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D E C I S I O N  S U P P O RT  S Y S T E M S

Applications that serve the management, 
operations, and planning levels of an organization 
to help people make decisions about future issues 
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema
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S N O W F L A K E  S C H E M A
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S TA R  V S .  S N O W F L A K E  S C H E M A

Issue #1: Normalization

→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and 

consistency violations.

Issue #2: Query Complexity

→ Snowflake schemas require more joins to get the data 
needed for a query.

→ Queries on star schemas will (usually) be faster.
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TO DAY ' S  AG E N DA

Execution Models
Query Planning
Distributed Join Algorithms
Cloud Systems
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D I S T R I B U T E D  Q U E R Y  E X E C U T I O N

Executing an OLAP query in a distributed DBMS 
is roughly the same as on a single-node DBMS.
→ Query plan is a DAG of physical operators.

For each operator, the DBMS considers where 
input is coming from and where to send output.
→ Table Scans
→ Joins
→ Aggregations
→ Sorting
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D I S T R I B U T E D  S Y S T E M  A RC H I T E C T U R E

A distributed DBMS's system architecture specifies 
the location of the database's data files. This affects 
how nodes coordinate with each other and where 
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
→ Push Query to Data

→ Pull Data to Query
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P U S H  V S .  P U L L

Approach #1: Push Query to Data

→ Send the query (or a portion of it) to the node that 
contains the data.

→ Perform as much filtering and processing as possible 
where data resides before transmitting over network.

Approach #2: Pull Data to Query

→ Bring the data to the node that is executing a query that 
needs it for processing.

→ This is necessary when there is no compute resources 
available where database files are located.
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O B S E R VAT I O N

The data that a node receives from remote sources 
are cached in the buffer pool.
→ This allows the DBMS to support intermediate results 

that are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a 
node crashes during execution?
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Q U E R Y  FAU LT  TO L E R A N C E

Most shared-nothing distributed OLAP DBMSs 
are designed to assume that nodes do not fail 
during query execution. 
→ If one node fails during query execution, then the whole 

query fails.

The DBMS could take a snapshot of the 
intermediate results for a query during execution 
to allow it to recover if nodes fail.
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Q U E R Y  P L A N N I N G

All the optimizations that we talked about before 
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Projection Pushdown
→ Optimal Join Orderings

Distributed query optimization is even harder 
because it must consider the physical location of 
data and network transfer costs.
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Q U E R Y  P L A N  F R AG M E N T S

Approach #1: Physical Operators

→ Generate a single query plan and then break it up into 
partition-specific fragments.

→ Most systems implement this approach.

Approach #2: SQL

→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ SingleStore + Vitess are the only systems we know that 

use this approach.
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Q U E R Y  P L A N  F R AG M E N T S

SELECT * FROM R JOIN S
    ON R.id = S.id

id:1-100 id:101-200 id:201-300
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Q U E R Y  P L A N  F R AG M E N T S

SELECT * FROM R JOIN S
    ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
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 WHERE R.id BETWEEN 1 AND 100
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    ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200
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Q U E R Y  P L A N  F R AG M E N T S

SELECT * FROM R JOIN S
    ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300

Union the output of 

each join to produce 

final result.
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O B S E R VAT I O N

The efficiency of a distributed join depends on the 
target tables' partitioning schemes.

One approach is to put entire tables on a single 
node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.
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D I S T R I B U T E D  J O I N  A LG O R I T H M S

To join tables R and S, the DBMS needs to get the 
proper tuples on the same node.

Once the data is at the node, the DBMS then 
executes the same join algorithms that we 
discussed earlier in the semester.
→ Need to produce the correct answer as if all the data is 

located in a single node system. 
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S C E N A R I O  # 1

One table is replicated at every node.
Each node joins its local data in 
parallel and then sends their results to 
a coordinating node.

R{Id}

S

R{Id}

S

SELECT * FROM R JOIN S
    ON R.id = S.id
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S C E N A R I O  # 2

Tables are partitioned on the join 
attribute. Each node performs the join 
on local data and then sends to a 
coordinator node for coalescing.
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S C E N A R I O  # 3

Both tables are partitioned on 
different keys. If one of the tables is 
small, then the DBMS "broadcasts" 
that table to all nodes.

R{id}

S{val}
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S C E N A R I O  # 4

Both tables are not partitioned on the join 
key. The DBMS copies/re-partitions the 
tables on-the-fly across nodes. 
→ This repartitioned data is generally deleted when 

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

SELECT * FROM R JOIN S
    ON R.id = S.id
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S C E N A R I O  # 4

Both tables are not partitioned on the join 
key. The DBMS copies/re-partitions the 
tables on-the-fly across nodes. 
→ This repartitioned data is generally deleted when 

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id

59



15-445/645 (Spring 2024)

S C E N A R I O  # 4

Both tables are not partitioned on the join 
key. The DBMS copies/re-partitions the 
tables on-the-fly across nodes. 
→ This repartitioned data is generally deleted when 

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id

60



15-445/645 (Spring 2024)

S C E N A R I O  # 4

Both tables are not partitioned on the join 
key. The DBMS copies/re-partitions the 
tables on-the-fly across nodes. 
→ This repartitioned data is generally deleted when 

the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S P2:R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id

61



15-445/645 (Spring 2024)

S C E N A R I O  # 4
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S E M I - J O I N :  R E D U C E  DATA  M OV E M E N T

Can use this technique to reduce data 
movement
→ Before pulling data from another node, 

send a semi-join filter to reduce data 
movement.

