates the
changes to the replica.

— Can either do physical or logical replication.

— Not the same as Primary-Replica vs. Multi-Primary

ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across
nodes in a distributed DBMS.

— Commit Order = State Machine
— It does not matter whether the database's contents are
replicated or partitioned.

Examples:

— Two-Phase Commit (1970s)
— Three-Phase Commit (1983)
— Viewstamped Replication (1988)
— Paxos (1989)
—, ZAB (2008?)
— Raft (2013)

$ZCMU-DB

15-445/645 (Spring 2024)

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://dl.acm.org/doi/10.1145/62546.62549
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Apache_ZooKeeper
https://en.wikipedia.org/wiki/Raft_(algorithm)

ATOMIC COMMIT PROTOCOL

Resource Managers (RMs)
— Execute on different nodes

— Need to coordinate to decide on the fate of a txn:

Commit or Abort

— Informally, there is some way of progressing forward; htps//www.microsoft.com/en-
us/research/publication/consensus-on-transaction-commit/

Properties of the Commit Protocol
— Stability: Once the fate is decided, it can’t be changed.
— Consistency: All RMs end up in the same state.

Assumes “Liveness”:

e.g., enough nodes are alive and connected for the

duration of the protocol.
£2CMU-DB

15-445/645 (Spring 2024)

https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/
https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/

TWO-PHASE COMMIT (SUCCESS)

Commit Request
T
Iz |
IZZZ-

Application
Server
g = \ 4
=
8
~=
S
Q —
Node 1

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

TWO-PHASE COMMIT (SUCCESS)

AR Commit Request
T
IZam

Application

Server

A

Coordinator

Phasel: Prepare

Vy

"Node 1

~
S
L]
h§.
S
Node 2 ~
~
S
L]
h§.
S
Node 3

TWO-PHASE COMMIT (SUCCESS)

AR Commit Request
T
IZE
7
Application
Server
Phasel: Prepare
v
& - OK |
:S
S
O —
Node 1

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

TWO-PHASE COMMIT (SUCCESS)

Commit Request
T

IZE

OK

OK

3K
Application
Server
Phasel: Prepare
< —\ ~
= Phase2: Commit
S
O

"Node 1

$ZCMU-DB

15-445/645 (Spring 2024)

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

TWO-PHASE COMMIT (SUCCESS)

e B

o)
Application
Server

A

Coordinator

Commit Request

Phasel: Prepare

|
juvdidngavg

|
juvdidngavg

TWO-PHASE COMMIT (SUCCESS)

Success!

Application
Server

A

Coordinator

"Node 1

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

TWO-PHASE COMMIT (ABORT)

Commit Request

za
e I
Crrees

Application
Server

A

Coordinator

"Node 1

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

TWO-PHASE COMMIT (ABORT)

Commit Request
- [Sbaaini
IIZaa
7
Application
Server
Phasel: Prepare
- ¥
AP
:S 4
S
O —
Node 1

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

TWO-PHASE COMMIT (ABORT)

- I

Commit Request

ABORT!

7
Application
Server
Phasel: Prepare
s[>
g <
O =
Node 1

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

TWO-PHASE COMMIT (ABORT)

Aborted

EE?!

Application
Server

ABORT!

A

Coordinator

"Node 1

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

TWO-PHASE COMMIT (ABORT)

Aborted

EE?!

Application
Server

Phase2: Abort

ABORT!

A

Coordinator

"Node 1

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

TWO-PHASE COMMIT (ABORT)

ABORT!

OK

AR Aborted
mm, LT
ZZ
IZZZ_
Application
Server
o
§ Phase2: Abort
S
~
S
O

"Node 1

$ZCMU-DB

15-445/645 (Spring 2024)

|
juvdidngavg

|
juvdidngavg

TWO-PHASE COMMIT

Each node records the inbound/outbound
messages and outcome of each phase in a non-
volatile storage log.

