—
jamegie |ntro to Database

University Systems (15-445/645)

Lecture #24

Distributed
OLAP

Databases

SPRING 2024)) Prof. Jignesh Patel

BIFURCATED ENVIRONMENT

Extract
ransform

oad

(OO O

OLTP Databases OLAP Database

$2CMU-DB

15-445/645 (Spring 2024

&=

BIFURCATED ENVIRONMENT

(‘ Informatica

\\\ Fivetran .
‘ﬂtalend Qlik@
Extract
g Transform

OLTP Databases OLAP Database

=

BIFURCATED ENVIRONMENT

(‘ Informatica

\\\ Fivetran .
‘4talend Qlik@

Extract

% Extract
. Load

Transform

Fdbt /) arope OLAP Database

BIFURCATED ENVIRONMENT

(‘ Informatica

\\\ Fivetran .
‘%talend Qlik@

Extract

% Extract
c Load

Transform
OLAP Database

OLTP Databases K dbt @Airbyte

C;CMU ‘DB

£2CMU-DB
15-445/645 (Spri

ng 2024)

DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

STAR SCHEMA

PRODUCT_DIM CUSTOMER_DIM
CATEGORY _NAME ID

CATEGORY_DESC FIRST_NAME
PRODUCT _CODE SALES—FAC’I' LAST_NAME
PRODUCT _NAME EMAIL
PRODUCT_DESC PRODUCT_FK ZIP_CODE

TIME_FK
LOCATION_FK
CUSTOMER_FK

LOCATION_DIM TIME_DIM
COUNTRY PRICE VEAR
STATE_CODE / QUANTITY \ DAY_OF _YEAR
STATE_NAME MONTH_NUM
ZIP_CODE MONTH_NAME
CITY DAY_OF _MONTH

$ZCMU-DB

15-445/645 (Spring 2024)

CAT_LOOKUP

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

PRODUCT_DIM

CATEGORY_FK
PRODUCT_CODE
PRODUCT _NAME
PRODUCT _DESC

LOCATION_DIM

COUNTRY
STATE_FK
ZIP_CODE
CITY
STATE_LOOKUP
STATE_ID
STATE_CODE —
STATE_NAME

CMU-DB

15-445/645 (Spring 2024)

SALES_FACT

SNOWFLAKE SCHEMA

CUSTOMER_DIM

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

ID
FIRST_NAME
LAST_NAME
EMAIL

ZIP_CODE

PRICE
QUANTITY

TIME_DIM

YEAR
DAY_OF_YEAR
MONTH_FK
DAY_OF_MONTH

MONTH_LOOKUP

MONTH_NUM
. MONTH_NAME
MONTH_SEASON

STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

— Snowflake schemas take up less storage space.
— Denormalized data models may incur integrity and
consistency violations.

Issue #2: Query Complexity

— Snowflake schemas require more joins to get the data
needed for a query.

— Queries on star schemas will (usually) be faster.

$ZCMU-DB

15-445/645 (Spring 2024)

PROBLEM SETUP

SELECT * FROM R JOIN S Partitions

ON R.id = S.1id <o

Application
Server

$ZCMU-DB

15-445/645 (Spring 2024)

PROBLEM SETUP

SELECT * FROM R JOIN S Partitions
ON R.id = S.1id

Application
Server

$ZCMU-DB

15-445/645 (Spring 2024)

PROBLEM SETUP

1 Partitions

SELECT * FROM R JOIN
ON R.id = S.1id

Application
Server

£2CMU-DB
15-445/645 (Spri

ng 2024)

£2CMU-DB
15-445/645 (Spri

ng 2024)

TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms
Cloud Systems

DISTRIBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS

is roughly the same as on a single-node DBMS.
— Query plan is a DAG of physical operators.