SELECT Fact.price, Dim.*
  FROM Fact JOIN Dim
    ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

63
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D-semi = Πid (σzip = 15213 Dim)
F-small = Fact ⋈ D-semi F-small
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Can use this technique to reduce data 
movement
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send a semi-join filter to reduce data 
movement.
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S E M I - J O I N :  R E D U C E  DATA  M OV E M E N T

Can use this technique to reduce data 
movement
→ Before pulling data from another node, 

send a semi-join filter to reduce data 
movement.

SELECT Fact.price, Dim.*
  FROM Fact JOIN Dim
    ON Fact.id = Dim.id
 WHERE Dim.zip = 15213
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F-small

Result = Πprice(Dim ⋈ F-small)
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C LO U D  S Y S T E M S

Vendors provide database-as-a-service (DBaaS) 
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines 
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3 

before copying data to compute nodes.
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C LO U D  S Y S T E M S

Approach #1: Managed DBMSs

→ No significant modification to the DBMS to be "aware" 
that it is running in a cloud environment.

→ Examples: Most vendors

Approach #2: Cloud-Native DBMS

→ System designed explicitly to run in a cloud environment. 
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery
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S E R V E R L E S S  DATA B A S E S

Rather than always maintaining compute 
resources for each customer, a "serverless" DBMS 
evicts tenants when they become idle.

Application
Server

Node
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Rather than always maintaining compute 
resources for each customer, a "serverless" DBMS 
evicts tenants when they become idle.
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DATA  L A K E S

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.

Storage

Node

CREATE TABLE foo (...);
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DATA  L A K E S

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
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Storage
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INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);
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DATA  L A K E S

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);
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Data Lake

DATA  L A K E S

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.

Node

SELECT * FROM foo
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Data Lake

DATA  L A K E S
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of structured, semi-structured, and 
unstructured data without having to 
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proprietary internal formats.
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SELECT * FROM foo
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DATA  L A K E S

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.

Node

SELECT * FROM foo

90



15-445/645 (Spring 2024)

O L A P  C O M M O D I T I Z AT I O N

One recent trend of the last decade is the breakout 
OLAP engine sub-systems into standalone open-
source components.
→ This is typically done by organizations not in the business 

of selling DBMS software.

Examples:

→ System Catalogs
→ Query Optimizers
→ File Format / Access Libraries
→ Execution Engines
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S Y S T E M  C ATA LO G S

A DBMS tracks a database's schema (table, 
columns) and data files in its catalog.
→ If the DBMS is on the data ingestion path, then it can 

maintain the catalog incrementally.
→ If an external process adds data files, then it also needs to 

update the catalog so that the DBMS is aware of them.

Notable implementations:
→ HCatalog
→ Google Data Catalog
→ Amazon Glue Data Catalog
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https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
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Q U E R Y  O P T I M I Z E R S

Extendible search engine framework for heuristic- 
and cost-based query optimization.
→ DBMS provides transformation rules and cost estimates.
→ Framework returns either a logical or physical query 

plan.

This is the hardest part to build in any DBMS.

Notable implementations:
→ Greenplum Orca
→ Apache Calcite
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https://github.com/greenplum-db/gporca
https://calcite.apache.org/
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DATA  F I L E  F O R M AT S

Most DBMSs use a proprietary on-disk binary file 
format for their databases.
→ Think of the BusTub page types…

The only way to share data between systems is to 
convert data into a common text-based format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats 
that make it easier to access data across systems.
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https://github.com/cmu-db/bustub/tree/master/src/include/storage/page
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DATA  F I L E  F O R M AT S

Apache Parquet

→ Compressed columnar storage from 
Cloudera/Twitter

Apache ORC

→ Compressed columnar storage from 
Apache Hive.

Apache CarbonData

→ Compressed columnar storage with 
indexes from Huawei.
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Apache Iceberg

→ Flexible data format that supports 
schema evolution from Netflix.

HDF5

→ Multi-dimensional arrays for 
scientific workloads.

Apache Arrow

→ In-memory compressed columnar 
storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/
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E X E C U T I O N  E N G I N E S

Standalone libraries for executing vectorized query 
operators on columnar data.
→ Input is a DAG of physical operators.
→ Require external scheduling and orchestration.

Notable implementations:
→ Velox
→ DataFusion
→ Intel OAP
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https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/
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C O N C L U S I O N

The cloud has made the distributed OLAP DBMS 
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems…
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N E X T  C L A S S

Review: Come to class. No recording. 
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