
Intro to Database
Systems (15-445/645)

SPRING 2024 Prof. Jignesh Patel

Lecture #24

Distributed
OLAP
Databases

15-445/645 (Spring 2024)

B I F U RC AT E D E N V I RO N M E N T

Extract

Transform

Load

OLAP DatabaseOLTP Databases

2

15-445/645 (Spring 2024)

B I F U RC AT E D E N V I RO N M E N T

Extract

Transform

Load

OLAP DatabaseOLTP Databases

3

15-445/645 (Spring 2024)

B I F U RC AT E D E N V I RO N M E N T

Extract

Transform

Load

OLAP DatabaseOLTP Databases

4

Extract

Load

Transform

15-445/645 (Spring 2024)

B I F U RC AT E D E N V I RO N M E N T

Extract

Transform

Load

OLAP DatabaseOLTP Databases

5

Extract

Load

Transform

15-445/645 (Spring 2024)

D E C I S I O N S U P P O RT S Y S T E M S

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

6

15-445/645 (Spring 2024)

S TA R S C H E M A

CATEGORY_NAME
CATEGORY_DESC
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_CODE
STATE_NAME
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_NUM
MONTH_NAME
DAY_OF_MONTH

TIME_DIM

SALES_FACT

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

7

15-445/645 (Spring 2024)

S N O W F L A K E S C H E M A

CATEGORY_FK
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_FK
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_FK
DAY_OF_MONTH

TIME_DIM

SALES_FACT

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

CAT_LOOKUP

STATE_ID
STATE_CODE
STATE_NAME

STATE_LOOKUP

MONTH_NUM
MONTH_NAME
MONTH_SEASON

MONTH_LOOKUP

8

15-445/645 (Spring 2024)

S TA R V S . S N O W F L A K E S C H E M A

Issue #1: Normalization

→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and

consistency violations.

Issue #2: Query Complexity

→ Snowflake schemas require more joins to get the data
needed for a query.

→ Queries on star schemas will (usually) be faster.

9

15-445/645 (Spring 2024)

P3 P4

P1 P2

P RO B L E M S E T U P

Application
Server

PartitionsSELECT * FROM R JOIN S
 ON R.id = S.id

10

15-445/645 (Spring 2024)

P3 P4

P1 P2

P RO B L E M S E T U P

Application
Server

PartitionsSELECT * FROM R JOIN S
 ON R.id = S.id

P2
P4
P3

11

15-445/645 (Spring 2024)

P3 P4

P1 P2

P RO B L E M S E T U P

Application
Server

PartitionsSELECT * FROM R JOIN S
 ON R.id = S.id

P2
P4
P3

12

15-445/645 (Spring 2024)

TO DAY ' S AG E N DA

Execution Models
Query Planning
Distributed Join Algorithms
Cloud Systems

13

15-445/645 (Spring 2024)

D I S T R I B U T E D Q U E R Y E X E C U T I O N

Executing an OLAP query in a distributed DBMS
is roughly the same as on a single-node DBMS.
→ Query plan is a DAG of physical operators.

For each operator, the DBMS considers where
input is coming from and where to send output.
→ Table Scans
→ Joins
→ Aggregations
→ Sorting

14

15-445/645 (Spring 2024)

D I S T R I B U T E D S Y S T E M A RC H I T E C T U R E

A distributed DBMS's system architecture specifies
the location of the database's data files. This affects
how nodes coordinate with each other and where
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
→ Push Query to Data

→ Pull Data to Query

15

15-445/645 (Spring 2024)

P U S H V S . P U L L

Approach #1: Push Query to Data

→ Send the query (or a portion of it) to the node that
contains the data.

→ Perform as much filtering and processing as possible
where data resides before transmitting over network.

Approach #2: Pull Data to Query

→ Bring the data to the node that is executing a query that
needs it for processing.

→ This is necessary when there is no compute resources
available where database files are located.

16

15-445/645 (Spring 2024)

P U S H V S . P U L L

Approach #1: Push Query to Data

→ Send the query (or a portion of it) to the node that
contains the data.