For each operator, the DBMS considers where

input is coming from and where to send output.
— Table Scans

— Joins

— Aggregations

— Sorting

$ZCMU-DB

15-445/645 (Spring 2024)

£2CMU-DB
15-445/645 (Spri

ng 2024)

DISTRIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
the location of the database's data files. This affects
how nodes coordinate with each other and where
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
— Push Query to Data
— Pull Data to Query

$ZCMU-DB

15-445/645 (Spring 2024)

PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data.

— Perform as much filtering and processing as possible
where data resides before transmitting over network.

Approach #2: Pull Data to Query
— Bring the data to the node that is executing a query that
needs it for processing.

— This is necessary when there is no compute resources
available where database files are located.

Filtering and retrieving data usin

PDF ‘\ RSS

— Send

Conta compressed with GZIP or Bz|p2 (for €SV and Json objects only)

— Perfo

I about the SQL e[el”e 1ts that are SUppOl ted b Ama on S3 ele t, see SQL rererence for Ama (o] 3 Sele t
r y Z S CtL, s Ci S
Z lec .

Appro
— Bringtheaarato-ererroa~

needs it for processing.
— This is necessary when there is no compute resources

available where database files are located.

$ZCMU-DB

15-445/645 (Spring 2024)

Query Blob Contents

Article 07/20/2021 * 10 minutes to read * 3 contributors

The Query Blob contents API applies a simple Structured Que

contents and returns only the queried subset of the data. You can

the contents of a version or snapshot.

Request

The Query Blob contents request may be constructed

myaccount with the name of your storage account:

POST Method Request URI

https: //myaccount. blob.core.windows. net/mycontainer/myblob?comp:query

https: //myaccount _blob.core.windows.

Filteri
ittering and retrieving data usin

PDF |
F | Rss

With Amazon S3

as follows. HTTPS is recommended. Replace

- Microsoft

4 Feedback

r Apache Par
quet format.
only), and server- - It also wo

) rks with obj
. side en : objects that
termine how the recordscryl::;ed objects. You can speci f; ::
in the result are delj e
e delimited

ry Language (sQL) statementon a blob's

also call Query Blob contents toquery

zon S3 Select s
c upports a
Select, s subset of S
€e SQL reference for Amazon?; SFOF more information
elect.

dDbject Cont

ent
e limits the amF;EST API, the AWS Command L

unt of data returned to 40 MB'ne nterface

- To retrieve

HTTP Version
HTTP/1.0
Pute resources
net/mycontainer/myblob?comp:query&snapshot:<DateTime> HTTP/1.1 ed

https: //myaccount _blob.core.windows. net/mycontainer/myblob?comp:query&versionid:<DateTime>

Application
Server

$ZCMU-DB

15-445/645 (Spring 2024)

PUSH QUERY TO DATA

~

3 @

P1>R.
P1-S.

id:1-100
id:1-100

~

3 @

P23R.
P2->S.

id:101-200
id:101-200

PUSH QUERY TO DATA

SELECT * FROM R JOIN S
ON R.id = S.1id

~

s

Application
Server

Node

d

P1>R.
P1-S.

id:1-100
id:1-100

~

$ZCMU-DB

15-445/645 (Spring 2024)

Node

d

P23R.
P2->S.

id:101-200
id:101-200

PUSH QUERY TO DATA

SELECT * FROM R JOIN S
ON R.id = S.1id

Node

ﬁ%ﬂ

P1>R.
P1-S.

id:1-100
id:1-100

[IDs [101,200]

Application
Server

$ZCMU-DB

15-445/645 (Spring 2024)

3

Node

a1

P23R.
P2->S.

id:101-200
id:101-200

PUSH QUERY TO DATA

SELECT * FROM R JOIN S
ON R.id = S.1id

~

Node

]

P1»R.1d:1-100
P1>S.id:1-100

[IDs [101,200]

Application
Server

$ZCMU-DB

15-445/645 (Spring 2024)

Q

A 4

! Result: R} S

~

Node

]

P2»>R.i1d:101-200
P2>S.id:101-200

PULL DATA TO QUERY

P1>ID:1-100
SELECT * FROM R JOIN S Node - ~
ON R.id = S.id ﬁé} Storage
/
ZZ3
7
7
Application
Server T Node
\. J