On recovery, examine the log for 2PC messages:

— If local txn in prepared state, contact coordinator.

— Iflocal txn not in prepared, abort it.

— If local txn was committing and node is the coordinator,
send COMMIT message to nodes.

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

TWO-PHASE COMMIT FAILURES

What happens if coordinator crashes?

— Participants must decide what to do after a timeout.
— System is not available during this time.

What happens if participant crashes?

— Coordinator assumes that it responded with an abort if it
has not sent an acknowledgement yet.

— Again, nodes use a timeout to determine whether a
participant is dead.

2PC OPTIMIZATIONS

Early Prepare Voting (Rare)

— If you send a query to a remote node that you know will
be the last one to execute in this txn, then that node will
also return their vote for the prepare phase with the
query result.

Early Ack After Prepare (Common)

— If all nodes vote to commit a txn, the coordinator can
send the client an acknowledgement that their txn was
successful before the commit phase finishes.

$ZCMU-DB

15-445/645 (Spring 2024)

EARLY ACKNOWLEDGEMENT

Commit Request
- [i
Iz |
IZZZ-
Application

Server

g = \ 4

=

8

~=

S

U —

Node 1

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

EARLY ACKNOWLEDGEMENT

AR Commit Request
- [i
IIZaa
7
Application
Server
Phasel: Prepare
- ¥
AP
:S 4
S
O —
Node 1

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

EARLY ACKNOWLEDGEMENT

Commit Request
T
IZam

OK

7
Application
Server
Phasel: Prepare
- ¥

[A
N
s
Q

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

EARLY ACKNOWLEDGEMENT

Success!

Application
Server

Phasel: Prepare

OK

|
juvdidngavg

Node 2 ~

A

Coordinator

|
juvdidngavg

Node 3

EARLY ACKNOWLEDGEMENT

OK

OK

A /
o Success!
ZZ
ZZ

Application
Server
Phasel: Prepare
< —\ =
§ Phase2: Commit
S
@)

"Node 1

$ZCMU-DB

15-445/645 (Spring 2024)

|
juvdidngavg

Node 2 ~

|
juvdidngavg

Node 3

EARLY ACKNOWLEDGEMENT

Application
Server

A

Coordinator

Success!

Phasel: Prepare

|
juvdidngavg

|
juvdidngavg

PAXOS

Consensus protocol where a)
coordinator proposes an outi:lomthe
e.g., commit or abort) and then
° .’

participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has |
provably minimal message delays in

the best case.

$2CMU-DB

15-445/645 (Spring 2024)

Consensus on Transaction Commit

JIM GRAY and LESLIE LAMPORT

Microsoft Research
The distri requires reachi

Whethera transaction
1 committed or aborted. The clagsiy Iwo-Phase Commit protoco] blogke if the coordinator fals
Fault-tolerant consensus algorithym: also reach agreement, but.do ot black whenever any majority
ofthe processes are working, The Paxgs Commit algorithm rung 4 p, < Igorithm o thy
commit/abort decision of each participant g obtain a tra, commit protocol that uses 27 4 1
coordinators and makes progress if ng least F'+ 1 of them are working properly. Paxos Commit
has the same stable-storage wyite delay; and can be implemented o hart, the same message delay
in the fault-free case as Two-Phase Commit, but it uses more messages. The classic Two-Phage
Commit algorithm is obtained ng thy special 7= 0 case of the Paxos Commit algorithm

Organization and Design—Distributed systems
General Terms: Algorithms, Reliability
Additional Key Words ang Phrases: Consensus, Paxos, two-phase commit

1. INTRODUCTION

Adistributed transaction consists of anumber of Operations, performed af, mul-
tiple sites, termi nated by a request to commit or abort the transaction. The
sites then use a transaction commit protocol to decide whether the transac-
tion is committed or aborted. The transaction can be committed only if a]] sjteg
are willing to commit i, Achieving this all-or-nothing atomicity property in 5
distributed system js not trivial. The Tequirements for transaction commit are
stated precisely in Section 2,