→ Perform as much filtering and processing as possible
where data resides before transmitting over network.

Approach #2: Pull Data to Query

→ Bring the data to the node that is executing a query that
needs it for processing.

→ This is necessary when there is no compute resources
available where database files are located.

17

15-445/645 (Spring 2024)

P U S H V S . P U L L

Approach #1: Push Query to Data

→ Send the query (or a portion of it) to the node that
contains the data.

→ Perform as much filtering and processing as possible
where data resides before transmitting over network.

Approach #2: Pull Data to Query

→ Bring the data to the node that is executing a query that
needs it for processing.

→ This is necessary when there is no compute resources
available where database files are located.

18

15-445/645 (Spring 2024)

P U S H Q U E R Y TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

19

15-445/645 (Spring 2024)

P U S H Q U E R Y TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

20

15-445/645 (Spring 2024)

P U S H Q U E R Y TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

R ⨝ S

IDs [101,200]

21

15-445/645 (Spring 2024)

P U S H Q U E R Y TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

R ⨝ S

IDs [101,200] Result: R ⨝ S

22

15-445/645 (Spring 2024)

Storage

P U L L DATA TO Q U E R Y

Node

Application
Server Node

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

23

15-445/645 (Spring 2024)

Storage

P U L L DATA TO Q U E R Y

Node

Application
Server Node

R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

24

15-445/645 (Spring 2024)

Storage

P U L L DATA TO Q U E R Y

Node

Application
Server Node

Page ABC

Page XYZ

R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

25

15-445/645 (Spring 2024)

Storage

P U L L DATA TO Q U E R Y

Node

Application
Server Node

Page ABC

Page XYZ

R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

26

15-445/645 (Spring 2024)

Storage

P U L L DATA TO Q U E R Y

Node

Application
Server Node

R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

Result: R ⨝ S

27

15-445/645 (Spring 2024)

O B S E R VAT I O N

The data that a node receives from remote sources
are cached in the buffer pool.
→ This allows the DBMS to support intermediate results

that are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

28

15-445/645 (Spring 2024)

Q U E R Y FAU LT TO L E R A N C E

Most shared-nothing distributed OLAP DBMSs
are designed to assume that nodes do not fail
during query execution.
→ If one node fails during query execution, then the whole

query fails.

The DBMS could take a snapshot of the
intermediate results for a query during execution
to allow it to recover if nodes fail.

29

15-445/645 (Spring 2024)

Storage

Q U E R Y FAU LT TO L E R A N C E

Node

Application
Server Node

SELECT * FROM R JOIN S
 ON R.id = S.id

30

15-445/645 (Spring 2024)

Storage

Q U E R Y FAU LT TO L E R A N C E

Node

Application
Server Node

R ⨝ S

SELECT * FROM R JOIN S
 ON R.id = S.id

31

15-445/645 (Spring 2024)

Storage

Q U E R Y FAU LT TO L E R A N C E

Node

Application
Server Node

R ⨝ S

SELECT * FROM R JOIN S
 ON R.id = S.id

Result: R ⨝ S

32

15-445/645 (Spring 2024)

Storage

Q U E R Y FAU LT TO L E R A N C E

Node

Application
Server Node

SELECT * FROM R JOIN S
 ON R.id = S.id

33

15-445/645 (Spring 2024)

Storage

Q U E R Y FAU LT TO L E R A N C E

Node

Application
Server Node

SELECT * FROM R JOIN S
 ON R.id = S.id

Result: R ⨝ S

34

15-445/645 (Spring 2024)

Q U E R Y P L A N N I N G

All the optimizations that we talked about before
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Projection Pushdown
→ Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

35

15-445/645 (Spring 2024)

Q U E R Y P L A N F R AG M E N T S

Approach #1: Physical Operators

→ Generate a single query plan and then break it up into
partition-specific fragments.

→ Most systems implement this approach.

Approach #2: SQL

→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ SingleStore + Vitess are the only systems we know that

use this approach.