P2>ID:101-200

$ZCMU-DB

15-445/645 (Spring 2024)

PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node r A

ON R.id = S.1id ﬁ_@

RS
IDs [101,200]

Application !
Server (Node |

d:

P2>ID:101-200

Storage

$ZCMU-DB

15-445/645 (Spring 2024)

PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node

ON R.id = S.1id ﬁ_@

RIS
[IDs [101@
Application

Server (Node |

P2>ID:101-200

$ZCMU-DB

15-445/645 (Spring 2024)

PULL DATA TO QUERY

P1>ID:1-100
SELECT * FROM R JOIN S Node - N
ON R.id = S.id ﬁé} Page ABC Storage
7 [I}NS]
IDs [101,200
[zg..q Page XYZ
Application |

Server " Node

d:

P2>ID:101-200

$ZCMU-DB

15-445/645 (Spring 2024)

PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node r A

ON R.id = S.1id ﬁ_@

A

RIS
IDs [101,200] | Result: R} S

Application !
Server " Node |

d:

P2>ID:101-200

Storage

$ZCMU-DB

15-445/645 (Spring 2024)

OBSERVATION

The data that a node receives from remote sources

are cached in the buffer pool.
— This allows the DBMS to support intermediate results

that are large than the amount of memory available.
— Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs
are designed to assume that nodes do not fail

during query execution.
— If one node fails during query execution, then the whole
query fails.

The DBMS could take a snapshot of the

intermediate results for a query during execution
to allow it to recover if nodes fail.

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S ' Node - |
ON R.id = S.id #E} Storage
‘/

ZZ3
7
7

Application

Server T Node

i

$2CMU-DB

15-445/645 (Spring 2024)

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S " Node | - -

ON R.id = S.id ﬁ%%
/
ZZZE
RIS
Application {

Server " Node |

i

2
~+
o
*
N
0Q
4]

$ZCMU-DB

15-445/645 (Spring 2024)

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S " Node | — -
ON R.id = S.id #E} torage
AR
ZZ
I R M& Result: R4 S

o o w

Application {

Server " Node |

i

$ZCMU-DB

15-445/645 (Spring 2024)

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S Node - w
ON R.id = S.id #% Storage
‘/

ZZE
ZZa
ZZE

Application

Server %
_)
£2CMU-DB

15-445/645 (Spring 2024)

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S Node (A
ON R.id = S.id Storage
: : #@ Result: R} S
/
3
3
ZZ

Application

Server %
_)
£=CMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

QUERY PLANNING

All the optimizations that we talked about before

are still applicable in a distributed environment.
— Predicate Pushdown

— Projection Pushdown

— Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

$ZCMU-DB

15-445/645 (Spring 2024)

QUERY PLAN FRAGMENTS

Approach #1: Physical Operators
— Generate a single query plan and then break it up into

partition-specific fragments.
— Most systems implement this approach.

Approach #2: SQL

— Rewrite original query into partition-specific queries.

— Allows for local optimization at each node.

— SingleStore + Vitess are the only systems we know that
use this approach.

https://www.singlestore.com/
https://vitess.io/

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
ON R.id = S.1id

id:1-100 id:101-200 id:201-300

$ZCMU-DB

15-445/645 (Spring 2024)

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
ON R.id = S.1id

. Ill :

SELECT * FROM R JOIN S SELECT * FROM R JOIN S SELECT * FROM R JOIN S
ON R.id = S.id ON R.id = S.id ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100 WHERE R.id BETWEEN 101 AND 200 WHERE R.id BETWEEN 201 AND 300
id:1-100 id:101-200 id:201-300

$ZCMU-DB

15-445/645 (Spring 2024)

Union the output of Tl FRAGMENTS

each join to produce

final ”esil';\skom R JOIN S
ON\id = S.1id

| |
!]

