CARNEGIE MELLON UNIVERSITY COMPUTER SCIENCE DEPARTMENT 15-445/645 – DATABASE SYSTEMS (SPRING 2025) PROF. JIGNESH PATEL

Homework #3 (by Ramsey) Due: Sunday February 23rd, 2025 @ 11:59pm

IMPORTANT:

- Enter all of your answers into Gradescope by 11:59pm on Sunday February 23rd, 2025.
- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.

For your information:

- Graded out of 100 points; 5 questions total
- Rough time estimate: \approx 4-6 hours (1-1.5 hours for each question)

Revision : 2025/02/12 15:15

Question	Points	Score
Linear Hashing and Cuckoo Hashing	18	
Extendible Hashing	20	
B+Tree	27	
Bloom Filter	20	
Alternate Index Structures	15	
Total:	100	

For warmup, consider the following Linear Probe Hashing schema:

- 1. The table has a size of 4 slots, each slot can only contain one key-value pair.
- 2. The hashing function is $h_1(\mathbf{x}) = \mathbf{x} \ \% \ 4.$
- 3. When there is a conflict, it finds the next free slot to insert key-value pairs.
- 4. The original table is empty.
- 5. Uses a tombstone when deleting a key.
- (a) **[2 points]** Insert key/value pairs (2, C) and (6, D). For (2, C), "2" is the key and "C" is the value. Select the value in each entry of the resulting table.
 - i. Entry 0 (key % 4 = 0) \Box C \Box D \Box Emptyii. Entry 1 (key % 4 = 1) \Box C \Box D \Box Emptyiii. Entry 2 (key % 4 = 2) \Box C \Box D \Box Emptyiv. Entry 3 (key % 4 = 3) \Box C \Box D \Box Empty
- (b) **[2 points]** After the changes from part (a), delete (2, C), insert key-value (10, E), and lastly insert (14, F). Select the value in each entry of the resulting table.

i.	Entry 0 (key $\% 4 = 0$)	\Box Tombstone	\Box C	\Box D	\Box E	\Box F	□ Empty
ii.	Entry 1 (key $\% 4 = 1$)	□ Tombstone	\Box C	\Box D	\Box E	\Box F	□ Empty
iii.	Entry 2 (key % 4 = 2)	□ Tombstone	\Box C	\Box D	\Box E	\Box F	□ Empty
iv.	Entry 3 (key % 4 = 3)	□ Tombstone	\Box C	\Box D	$\Box E$	\Box F	□ Empty

Consider the following *Cuckoo Hashing* schema:

- 1. Both tables have a size of 4.
- 2. The hashing function of the first table returns the fourth and third least significant bits: $h_1(x) = (x \ge 2) \& 0b11$.
- 3. The hashing function of the second table returns the least significant two bits: $h_2(\mathbf{x}) = \mathbf{x} \& 0b11.$
- 4. When inserting, try table 1 first.
- 5. When replacement is necessary, first select an element in the second table.
- 6. The original entries in the table are shown below.

Table 1	Entry 0	Entry 1	Entry 2	Entry 3
Keys	-	20	-	-
Table 2	Entry 0	Entry 1	Entry 2	Entry 3

Figure 1: Initial contents of the hash tables.

(a) [2 points] Select the sequence of insert operations that results in the initial state. □ Insert 20, Insert 7 □ Insert 7, Insert 20 □ None of the above

- (b) Starting from the initial contents, insert key 22 and then insert 38. Select the values in the resulting two tables.
 - i. Table 1

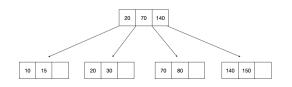
α) [1 point]	Entry 0 (0b00)	□ 20	□ 7	□ 22	□ 38	□ Empty
β) [1 point]	Entry 1 (0b01)	□ 20	□ 7	□ 22		□ Empty
γ) [1 point]	Entry 2 (0b10)	□ 20	□ 7	□ 22		□ Empty
δ) [1 point]	Entry 3 (0b11)	□ 20	□ 7	□ 22	□ 38	□ Empty
ii. Table 2						
<i>α</i>) [1 point]	Entry 0 (0b00)	\Box 20	□ 7	□ 22		□ Empty
β) [1 point]	Entry 1 (0b01)	□ 20	□ 7	□ 22		□ Empty
γ) [1 point]	Entry 2 (0b10)	□ 20	□ 7	□ 22		□ Empty
δ) [1 point]	Entry 3 (0b11)	□ 20	□ 7	□ 22	□ 38	□ Empty

