
CARNEGIE MELLON UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

15-445/645 – DATABASE SYSTEMS (SPRING 2025)
PROF. JIGNESH PATEL

Homework #4 (by Chris and Yuchen) – Solutions
Due: Sunday, March 23, 2025 @ 11:59pm

IMPORTANT:
• Enter all of your answers into Gradescope by 11:59pm on Sunday, March 23, 2025.
• Plagiarism: Homework may be discussed with other students, but all homework is to be

completed individually.
For your information:

• Graded out of 100 points; 3 questions total
• Rough time estimate: ≈ 2 - 3 hours (0.5 - 1 hours for each question)
Revision : 2025/03/12 15:13

Question Points Score

Sorting Algorithms 32

Join Algorithms 44

Query Execution, Planning, and Optimization 24

Total: 100

1

https://15445.courses.cs.cmu.edu/spring2025/
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Spring 2025) Homework #4 Page 2 of 11

Question 1: Sorting Algorithms . [32 points]
Graded by:
We have a database file with 4 million pages (N = 4,000,000 pages), and we want to sort it
using external merge sort. Assume that the DBMS is not using double buffering or blocked
I/O, and that it uses quicksort for in-memory sorting. Let B denote the number of buffers.

(a) [4 points] Assume that the DBMS has 50 buffers. How many sorted runs are generated?
Note that the final sorted file does not count towards the sorted run count.
2 34 2 1,633 2 80,000 ■ 81,667 2 81,670 2 81,671

Solution: ⌈
4, 000, 000

50

⌉
+

⌈
80, 000

49

⌉
+

⌈
1, 633

49

⌉
= 81, 667

(b) [4 points] Again, assuming that the DBMS has 50 buffers. How many passes does the
DBMS need to perform in order to sort the file?
2 2 2 3 ■ 4 2 5 2 6

Solution:

1 +

⌈
logB−1

(⌈
N

B

⌉)⌉
= 1 + ⌈log49 (⌈4, 000, 000/50⌉)⌉

= 1 + 3 = 4

(c) [4 points] Again, assuming that the DBMS has 50 buffers. How many pages does each
sorted run have after the third pass (i.e. Note: this is Pass #2 if you start counting from
Pass #0)?
2 49 2 50 2 2,450 2 2,500 2 117,649 ■ 120,050 2 125,000

Solution: On the first pass, B buffer pages will be used to create the sorted runs. From
the second pass onward, B-1 runs will be sorted through a K-way merge.
First pass: 50 pages for each sorted run. Third pass: 50 ∗ 49 ∗ 49 = 120, 050 pages for
each sorted run.

(d) [4 points] Again, assuming that the DBMS has 50 buffers. What is the total I/O cost to
sort the file?
2 4,000,000 2 16,000,000 ■ 32,000,000 2 64,000,000 2 96,000,000

Solution: Cost = 2N ×#passes = 2× 4, 000, 000× 4 = 32, 000, 000

(e) [4 points] Suppose the DBMS has 67 buffers. What is the largest database file (ex-
pressed in terms of the number of pages) that can be sorted with external merge sort

Question 1 continues. . .

15-445/645 (Spring 2025) Homework #4 Page 3 of 11

using three passes?
2 11,342 2 120,050 2 278,852 ■ 291,852 2 300,763

Solution: We want the largest integer N such that N ≤ B× (B− 1)2. The largest such
value is B × (B − 1)2 itself, which is 67× 662 = 291, 852

(f) [4 points] What is the smallest number of buffers B such that the DBMS can sort the
target file using only three passes?
2 157 2 158 2 159 ■ 160 2 161

Solution: We want the smallest integer B such that N ≤ B × (B − 1)2. If B = 160,
then 4, 000, 000 ≤ 160× 1592 = 4, 044, 960; any smaller value for B would fail.

(g) For each of the following statements about sorting, pick True or False.
i. [4 points] The DBMS receives a query that requires sorting. Assume that the sort

order is a prefix of the index key. Under which scenario(s) will using an unclustered
B+Tree index have comparable performance to a clustered B+Tree index:
2 The sort order exactly matches the index key.
■ Query contains a LIMIT 1, and the first tuple answers the query.
■ All attributes accessed by the query are contained in the index.
2 Using unclustered index will always perform worse than using clustered index.
2 None of the above.