SELECT * FROM R JOIN S SELECT * FROM R JOIN S SELECT * FROM R JOIN S
ON R.id = S.id ON R.id = S.id ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100 WHERE R.id BETWEEN 101 AND 200 WHERE R.id BETWEEN 201 AND 300
id:1-100 id:101-200 id:201-300

$ZCMU-DB

15-445/645 (Spring 2024)

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single

node and then perform the join.

— You lose the parallelism of a distributed DBMS.
— Costly data transfer over the network.

$ZCMU-DB

15-445/645 (Spring 2024)

DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we

discussed earlier in the semester.

— Need to produce the correct answer as if all the data is
located in a single node system.

$ZCMU-DB

15-445/645 (Spring 2024)

SCENARIO #1

One table is replicated at every node.
Each node joins its local data in SELECT * FROM R JOIN S
parallel and then sends their results to ON R.id = S.id

a coordinating node.

$ZCMU-DB

15-445/645 (Spring 2024)

SCENARIO #1

One table is replicated at every node.
Each node joins its local data in SELECT * FROM R JOIN S
parallel and then sends their results to ON R.id = S.id

a coordinating node.

id:101-200

id:1-100

Replicated

$ZCMU-DB

15-445/645 (Spring 2024)

SCENARIO #1

One table is replicated at every node.
Each node joins its local data in SELECT * FROM R JOIN S
parallel and then sends their results to ON R.id = S.id

a coordinating node.

id:101-200

Replicated

$ZCMU-DB

15-445/645 (Spring 2024)

SCENARIO #1

One table is replicated at every node.
Each node joins its local data in SELECT * FROM R JOIN S
parallel and then sends their results to ON R.id = S.id

a coordinating node.

rinods N

id:101-200

id:1-100

Replicated

$ZCMU-DB

15-445/645 (Spring 2024)

SCENARIO #2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a
coordinator node for coalescing.

id:1-100

id:1-100

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

SCENARIO #2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a
coordinator node for coalescing.

id:1-100

id:1-100

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

SCENARIO #2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a
coordinator node for coalescing.

SELECT * FROM R JOIN S
ON R.id = S.1id

id:1-100

id:1-100

$ZCMU-DB

15-445/645 (Spring 2024)

id:101-200

id:101-200

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

SCENARIO #3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

id:1-100

val:1-50

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

oo B ross

P2:RDXS

id:101-200

val:51-100

SCENARIO #4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the SELECT * FROM R JOIN S

tables on-the-fly across nodes. ON R.id = S.id
— This repartitioned data is generally deleted when
the query is done.

name: A-M name:N-Z

val:1-50 val:51-100

$ZCMU-DB

15-445/645 (Spring 2024)

SCENARIO #4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the SELECT * FROM R JOIN S

tables on-the-fly across nodes. ON R.id = S.id
— This repartitioned data is generally deleted when
the query is done.

id:101-200
name: A-M name:N-Z
val:1-50 val:51-100

$ZCMU-DB

15-445/645 (Spring 2024)

SCENARIO #4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the SELECT * FROM R JOIN S

tables on-the-fly across nodes. ON R.id = S.id
— This repartitioned data is generally deleted when
the query is done.

id:1-100 id:101-200
name: A-M name:N-Z
val:1-50 val:51-100

$ZCMU-DB

15-445/645 (Spring 2024)

SCENARIO #4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the SELECT * FROM R JOIN S

tables on-the-fly across nodes. ON R.id = S.id
— This repartitioned data is generally deleted when
the query is done.

id: 1-100 id:101-200
id:101-200

name:A-M name:N-Z

val:1-50 val:51-100

$ZCMU-DB

15-445/645 (Spring 2024)

SCENARIO #4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the SELECT * FROM R JOIN S

tables on-the-fly across nodes. ON R.id = S.id
— This repartitioned data is generally deleted when
the query is done.

id: 1-100 id:101-200
id: 1-100 id:101-200
name:A-M name:N-Z

val:1-50 val:51-100

$ZCMU-DB

15-445/645 (Spring 2024)

SCENARIO #4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the

tables on-the-fly across nodes.
— This repartitioned data is generally deleted when
the query is done.

id:1-100

id:1-100

name: A-M

val:1-50

$ZCMU-DB

15-445/645 (Spring 2024)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100

SCENARIO #4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the
tables on-the-fly across nodes.