The classic transaction commit protocol is Two-Phase Commit [Gray 1978),
described in Section 3. Ttuses a single coordinator to reach agreement. The faj]-
ure of that coordinator can cause the protocol to block, with no Process knowing
the outcome, until the coordinator is repaired. In Section 4, we use the Paxos
consensus algorithm [Lamport 199g] ¢, obtain a transaction commit protocol

Authors’ addresses: J. Gray, Microsoft Research, 455 Market St., San Francisco, CA 94105; emaj);
Jin.Grayomicrosott. con I, Lamport, Microsofy Research, 1065 La Avenida, Mountain View, ca
94043,

to redistribute to lists, or o yge 2ny component of this work in othey Works requires prior specifie
permission and/or a fee. Permissions ™2y be requested from Publications Dept., ACM, Inc, 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or Permissions@acm,org,

©2006 ACM 0362-5915/06/0300-0133 85,00

ACM Transactions on Database Systems, Vol. 31, No. 1, March 2006, Pages 133160,

PAXOS
AR Commit Request
-
ez o]
Application
Server
- v
S
g_
&
“Node 1

$ZCMU-DB

15-445/645 (Spring 2024)

Node2:

Node3:

v

||
401d220y

401d220y

]

401d220y

Node 4 -

PAXOS]
AR Commit Request
ZZ3
- Node 2 -
ZZE i
Application
Server
Propose

[Node 3 -

—)

3-

y

“Node 1

$2CMU-DB Node 4 -

15-445/645 (Spring 2024)

(9)]
=

v

||
401d220y

401d220y

]

401d220y

PAXOS]

B wztRequest
Iz Node 2 -
Application
Server
Propose
. Node 3 -
5 -
S -
=)
&

“Node 1
£2CMU-DB Node 4 -

15-445/645 (Spring 2024)

H
N

v

||
401d220y

401d220y

]

401d220y

PAXOS | .
a
B
AR Commit Request)
Iz Sliaini g
Iz | -
IZZ- N
Application >
Server R
Propose §
[Node 3 -
§ i
(=)
3 3
R S
-Node 1 S

$2CMU-DB Node 4 -

15-445/645 (Spring 2024)

H
w

PAXOS

Iz Siadind. i
IZan |
ETTT
Application
Server

Propose

Proposer
\/
\

$2CMU-DB Node 4 -

15-445/645 (Spring 2024)

v

||
401d220y

401d220y

]

401d220y

Acceptor Acceptor
A A

Acceptor
A

PAXOS

quest

Commit Re
Z—

AR
I
ez o]
Application
Server

I
dasodoag

ZCMU-DB

.
~d

(=]

)

15-445/645 (Spring 2024

Acceptor Acceptor Acceptor
A A A

PAXOS

Success!

“Node 1

I
dasodoag

024)

AR
I
I
ez o]
Application
Server

£2CMU-DB
15-445/645 (Spri

PAXOS]
ﬁ Success!
3
3
Application

Server

§~-

y

“Node 1

$2CMU-DB Node 4 -

15-445/645 (Spring 2024)

(o)}
N

v

||
401d220y

401d220y

]

401d220y

Proposer
—
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v

PAXOS
Acceptors
T
y

Proposer
—
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
v

£=CMU-DB
15-445/645 (Spring 2024)

-
-

PAXOS

Proposer

Acceptors

Proposer

Propose(n)

£=CMU-DB
15-445/645 (Spring 2024)

-
-

PAXOS

Proposer

15-445/645 (Spring 2024)

ZCMU-DB

=

S v
<
S
S v_\/ |||||||||||||||||||||||| >
Q S
S ~
< It
o0
<
[>
)
E
O
| S
5| &
) E——— >
~
&

PAXOS

Proposer

)

Propose(n+1)

15-445/645 (Spring 2024)