36

https://www.singlestore.com/
https://vitess.io/

15-445/645 (Spring 2024)

Q U E R Y P L A N F R AG M E N T S

SELECT * FROM R JOIN S
 ON R.id = S.id

id:1-100 id:101-200 id:201-300

37

15-445/645 (Spring 2024)

Q U E R Y P L A N F R AG M E N T S

SELECT * FROM R JOIN S
 ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300

38

15-445/645 (Spring 2024)

Q U E R Y P L A N F R AG M E N T S

SELECT * FROM R JOIN S
 ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300

Union the output of

each join to produce

final result.

39

15-445/645 (Spring 2024)

O B S E R VAT I O N

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single
node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.

40

15-445/645 (Spring 2024)

D I S T R I B U T E D J O I N A LG O R I T H M S

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we
discussed earlier in the semester.
→ Need to produce the correct answer as if all the data is

located in a single node system.

41

15-445/645 (Spring 2024)

S C E N A R I O # 1

One table is replicated at every node.
Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

R{Id}

S

SELECT * FROM R JOIN S
 ON R.id = S.id

42

15-445/645 (Spring 2024)

S C E N A R I O # 1

One table is replicated at every node.
Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

43

15-445/645 (Spring 2024)

S C E N A R I O # 1

One table is replicated at every node.
Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

P1:R⨝S P2:R⨝S

44

15-445/645 (Spring 2024)

S C E N A R I O # 1

One table is replicated at every node.
Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

P1:R⨝S
P2:R⨝S

R⨝S

45

15-445/645 (Spring 2024)

S C E N A R I O # 2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

46

15-445/645 (Spring 2024)

S C E N A R I O # 2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

47

15-445/645 (Spring 2024)

S C E N A R I O # 2

Tables are partitioned on the join
attribute. Each node performs the join
on local data and then sends to a
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

P1:R⨝S
P2:R⨝S

R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

48

15-445/645 (Spring 2024)

S C E N A R I O # 3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

SELECT * FROM R JOIN S
 ON R.id = S.id

49

15-445/645 (Spring 2024)

S C E N A R I O # 3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S

SELECT * FROM R JOIN S
 ON R.id = S.id

50

15-445/645 (Spring 2024)

S C E N A R I O # 3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

SELECT * FROM R JOIN S
 ON R.id = S.id

51

15-445/645 (Spring 2024)

S C E N A R I O # 3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

SELECT * FROM R JOIN S
 ON R.id = S.id

52

15-445/645 (Spring 2024)

S C E N A R I O # 3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

53

15-445/645 (Spring 2024)

S C E N A R I O # 3

Both tables are partitioned on
different keys. If one of the tables is
small, then the DBMS "broadcasts"
that table to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S
P2:R⨝S

R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

54

15-445/645 (Spring 2024)

S C E N A R I O # 4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the
tables on-the-fly across nodes.
→ This repartitioned data is generally deleted when

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

SELECT * FROM R JOIN S
 ON R.id = S.id

55

15-445/645 (Spring 2024)

S C E N A R I O # 4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the
tables on-the-fly across nodes.
→ This repartitioned data is generally deleted when

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

56

15-445/645 (Spring 2024)

S C E N A R I O # 4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the
tables on-the-fly across nodes.
→ This repartitioned data is generally deleted when

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

57

15-445/645 (Spring 2024)

S C E N A R I O # 4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the
tables on-the-fly across nodes.
→ This repartitioned data is generally deleted when

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

58

15-445/645 (Spring 2024)

S C E N A R I O # 4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the
tables on-the-fly across nodes.
→ This repartitioned data is generally deleted when

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

59

15-445/645 (Spring 2024)

S C E N A R I O # 4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the
tables on-the-fly across nodes.
→ This repartitioned data is generally deleted when

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

60

15-445/645 (Spring 2024)

S C E N A R I O # 4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the
tables on-the-fly across nodes.
→ This repartitioned data is generally deleted when

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S P2:R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

61

15-445/645 (Spring 2024)

S C E N A R I O # 4

Both tables are not partitioned on the join
key. The DBMS copies/re-partitions the
tables on-the-fly across nodes.
→ This repartitioned data is generally deleted when

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S
P2:R⨝S

R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

62

15-445/645 (Spring 2024)

S E M I - J O I N : R E D U C E DATA M OV E M E N T

Can use this technique to reduce data
movement
→ Before pulling data from another node,

send a semi-join filter to reduce data
movement.