Solution: If the query contains a LIMIT 1 and the first tuple answers the query,
then both unclustered/clustered will make a single heap I/O. Hence, this is correct.

When all attributes accessed by the query are contained in the index, the DBMS can
perform an index-only or covering scan and avoid accessing the heap. Hence, this
is also correct.

ii. [2 points] Sort aggregation cannot handle can not be used for all aggregates dis-
cussed in lecture (i.e., “DISTINCT”, “GROUP BY”). For some of them, we have to
use hash aggregation.
2 True ■ False

Solution: All aggregates can be implemented as some form of (1) sort to form
groups and (2) additional processing to then produce the answer.

iii. [2 points] It is always more efficient for a DBMS to use a hash aggregate than a
sort aggregate.
2 True ■ False

Solution: If the aggregation query then has a further “ORDER BY”, the DBMS
may benefit from using a sort aggregate instead.

Homework #4 continues. . .

15-445/645 (Spring 2025) Homework #4 Page 4 of 11

Question 2: Join Algorithms . [44 points]
Graded by:
Consider relations X(a, b), Y(a, c, e), and Z(a, d, f) to be joined on the common
attribute a. Assume that there are no indexes available on the tables to speed up the join
algorithms.

• There are B = 450 pages in the buffer

• Table X spans M = 1,500 pages with 200 tuples per page

• Table Y spans N = 250 pages with 450 tuples per page

• Table Z spans O = 2,000 pages with 140 tuples per page

• The join result of Y and Z spans P = 170 pages

For the following questions, assume a simple cost model where pages are read and written one
at a time. Also assume that one buffer block is needed for the evolving output block and one
input block is needed for the current input block of the inner relation. You may ignore the cost
of the writing of the final results.

(a) [2 points] What is the I/O cost of a simple nested loop join with Y as the outer relation
and X as the inner relation?
2 300,250
2 375,250
2 675,250
2 27,050,000
2 60,750,250
■ 168,750,250

Solution: N + n×M = 250 + 250× 450× 1, 500 = 168, 750, 250

(b) [2 points] What is the I/O cost of a block nested loop join with Y as the outer relation
and Z as the inner relation?
2 1,650
2 1,900
2 2,100
■ 2,250
2 2,700
2 3,250
2 3,450

Solution: N + ⌈ N
B−2

⌉ ×O = 250 + ⌈250
448

⌉ × 2, 000 = 250 + 2, 000 = 2, 250

(c) [2 points] What is the I/O cost of a block nested loop join with Z as the outer relation
and Y as the inner relation?

Question 2 continues. . .

15-445/645 (Spring 2025) Homework #4 Page 5 of 11

2 1,650
2 1,900
2 2,100
2 2,250
2 2,700
■ 3,250
2 3,450

Solution: O + ⌈ O
B−2

⌉ ×N = 2, 000 + ⌈2,000
448

⌉ × 250 = 2, 000 + 1250 = 3, 250

(d) For a sort-merge join with Z as the outer relation and X as the inner relation:
i. [3 points] What is the cost of sorting the tuples in X on attribute a?

2 1,500
2 3,000
■ 6,000
2 8,000
2 12,000

Solution: passes = 1 + ⌈logB−1(⌈M
B
⌉)⌉ = 1 + ⌈log449(⌈1,500

450
⌉)⌉ = 1 + 1 = 2

2M × passes = 2× 1, 500× 2 = 6, 000

ii. [3 points] What is the cost of sorting the tuples in Z on attribute a?
2 2,000
2 4,000
2 6,000
■ 8,000
2 16,000

Solution: passes = 1 + ⌈logB−1(⌈O
B
⌉)⌉ = 1 + ⌈log449(⌈2,000

450
⌉)⌉ = 1 + 1 = 2

2O × passes = 2× 2, 000× 2 = 8, 000

iii. [3 points] What is the cost of the merge phase in the worst-case scenario?
2 340
2 1,640
2 3,500
2 28,000
2 210,000
2 2,800,000
■ 3,000,000
2 3,250,000

Solution: O ×M = 2, 000× 1, 500 = 3, 000, 000

iv. [3 points] What is the cost of the merge phase assuming there are no duplicates in

Question 2 continues. . .