ZCMU-DB

=

<
3 s
) [———— >
Q S
S ~
< It
o0
<
' - ||Lﬁ ||||||||||||||||||| >
I
)
S
O
o S
h
M.P B S e e e e S >
~
&

)

Proposer

Propose(n+1)

) S e >
v
O § f
X m.. v_\W ||||| i [S >
< < |3
s B
h ﬁ
| F---- - >
| 8 g
(e
S Y) LS N >
£

£=CMU-DB
15-445/645 (Spring 2024)

(=]
L=

PAXOS

Proposer Acceptors Proposer
Pro
pose(n) — — — —
Agree(n) T T
| 1 AV:' 1: Propose(n+1)
e ———
Commit(n) | : E‘7Z},
T~ Reject(n,n+1)
|
|

|

€ e e el

\\

€ e e e e

€
€

$ZCMU-DB

15-445/645 (Spring 2024)

PAXOS

Proposer Acceptors Proposer
Pro
pose(n) — — — —
Agree(n) T T
| 1 AV:' 1: Propose(n+1)
e ———
Commit(n) | : E‘?Z}r
™\ Reject(n,n+1) ! i
I) = I
le : Agree(n+1) !
|
1
1

/%

D e

€
€=
€mmmm—m———
€mmm————

$ZCMU-DB

15-445/645 (Spring 2024)

PAXOS

Proposer Acceptors Proposer
Pro
pose(n) — — — —
Agree(n) T T
| 1 AV:' 1: Propose(n+1)
e ———
Commit(n) | : E‘?Z}r
™\ Reject(n,n+1) ! i
| — >l |
1 1 1
| D) i :

(--T---F-
i

€

$ZCMU-DB

15-445/645 (Spring 2024)

PAXOS

Proposer Acceptors Proposer
Pro
pose(n) — — — —
Agree(n) T T
| 1 AV:' 1: Propose(n+1)
e ———
Commit(n) | : 5‘7&,
™\ Reject(n,n+1) !

e

€

$ZCMU-DB

15-445/645 (Spring 2024)

MULTI-PAXOS

[f the system elects a single leader that oversees
proposing changes for some period, then it can
skip the Propose phase.

— Fall back to full Paxos whenever there is a failure.

The system periodically renews the leader (known

as a lease) using another Paxos round.

— Nodes must exchange log entries during leader election
to make sure that everyone is up-to-date.

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

2PC VS. PAXOS VS. RAFT

Two-Phase Commit

— Blocks if coordinator fails after the prepare message is
sent, until coordinator recovers.

Paxos

— Non-blocking if a majority participants are alive,
provided there is a sufficiently long period without
further failures.

Raft:

— Similar to Paxos but with fewer node types.
— Only nodes with most up-to-date log can become leaders.

CAP THEOREM

Proposed in the late 1990s that is impossible for a

distributed database to always be:
— Consistent

— Always Available

— Network Partition Tolerant

Extended in 2010 (PACELC) to include

consistency vs. latency trade-offs:
— Partition Tolerant

— Always Available

— Consistent

— Else, choose during normal operations
— Latency

— Consistency

$ZCMU-DB

15-445/645 (Spring 2024)

https://en.wikipedia.org/wiki/PACELC_theorem

CONSISTENCY

Application Application
Server Server

Replica

Primary
C3CMU ‘DB

CONSISTENCY

Iz Set A=2
Application Application
Server Server

Replica

Primary
C3CMU ‘DB

CONSISTENCY

Iz Set A=2
Application Application
Server Server

Replica

Primary
C3CMU ‘DB

CONSISTENCY

Iz Set A=2
Application Application
Server Server

Primary Replica

C3CMU ‘DB

CONSISTENCY

Application Application
Server ACK Server

Primary Replica

C3CMU ‘DB

Application
Server

Primary

£2CMU-DB
15-445/645 (Spri

ng 2024)

CONSISTENCY

Read A

AR
73
Il
7

Application
Server

Replica

Application
Server

Primary

$ZCMU-DB

15-445/645 (Spring 2024)

CONSISTENCY

Read A

ﬁ

Application
Server

Replica

Application
Server

Primary

$ZCMU-DB

15-445/645 (Spring 2024)

\"4

If Primary says the txn committed,
then it should be immediately visible

on replicas.