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

63

Fact
Dim

15-445/645 (Spring 2024)

S E M I - J O I N : R E D U C E DATA M OV E M E N T

Can use this technique to reduce data
movement
→ Before pulling data from another node,

send a semi-join filter to reduce data
movement.

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

64

Fact
Dim

D-semi = Πid (σzip = 15213 Dim)D-semi

15-445/645 (Spring 2024)

S E M I - J O I N : R E D U C E DATA M OV E M E N T

Can use this technique to reduce data
movement
→ Before pulling data from another node,

send a semi-join filter to reduce data
movement.

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

65

Fact
Dim

D-semi = Πid (σzip = 15213 Dim)
D-semi

15-445/645 (Spring 2024)

S E M I - J O I N : R E D U C E DATA M OV E M E N T

Can use this technique to reduce data
movement
→ Before pulling data from another node,

send a semi-join filter to reduce data
movement.

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

66

Fact
Dim

D-semi = Πid (σzip = 15213 Dim)
D-semiF-small = Fact ⋈ D-semi

15-445/645 (Spring 2024)

S E M I - J O I N : R E D U C E DATA M OV E M E N T

Can use this technique to reduce data
movement
→ Before pulling data from another node,

send a semi-join filter to reduce data
movement.

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

67

Fact
Dim

D-semi = Πid (σzip = 15213 Dim)
F-small = Fact ⋈ D-semi F-small

15-445/645 (Spring 2024)

S E M I - J O I N : R E D U C E DATA M OV E M E N T

Can use this technique to reduce data
movement
→ Before pulling data from another node,

send a semi-join filter to reduce data
movement.

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

68

Fact
Dim

F-small

15-445/645 (Spring 2024)

S E M I - J O I N : R E D U C E DATA M OV E M E N T

Can use this technique to reduce data
movement
→ Before pulling data from another node,

send a semi-join filter to reduce data
movement.

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

69

Fact
Dim

F-small

Result = Πprice(Dim ⋈ F-small)

15-445/645 (Spring 2024)

C LO U D S Y S T E M S

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3

before copying data to compute nodes.

70

15-445/645 (Spring 2024)

C LO U D S Y S T E M S

Approach #1: Managed DBMSs

→ No significant modification to the DBMS to be "aware"
that it is running in a cloud environment.

→ Examples: Most vendors

Approach #2: Cloud-Native DBMS

→ System designed explicitly to run in a cloud environment.
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery

71

15-445/645 (Spring 2024)

S E R V E R L E S S DATA B A S E S

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Application
Server

Node

72

15-445/645 (Spring 2024)

S E R V E R L E S S DATA B A S E S

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Application
Server

Node

73

15-445/645 (Spring 2024)

S E R V E R L E S S DATA B A S E S

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Application
Server

Node

Storage

74

15-445/645 (Spring 2024)

S E R V E R L E S S DATA B A S E S

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Application
Server

Node

Storage

75

15-445/645 (Spring 2024)

S E R V E R L E S S DATA B A S E S

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Application
Server

Node

Storage
Buffer Pool

Page Table

76

15-445/645 (Spring 2024)

S E R V E R L E S S DATA B A S E S

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Application
Server

Storage

77

15-445/645 (Spring 2024)

S E R V E R L E S S DATA B A S E S

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Application
Server

Storage

78

15-445/645 (Spring 2024)

S E R V E R L E S S DATA B A S E S

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Application
Server

Node

Storage

79

15-445/645 (Spring 2024)

S E R V E R L E S S DATA B A S E S

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Application
Server

Node

Storage

Buffer Pool

Page Table

80

15-445/645 (Spring 2024)

S E R V E R L E S S DATA B A S E S

Rather than always maintaining compute
resources for each customer, a "serverless" DBMS
evicts tenants when they become idle.