— This repartitioned data is generally deleted when

the query is done.

SELECT * FROM R JOIN S
ON R.id = S.1id

$ZCMU-DB

15-445/645 (Spring 2024)

id:1-100
id:1-100
name: A-M
val:1-50

id:101-200

id:101-200

name:N-Z

val:51-100

SCENARIO #4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the SELECT * FROM R JOIN S
tables on-the-fly across nodes. ON R.id = S.id
— This repartitioned data is generally deleted when
»

the query is done. P1:RI<IS
P2:R><IS

id:1-100 id:101-200
id:1-100 id:101-200
name: A-M name:N-Z
val:1-50 val:51-100

$ZCMU-DB

15-445/645 (Spring 2024)

SEMI-JOIN: REDUCE DATA MOVEMENT

Can use this technique to reduce data SELECT Fact.price, Dim.x*
movement FROM Fact JOIN Dim
ON Fact.id = Dim.1id

— Before pulling data from another node, : :
WHERE Dim.z1ip = 15213

send a semi-join filter to reduce data
movement.

$ZCMU-DB

15-445/645 (Spring 2024)

&
SEMI-JOIN: REDUCE DATA MOVEMENT

Can use this technique to reduce data SELECT Fact.price, Dim.x*
movement FROM Fact JOIN Dim
ON Fact.id = Dim.1id

— Before pulling data from another node, : :
WHERE Dim.z1ip = 15213

send a semi-join filter to reduce data
movement.

D-semi = Iy (Uzip _ 15213 Dim)

$ZCMU-DB

15-445/645 (Spring 2024)

SEMI-JOIN: REDUCE DATA MOVEMENT

Can use this technique to reduce data SELECT Fact.price, Dim.x*
movement FROM Fact JOIN Dim
ON Fact.id = Dim.1id

— Before pulling data from another node, : :
WHERE Dim.z1ip = 15213

send a semi-join filter to reduce data
movement.

D-semi = Iy (Uzip _ 15213 Dim)

$ZCMU-DB

15-445/645 (Spring 2024)

L5
SEMI-JOIN: REDUCE DATA MOVEMENT

Can use this technique to reduce data SELECT Fact.price, Dim.x*
movement FROM Fact JOIN Dim
ON Fact.id = Dim.1id

— Before pulling data from another node, : :
WHERE Dim.z1ip = 15213

send a semi-join filter to reduce data
movement.

D-semi = I, (0, _ Dim)
F-small = Fact ™ D-semi d \Yzip = 15213

$ZCMU-DB

15-445/645 (Spring 2024)

SEMI-JOIN: REDUCE DATA MOVEMENT

Can use this technique to reduce data SELECT Fact.price, Dim.x*
movement FROM Fact JOIN Dim
ON Fact.id = Dim.1id

— Before pulling data from another node, : :
WHERE Dim.z1ip = 15213

send a semi-join filter to reduce data
movement.

D-semi = I, (0, _ Dim)
F-small = Fact ™ D-semi d \Yzip = 15213

F-small

$ZCMU-DB

15-445/645 (Spring 2024)

&
SEMI-JOIN: REDUCE DATA MOVEMENT

Can use this technique to reduce data SELECT Fact.price, Dim.x*
movement FROM Fact JOIN Dim
ON Fact.id = Dim.1id

— Before pulling data from another node, : :
WHERE Dim.z1ip = 15213

send a semi-join filter to reduce data
movement.