Set A=2

ACK

Application
Server

Replica

AVAILABILITY

Application Application
Server Server

Replica

Primary
C3CMU ‘DB

AVAILABILITY

Application Application
Server Server

Primary
£=CMU-DB

15-445/645 (Spring 2024)

73K
IZE
73

Application
Server

AVAILABILITY

Read B

Primary

£2CMU-DB
15-445/645 (Spri

ng 2024)

Application
Server

AVAILABILITY

Read B |
Application Application
Server B=8 Server

Primary
£=CMU-DB
15-445/645 (Spri

ng 2024)

AVAILABILITY

Application Application
Server Server

Primary
£=CMU-DB

15-445/645 (Spring 2024)

AVAILABILITY

| Read A
Application Application
Server Server

Primary
£=CMU-DB
15-445/645 (Spri

ng 2024)

AVAILABILITY

| Read A
Application Application
Server A= Server

Primary
£=CMU-DB
15-445/645 (Spri

ng 2024)

PARTITION TOLERANCE

Application Application
Server Server

Primary
C3CMU ‘DB

PARTITION TOLERANCE

Application Application

Server Server
B=8
~
Primary Replica

C3CMU ‘DB

PARTITION TOLERANCE

Application Application
Server Server

Primary
C3CMU ‘DB

PARTITION TOLERANCE

Application Application
Server Server

Primary

Primary
C3CMU ‘DB

PARTITION TOLERANCE

Application Application

Server Server
\EER” NS
~ ~
Primary Primary

C3CMU ‘DB

100

PARTITION TOLERANCE

AR AR
ZZ Set A=2 Set A=3 ZZE
Application Application

Server Server

Primary

101

PARTITION TOLERANCE

AR AR
ZZ Set A=2 Set A=3 ZZE
Application Application

Server Server

Primary

102

PARTITION TOLERANCE

AR : AR
o — —
7 Set A=2 Set A=3 7
Application Application
Server ACK ACK Server

Primary

103

PARTITION TOLERANCE

AR : AR
o — —
7 Set A=2 Set A=3 7
Application Application
Server ACK ACK Server

ey

Primary Primary

C3CMU ‘DB

104

PARTITION TOLERANCE

AR AR
o — —
7 Set A=2 Set A=3 7
Application Application
Server ACK ACK Server

Primary Primary

C3CMU ‘DB

105

LATENCY VS. CONSISTENCY

Application

Server Replica
(us-west)

Primary Replica
S2CMU-DB (us-east) (eu-east)

106

LATENCY VS. CONSISTENCY

o)
Application
Server

Set A=2

Primary
£ CMU-DB (US'ea.St)

Replica

(us-west)

Replica

(eu-east)

107

LATENCY VS. CONSISTENCY

o)
Application
Server

Set A=2

Primary
£ CMU-DB (US'ea.St)

Replica

(us-west)

Replica

(eu-east)

LATENCY VS. CONSISTENCY

73K
IZE
73

Application
Server

Set A=2

Replica

(us-west)

Primary
@CMU'D_B (US'eGSt)

Replica

(eu-east)

108

109

LATENCY VS. CONSISTENCY

ACK
Application .
Server Replica
(us-west)
ACK
Primary Replica
(us-east) (eu-east)

LATENCY VS. CONSISTENCY

ACK
Application .
Server Replica
(us-west)
ACK
Primary Replica
S2CMUDB (us-east) (eu-east)

110

LATENCY VS. CONSISTENCY

ACK
Application .
Server Replica
(us-west)
ACK
Primary Replica
S2CMU'DB (us-east) (eu-east)

111

112

LATENCY VS. CONSISTENCY

ACK

Application

Server Replica
(us-west)

Primary Replica
S2CMU-DB (us-east) (eu-east)

113

LATENCY VS. CONSISTENCY

ACK

Application

Server ACK Replica
(us-west)

Primary Replica
S2CMU-DB (us-east) (eu-east)

114

CAP/PACELC FOR OLTP DBMSs

How a DBMS handles failures determines which
elements of the CAP theorem they support.