Application
Server

Node

Storage

Buffer Pool

Page Table

81

15-445/645 (Spring 2024)

DATA L A K E S

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

CREATE TABLE foo (...);

82

15-445/645 (Spring 2024)

DATA L A K E S

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);

83

15-445/645 (Spring 2024)

DATA L A K E S

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);

84

15-445/645 (Spring 2024)

Data Lake

DATA L A K E S

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Node

SELECT * FROM foo

85

15-445/645 (Spring 2024)

Data Lake

DATA L A K E S

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Node

SELECT * FROM foo

86

15-445/645 (Spring 2024)

Data Lake

DATA L A K E S

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Node

SELECT * FROM foo

87

15-445/645 (Spring 2024)

Data Lake

DATA L A K E S

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Node

SELECT * FROM foo

88

15-445/645 (Spring 2024)

Data Lake

DATA L A K E S

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Node

SELECT * FROM foo

89

15-445/645 (Spring 2024)

Data Lake

DATA L A K E S

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Node

SELECT * FROM foo

90

15-445/645 (Spring 2024)

O L A P C O M M O D I T I Z AT I O N

One recent trend of the last decade is the breakout
OLAP engine sub-systems into standalone open-
source components.
→ This is typically done by organizations not in the business

of selling DBMS software.

Examples:

→ System Catalogs
→ Query Optimizers
→ File Format / Access Libraries
→ Execution Engines

91

15-445/645 (Spring 2024)

S Y S T E M C ATA LO G S

A DBMS tracks a database's schema (table,
columns) and data files in its catalog.
→ If the DBMS is on the data ingestion path, then it can

maintain the catalog incrementally.
→ If an external process adds data files, then it also needs to

update the catalog so that the DBMS is aware of them.

Notable implementations:
→ HCatalog
→ Google Data Catalog
→ Amazon Glue Data Catalog

92

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html

15-445/645 (Spring 2024)

Q U E R Y O P T I M I Z E R S

Extendible search engine framework for heuristic-
and cost-based query optimization.
→ DBMS provides transformation rules and cost estimates.
→ Framework returns either a logical or physical query

plan.

This is the hardest part to build in any DBMS.

Notable implementations:
→ Greenplum Orca
→ Apache Calcite

93

https://github.com/greenplum-db/gporca
https://calcite.apache.org/

15-445/645 (Spring 2024)

DATA F I L E F O R M AT S

Most DBMSs use a proprietary on-disk binary file
format for their databases.
→ Think of the BusTub page types…

The only way to share data between systems is to
convert data into a common text-based format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats
that make it easier to access data across systems.

94

https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

15-445/645 (Spring 2024)

DATA F I L E F O R M AT S

Apache Parquet

→ Compressed columnar storage from
Cloudera/Twitter

Apache ORC

→ Compressed columnar storage from
Apache Hive.

Apache CarbonData

→ Compressed columnar storage with
indexes from Huawei.

95

Apache Iceberg

→ Flexible data format that supports
schema evolution from Netflix.

HDF5

→ Multi-dimensional arrays for
scientific workloads.

Apache Arrow

→ In-memory compressed columnar
storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

15-445/645 (Spring 2024)

E X E C U T I O N E N G I N E S

Standalone libraries for executing vectorized query
operators on columnar data.
→ Input is a DAG of physical operators.
→ Require external scheduling and orchestration.

Notable implementations:
→ Velox
→ DataFusion
→ Intel OAP

96

https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/

15-445/645 (Spring 2024)

C O N C L U S I O N

The cloud has made the distributed OLAP DBMS
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems…

97

15-445/645 (Spring 2024)

N E X T C L A S S

Review: Come to class. No recording.

98