$ZCMU-DB

15-445/645 (Spring 2024)

SEMI-JOIN: REDUCE DATA MOVEMENT

Can use this technique to reduce data SELECT Fact.price, Dim.x*
movement FROM Fact JOIN Dim
ON Fact.id = Dim.1id

— Before pulling data from another node, : :
WHERE Dim.z1ip = 15213

send a semi-join filter to reduce data

movement.

Result = ITic.(Dim > F-small)

$ZCMU-DB

15-445/645 (Spring 2024)

CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines

between shared-nothing and shared-disk.

— Example: You can do simple filtering on Amazon S3
before copying data to compute nodes.

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

CLOUD SYSTEMS

Approach #1: Managed DBMSs

— No significant modification to the DBMS to be "aware"
that it is running in a cloud environment.
— Examples: Most vendors

Approach #2: Cloud-Native DBMS

— System designed explicitly to run in a cloud environment.
— Usually based on a shared-disk architecture.
— Examples: Snowflake, Google BigQuery

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

A v
[z - ode
22280 @
Carmr—

Application
Server

$ZCMU-DB

15-445/645 (Spring 2024)

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Node @ @

| Application
| 4 Server

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

a N\
Storage

o vei] |l
me— 8 —
=

Application

Server
£=CMU-DB \ J

15-445/645 (Spring 2024)

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

a N\
Storage

[Node a a
| Application @
| 4 Server

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Buffer Pool Storage
Page Table
=] g
og
| Application @
| 4 Server

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

a)
Storage

d |cd

| Application g
| 4 Server

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

1@

a)
Storage

d |cd

| Application g
| 4 Server

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

a N\
Storage

(roie) | d [id
Application @
Server

£2CMU-DB \ J

15-445/645 (Spring 2024)

SERVERLESS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

([™
Storage
fzm K
73 >
73K
Application Buffer Pool
Server Page Table
£=CMU-DB ()

15-445/645 (Spring 2024)

SERVERLE

SS DATABASES

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

W olanetscale

§ CockroachDB
[1/ NEON
amazon

Y fauna

Microsoft®
%’ SQLAzure
£=CMU-DB

15-445/645 (Spring 2024)

AR
7
7
[z
Application
Server

a)
Storage

Buffer Pool
Page Table

¢ y

DATA LAKES

CREATE TABLE foo (...);

Repository for storing large amounts

of structured, semi-structured, and

unstructured data without having to

define a schema or ingest the data into [Node |
proprietary internal formats. ﬁ%

Storage

@

$ZCMU-DB \ J

15-445/645 (Spring 2024)

 aVaVlaVlaVlal
" A~ A~ A A 4

DATA LAKES

Repository for storing large amounts CREATE TABLE foo (...);

of structured, semi-structured, and INSERT INTO foo VALUES (...);
unstructured data without having to |
define a schema or ingest the data into [Node |
proprietary internal formats. ﬁ%—% .
Storage
s
¢|=
£=CMU-DB \ (J

15-445/645 (Spring 2024)

DATA LAKES

Repository for storing large amounts CREATE TABLE foo (...);

of structured, semi-structured, and INSERT INTO foo VALUES (...);
unstructured data without having to |
define a schema or ingest the data into [Node |
proprietary internal formats. ﬁ% .
Stoiage
¢ B
¢|=
£=CMU-DB \ (J

15-445/645 (Spring 2024)

DATA LAKES

Repository for storing large amounts R
of structured, semi-structured, and
unstructured data without having to

define a schema or ingest the data into [Node |
proprietary internal formats. ﬁ%
[& Data Lake)

=))

$ZCMU-DB \ J

15-445/645 (Spring 2024)

DATA LAKES

Repository for storing large amounts e s T
of structured, semi-structured, and
unstructured data without having to l
define a schema or ingest the data into [Node |
proprietary internal formats. ﬁ%
i & Data Lake)

=))

$ZCMU-DB \ J

15-445/645 (Spring 2024)

DATA LAKES

Repository for storing large amounts e s T
of structured, semi-structured, and
unstructured data without having to l
define a schema or ingest the data into g— Node
proprietary internal formats. gs E__ ﬁ%—%
HIE=s
& Data Lake)