Distributed Relational DBMSs

— Stop allowing updates until a majority of nodes are
reconnected.

NoSQL DBMSs

— No multi-node consistency. Last update wins (common).

— Provide client-side API to resolve conflicts after nodes
are reconnected (rare).

$ZCMU-DB

15-445/645 (Spring 2024)

115

GOOGLE SPANNER

Google’s geo-replicated DBMS (>2011)
Schematized, semi-relational data model.
Decentralized shared-disk architecture.
Log-structured on-disk storage.

Concurrency Control:

— Strict 2PL + MVCC + Multi-Paxos + 2PC

— Externally consistent global write-transactions with
synchronous replication.

— Lock-free read-only transactions.

$ZCMU-DB

15-445/645 (Spring 2024)

116

SPANNER: CONCURRENCY CONTROL

MV CC + Strict 2PL with Wound-Wait Deadlock
Prevention

DBMS ensures ordering through globally unique
timestamps generated from atomic clocks and GPS
devices.

Database is broken up into tablets (partitions):

— Use Paxos to elect leader in tablet group.
— Use 2PC for txns that span tablets.

£2CMU-DB
15-445/645 (Spri

ng 2024)

117

SPANNER TABLETS

Tablet A Tablet A Tablet A

Q
S
&~
G
2
S
S
R
Data Center 1 Data Center 2 Data Center 3
Leader

£2CMU-DB
15-445/645 (Spri

ng 2024)

118

SPANNER TABLETS

Writes + Reads

Tablet A Tablet A Tablet A

Q
S
&~
G
2
S
S
R
Data Center 1 Data Center 2 Data Center 3
Leader

£2CMU-DB
15-445/645 (Spri

ng 2024)

119

SPANNER TABLETS

Writes + Reads

¥

Tablet A Tablet A Tablet A

Q
S
&~
G
2
S
S
R
Data Center 1 Data Center 2 Data Center 3
Leader

$ZCMU-DB

15-445/645 (Spring 2024)

120

SPANNER TABLETS

Snapshot Reads Writes + Reads Snapshot Reads

¥

‘

§" Tablet A Tablet A Tablet A
-
O
»
S
S
R
Data Center 1 Data Center 2 Data Center 3
Leader

$ZCMU-DB

15-445/645 (Spring 2024)

121

SPANNER TABLETS

. Tablet B-Z
2PC oo Paxos Groups

*
‘Q

Snapshot Reads Writes + Reads Snapshot Reads

Paxos Group

Data Center 1 Data Center 2 Data Center 3
Leader

$ZCMU-DB

15-445/645 (Spring 2024)

122

SPANNER: TRANSACTION ORDERING

DBMS orders transactions based on physical "wall-

clock" time.
— This is necessary to guarantee strict serializability.
— If T, finishes before T,, then T, should see the result of T,.

Each Paxos group decides in what order
transactions should be committed according to the

timestamps.
— If T, commits at time, and T, starts at time, > time,,
then T,'s timestamp should be less than T,'s.

$ZCMU-DB

15-445/645 (Spring 2024)

123

CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.

Blockchain databases assume that the nodes are
adversarial. You must use different protocols to
commit transactions. Not suitable for database
workloads.

More info (and humiliation):
— Kyle Kingsbury's Jepsen Project

$ZCMU-DB

15-445/645 (Spring 2024)

https://aphyr.com/tags/jepsen

124

NEXT CLASS

Distributed OLAP Systems

£2CMU-DB
15-445/645 (Spri

ng 2024)