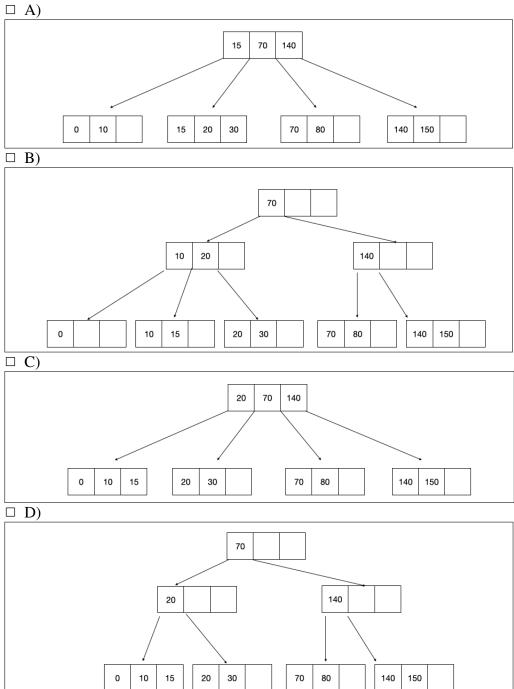
- (c) **[4 points]** Consider completely empty tables using the same two hash functions. Select which sequence of insertions below will cause an infinite loop.
 - □ [1, 5, 9, 13]
 - □ [0, 8, 16, 24]
 - □ [2, 6, 10, 14]
 - □ [3, 7, 11, 15]
 - \Box None of the above

Consider an extendible hashing structure such that:

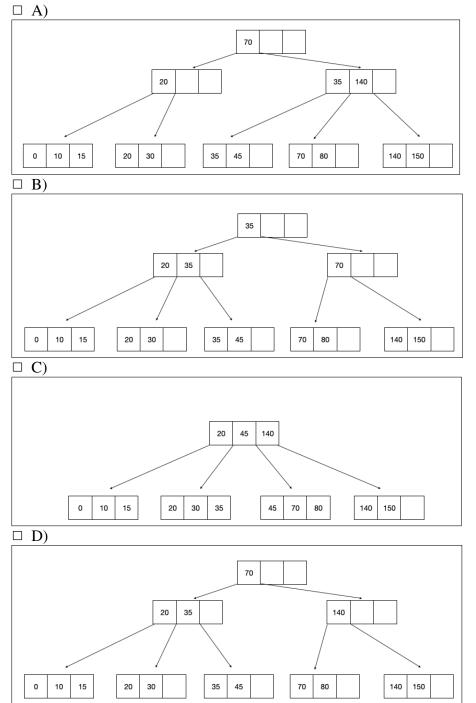
- Each bucket can hold up to two records.
- The hashing function uses the lowest g bits, where g is the global depth.
- A new extendible hashing structure is initialized with g = 0 and one empty bucket
- If multiple keys are provided in a question, assume they are inserted one after the other from left to right.
- (a) Starting from an empty table, insert keys 1, 2.
 - i. **[1 point]** What is the global depth of the resulting table?
 - $\Box 0 \Box 1 \Box 2 \Box 3 \Box 4 \Box$ None of the above
 - ii. **[1 point]** What is the local depth of the bucket containing 2? $\Box \ 0 \ \Box \ 1 \ \Box \ 2 \ \Box \ 3 \ \Box \ 4 \ \Box$ None of the above
- (b) Starting from the result in (a), you insert keys 9, 11.
 - i. **[2 points]** What is the global depth of the resulting table? $\Box \ 0 \ \Box \ 1 \ \Box \ 2 \ \Box \ 3 \ \Box \ 4 \ \Box$ None of the above
 - ii. [2 points] What are the local depths of the buckets for each key?
 - □ 1 (Depth 1), 2 (Depth 1), 9 (Depth 1), 11 (Depth 1)
 - □ 1 (Depth 3), 2 (Depth 1), 9 (Depth 3), 11 (Depth 3)
 - □ 1 (Depth 2), 2 (Depth 1), 9 (Depth 2), 11 (Depth 2)
 - □ 1 (Depth 3), 2 (Depth 1), 9 (Depth 3), 11 (Depth 2)
 - □ 1 (Depth 2), 2 (Depth 2), 9 (Depth 2), 11 (Depth 2)
 - $\hfill\square$ None of the above
- (c) Starting from the result in (b), you insert keys 13, 27.
 - i. **[2 points]** What is the global depth of the resulting table? $\Box \ 0 \ \Box \ 1 \ \Box \ 2 \ \Box \ 3 \ \Box \ 4 \ \Box$ None of the above
 - $\Box 0 \Box 1 \Box 2 \Box 3 \Box 4 \Box$ None of the above
 - ii. [2 points] What are the local depths of the buckets for each new key?
 - □ 13 (Depth 1), 27 (Depth 1)
 - \Box 13 (Depth 1), 27 (Depth 2)
 - \Box 13 (Depth 2), 27 (Depth 2)
 - □ 13 (Depth 3), 27 (Depth 2)
 - □ 13 (Depth 3), 27 (Depth 3)
 - \Box None of the above
- (d) [3 points] Starting from (c)'s result, which key(s), if inserted next, will not cause a split? \Box 5 \Box 17 \Box 43 \Box 8 \Box None of the above
- (e) **[3 points]** Starting from the result in (c), which **key**(s), if inserted next, will cause a split and increase the table's global depth?
 - \Box 0 \Box 3 \Box 5 \Box 17 \Box None of the above
- (f) **[4 points]** Starting from an empty table, insert keys 32, 64, 128, 512. What is the global depth of the resulting table?