Ll

$ZCMU-DB J

15-445/645 (Spring 2024)

DATA LAKES

Repository for storing large amounts R
of structured, semi-structured, and
unstructured data without having to l
define a schema or ingest the data into g— Node
proprietary internal formats. gs E__ ennnnnss ﬁ%—%
HIE=s
& Data Lake)

Ll

$ZCMU-DB J

15-445/645 (Spring 2024)

DATA LAKES

Repository for storing large amounts R
of structured, semi-structured, and
unstructured data without having to l
define a schema or ingest the data into g— [Node |
proprietary internal formats. gs E__ ennnnnss ﬁ%
HIE=s
()

$ZCMU-DB \ J

15-445/645 (Spring 2024)

DATA LAKES

Repository for storing large amounts e s T

of structured, semi-structured, and

unstructured data without having to l

define a schema or ingest the data into g— [Node |

proprietary internal formats. gs E__ DR ﬁg}
HIE=s

¥ trino [l | ST o R I
HIVE

< databricks 5"°:<3nowfloke presto

(/e

i

$ZCMU-DB L)

15-445/645 (Spring 2024)

OLAP COMMODITIZATION

One recent trend of the last decade is the breakout
OLAP engine sub-systems into standalone open-

source components.

— This is typically done by organizations not in the business
of selling DBMS software.

Examples:

— System Catalogs

— Query Optimizers

— File Format / Access Libraries
— Execution Engines

$ZCMU-DB

15-445/645 (Spring 2024)

$ZCMU-DB

15-445/645 (Spring 2024)

SYSTEM CATALOGS

A DBMS tracks a database's schema (table,

columns) and data files in its catalog.

— [f the DBMS is on the data ingestion path, then it can
maintain the catalog incrementally.

— If an external process adds data files, then it also needs to
update the catalog so that the DBMS is aware of them.

Notable implementations:
— HCatalog

— Google Data Catalog

— Amazon Glue Data Catalog

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html

QUERY OPTIMIZERS

Extendible search engine framework for heuristic-

and cost-based query optimization.
— DBMS provides transformation rules and cost estimates.

— Framework returns either a logical or physical query
plan.

This is the hardest part to build in any DBMS.

Notable implementations:

— Greenplum Orca
— Apache Calcite

$ZCMU-DB

15-445/645 (Spring 2024)

https://github.com/greenplum-db/gporca
https://calcite.apache.org/

DATA FILE FORMATS

Most DBMSs use a proprietary on-disk binary file

format for their databases.
— Think of the BusTub page types...

The only way to share data between systems is to

convert data into a common text-based format
— Examples: CSV, JSON, XML

There are new open-source binary file formats
that make it easier to access data across systems.

$ZCMU-DB

15-445/645 (Spring 2024)

https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

DATA FILE FORMATS

Apache Parquet

— Compressed columnar storage from
Cloudera/Twitter

Apache ORC

— Compressed columnar storage from
Apache Hive.
Apache CarbonData

— Compressed columnar storage with
indexes from Huawei.

$ZCMU-DB

15-445/645 (Spring 2024)

Apache Iceberg

— Flexible data format that supports
schema evolution from Netflix.

HDF5

— Multi-dimensional arrays for
scientific workloads.

Apache Arrow

— In-memory compressed columnar
storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

EXECUTION ENGINES

Standalone libraries for executing vectorized query

operators on columnar data.
— Input is a DAG of physical operators.
— Require external scheduling and orchestration.

Notable implementations:
— Velox

— DataFusion
— Intel OAP

$ZCMU-DB

15-445/645 (Spring 2024)

https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/

CONCLUSION

The cloud has made the distributed OLAP DBMS
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems...

£2CMU-DB
15-445/645 (Spri

ng 2024)

NEXT CLASS

Review: Come to class. No recording.

$ZCMU-DB

15-445/645 (Spring 2024)