15-445/645 (Spring 2025) Homework #4 Page 6 of 11

the join attribute?
2 340
2 1,640
■ 3,500
2 28,000
2 210,000
2 2,800,000
2 3,000,000
2 3,250,000

Solution: O +M = 2, 000 + 1, 500 = 3, 500

v. [3 points] Now consider joining Y, Z and then joining the result with X. What is the
cost of the final merge phase assuming there are no duplicates in the join attribute?
2 420
■ 1,670
2 1,920
2 2,170
2 28,000
2 63,000
2 90,000

Solution: P +X = 170 + 1, 500 = 1, 670

(e) [2 points] Consider a hash join with Y as the outer relation and X as the inner relation.
You may ignore recursive partitioning and partially filled blocks. What is the cost of the
combined probe and partition phases?
2 2,250
2 3,500
2 5,000
■ 5,250
2 6,750
2 10,500

Solution: 3(N +M) = 5, 250

(f) [3 points] Assume that the tables do not fit in main memory and that a large number of
distinct values hash to the same bucket using hash function h1. Which of the following
approaches works the best?
2 Create two hashtables half the size of the original one, run the same hash join algorithm
on the tables, and then merge the hashtables together.
■ Create hashtables for the inner and outer relation using h1 and rehash into an
embedded hash table using h2 != h1 for large buckets.
2 Use linear probing for collisions and page in and out parts of the hashtable needed at

Question 2 continues. . .

15-445/645 (Spring 2025) Homework #4 Page 7 of 11

a given time.
2 Create hashtables for the inner and outer relation using h1 and rehash into an embedded
hash table using h1 for large buckets.

Solution: Use Grace hash join with recursive partitioning, which is what the correct
option describes.

(g) For each of the following statements about joins, pick True or False.
i. [2 points] If both tables in a simple nested loop join fit entirely in memory, the order

of inner and outer tables does not significantly affect I/O costs.
■ True 2 False

Solution: If both tables fit entirely in memory, then they can be read just once and
therefore the order would not be very important.

ii. [2 points] If neither table fits entirely in memory, I/O costs would be lower if we
process both tables on a per-block basis rather than per-tuple basis.
■ True 2 False

Solution: A block nested loop join has fewer disk accesses when compared to a
simple nested loop join.

iii. [3 points] A sort-merge join is faster than a hash join on all circumstances.
2 True ■ False

Solution: Sort merge join can be just as fast as hash join under specific circum-
stances. For example, if the sort merge is performed on already-sorted data (i.e.
sort cost is 0 and overall cost is M+N), and the hash join is perform on data can fit
entirely in memory where overall cost is M+N.

iv. [3 points] An index nested loop join requires an index on the outer- and inner- ta-
bles.
2 True ■ False

Solution: An index nested loop join only requires the inner- table to have an index.

v. [3 points] For a hash join to work, the inner table (or its partitions) need to fit into
memory.
2 True ■ False

Solution: The inner table can be any size. Only outer table (or its partitions) need
to fit in memory.

vi. [5 points] A nested loop join can output a sorted stream of tuples under the follow-
ing condition:
2 All nested loop joins can output a sorted stream.

Question 2 continues. . .

15-445/645 (Spring 2025) Homework #4 Page 8 of 11

2 No intra-operator parallelism.
2 Outer- table (or data) is already sorted.
■ Outer- table (or data) is sorted and no intra-operator parallelism.
2 Inner- table (or data) is already sorted.
2 Inner- table (or data) is sorted and no intra-operator parallelism.

Solution: With no intra-operator parallelism, a nested loop join sequentially iter-
ates through the outer- table to find matching tuples from the inner- table. If the
outer- table is already sorted, the nested loop join will preserve its order.
Grading Note: Due to ambiguity and the question being underspecified, all students
were given credit for this question.

Homework #4 continues. . .

15-445/645 (Spring 2025) Homework #4 Page 9 of 11

Question 3: Query Execution, Planning, and Optimization [24 points]
Graded by:
(a) [2 points] The iterator model allows tuples to continously flow through the entire se-

quence of operators in the execution plan before retrieving the next tuple.
2 True ■ False

Solution: False. The statement is true only for a single pipeline, but a query can have
multiple pipelines. If an operator is a pipeline breaker (e.g. build-side of hash join,
subqueries, order-by), it cannot emit tuples until all its children emit all their tuples.