 $\Box 4 \quad \Box 5 \quad \Box 6 \quad \Box 7 \quad \Box 8 \quad \Box \ge 9$

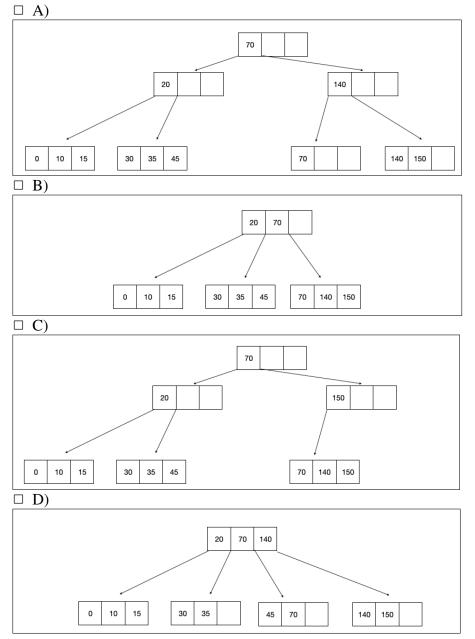



Figure 2: B+ Tree of order d = 4 and height h = 2.

When answering the following questions, be sure to follow the procedures described in class and in your textbook. You can make the following assumptions:


- A left pointer in an internal node guides towards keys < than its corresponding key, while a right pointer guides towards keys ≥.
- A leaf node underflows when the number of **keys** goes below $\lceil \frac{d-1}{2} \rceil$.
- An internal node underflows when the number of **pointers** goes below $\left\lceil \frac{d}{2} \right\rceil$.

Note that B+ tree diagrams for this problem omit leaf pointers for convenience. The leaves of actual B+ trees are linked together via pointers, forming a singly linked list allowing for quick traversal through all keys.


(a) [4 points] Insert 0^* into the B+tree. Select the resulting tree.

(b) **[5 points]** Starting with the tree that results from (a), insert 35^{*} and then 45^{*}. Select the resulting tree.

(c) **[8 points]** Starting with the tree that results from **(b)**, deletes 80^{*} and then 20^{*}. Select the resulting tree.

- (d) i. [2 points] Under optimistic latch crabbing, read-only thread can drop its latch on the current page before acquiring the latch on the next page (e.g., child, sibling).
 □ True □ False
 - ii. **[2 points]** Under optimistic latch coupling, write threads never take the write latch on the root to avoid contention.
 - \Box True \Box False
 - iii. [2 points] Threads can release their latches in any order.
 - \Box True \Box False
 - iv. **[2 points]** "No-Wait" mode for acquiring sibling latches prevents deadlock by allowing a read thread to inspect what another thread is doing.
 - \Box True \Box False
 - v. **[2 points]** For OLTP-style queries, a DBMS will not benefit from using two separate buffer pools for inner node and leaf pages.
 - \Box True \Box False

input	h_1	h_2
"Bloom"	2847	7391
"Hash"	5123	8642
"B+tree"	6078	3210
"Cuckoo"	7598	9845

(a) **[6 points]** Suppose the filter has 8 bits initially set to 0:

bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7
0	0	0	0	0	0	0	0

Which bits will be set to 1 after "Bloom" and "Cuckoo" have been inserted? \Box 0 \Box 1 \Box 2 \Box 3 \Box 4 \Box 5 \Box 6 \Box 7

(b) Suppose the filter has 8 bits set to the following values:

bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7
0	0	1	1	1	1	0	0

- i. **[4 points]** What will we learn using the above filter if we lookup "B+tree"?
 - \Box B+tree has been inserted
 - \Box B+tree has not been inserted
 - \Box B+tree may have been inserted
 - \Box Not possible to know
- ii. [4 points] What will we learn if we lookup "Hash"?
 - \Box Hash has been inserted
 - \Box Hash has not been inserted
 - □ Hash may have been inserted
 - \Box Not possible to know
- (c) **[6 points]** A colleague is interviewing a candidate and would like to first test your knowledge of bloom filters. The colleague has a list of prepared statements and would like you to identify which of them are true. Select all true statements.
 - □ Bloom filters can eliminate unnecessary disk I/Os.
 - \Box We can lower a bloom filter's false positive rate by using more hash functions.
 - $\hfill \hfill Bloom filters are effective for exact-match (or lookup) queries.$
 - \Box Add and lookup operations on bloom filters are parallelizable.
 - \Box All of the above.

- (a) **[5 points]** Your team is considering using a **Radix Tree** for indexing in a new database system. They consulted a large language model for some factual statements about Radix Trees but are unsure about the accuracy of the model's responses. They have asked you to identify all factually correct statements.
 - \Box Radix Trees are efficient for prefix queries.
 - □ Radix Trees require re-balancing after every insertion or deletion.
 - □ Radix Trees can be more space-efficient than B+Trees for certain datasets.
 - □ Radix Trees support efficient substring searches (e.g., LIKE "%?%").

 $\Box\,$ Each level in a Radix Tree must have exactly twice the number of nodes as the level above it.

- \Box None of the above.
- (b) [5 points] You are discussing index structures with a colleague. They want to compare B+Trees, Skip Lists, Radix Trees, and Inverted Indexes. Select all the true statements.
 - □ B+Trees and Skip Lists both guarantee logarithmic complexity for lookups.
 - □ Radix Trees and Inverted Indexes are both efficient at handling range queries.
 - □ Skip Lists perform better than B+Trees for range queries.
 - $\hfill\square$ Update overhead is generally Inverted Index > Skip Lists > B+Tree.
 - \Box None of the above.
- (c) **[5 points]** Suppose you are trying to run the following query:

SELECT *	FROM	PRODUCTS	WHERE	description	NOT	LIKE
'%organic	%';					

Assume that there is a non-clustering B+Tree index on description. Your query is running slowly. Which of the following choices (if any) would make this query go faster?

- \Box Replace the non-clustering B+Tree with a **clustering** B+Tree index on description.
- $\hfill\square$ Replace the index with a **hash index** on description.
- □ Drop the index and build a **bloom filter** on description.
- □ Replace the index with a **trie or radix tree** on description.
- \Box None of the above.