(b) [2 points] Assume that the DBMS zone maps are up to date. The DBMS can use these
zone maps to answer specific queries without reading any actual table heap tuples:
■ True 2 False

Solution: True. If the zone maps are up-to-date, the DBMS could answer queries asking
for the minimum value of a given attribute (amongst others) by only looking at zone
maps.

(c) [2 points] Assuming a query with multiple OR predicates. Using a multi-index scan will
always perform better than a sequential scan.
2 True ■ False

Solution: False. If the OR predicates cover enough of the table, it may be more perfor-
mant to use a sequential scan.

(d) [2 points] For OLAP queries, which often involve complex operations on vast datasets,
intra-query parallelism is typically not preferred to optimize performance.
2 True ■ False

Solution: False. OLAP queries, characterized by their complex operations on large
volumes of data, can greatly benefit from intra-query parallelism. By executing the
operations of a single query in parallel, it helps in significantly decreasing the latency,
thus optimizing the performance of these types of queries.

(e) [2 points] The process per DBMS worker approach provides better fault isolation and
scheduling control than the thread per DBMS worker approach.
2 True ■ False

Solution: False. While the process per DBMS worker approach does provide better
fault isolation, thread per worker gives the DBMS finer control over scheduling.

(f) [2 points] In OLAP workload, the vectorized model’s performance improvements come
mainly from the reduction in the number of disk I/O operations.
2 True ■ False

Solution: False. While the Vectorized Model can reduce some I/O operations due to
its batch processing, its primary advantage is from reducing CPU overhead, optimizing
cache utilization, and leveraging SIMD instructions.

Question 3 continues. . .

15-445/645 (Spring 2025) Homework #4 Page 10 of 11

(g) [2 points] The query optimizer in a database management system always guarantees the
generation of an optimal execution plan by exhaustively evaluating all possible plans to
ensure the lowest cost for query execution.
2 True ■ False

Solution: No, it is usually not necessary to estimate the cost of every plan for a query
via a cost model. In this case, the time it would take to enumerate every plan and then
filter out the plans to pick the most optimal one would introduce too high of an overhead
compared to the query time itself. Usually, DBMSs will use rule-based optimizations
(or heuristics) first, transforming the plan into a more simple one.

(h) [2 points] Predicate and projection pushdown will always improve query performance.
2 True ■ False

Solution: False. If the predicate/projection being pushed down involves an expensive
function call (i.e., UDF), the query may benefit from deferring it to later.

(i) [2 points] The execution plan with the lowest cost is guaranteed to be the most efficient
among all execution plans enumerated by the query optimizer.
2 True ■ False

Solution: False. The execution plan is not guaranteed to be the most efficient, as the
statistics used to compute cardinality might be stale and the cost model may not accu-
rately reflect the actual performance of the plan (e.g. assume all predicates in a conjunc-
tion is indepedent, while there might be some correlation).

(j) [2 points] Sampling statistics requires evaluating each tuple in the entire table.
2 True ■ False

Solution: False. Sampling only needs to look at a subset (or representative sample) of
the table.

(k) [2 points] Equi-depth histogram maintains counts for a group of values instead of each
unique key to reduce memory footprint and uses the same range size for each bucket.
2 True ■ False

Solution: False. Equi-depth histogram varies the range size of buckets so that the total
number of occurrences for each bucket is roughly the same.

(l) A database contains a single table: University(id,name,state,city). You need to
estimate the cardinality of the following query:
SELECT * FROM University WHERE state = ‘PA’ AND city = ‘Pittsburgh’

For the following questions, assume University has 5,000 rows with 6% having state
= ‘PA’, and 0.6% having city = ‘Pittsburgh’.

i. [1 point] Under uniform data assumption and independent predicates assumption,
what is the estimated cardinality c of this query? Take ⌈c⌉ of the result.
2 1 ■ 2 2 10 2 30 2 300

Question 3 continues. . .

15-445/645 (Spring 2025) Homework #4 Page 11 of 11

Solution: ⌈5, 000× 0.6× 0.06⌉ = ⌈1.8⌉ = 2.

ii. [1 point] Is the result from previous question an overestimate or underestimate of
the true cardinality?
2 Overestimate ■ Underestimate

Solution: We have an underestimate of the true cardinality. The true cardinality
is 30 rows, which is significantly higher than the estimated cardinality of 2 rows.
The reason is that state and city are not independent attributes - they are highly
correlated. In fact, all universities in Pittsburgh are in PA.

End of Homework #4

