
Lecture #20: Database Logging
15-445/645 Database Systems (Spring 2025)

https://15445.courses.cs.cmu.edu/spring2025/
Carnegie Mellon University

Jignesh Patel

1 Crash Recovery
Recovery algorithms are techniques to ensure database consistency, transaction atomicity, and durability
despite failures. When a crash occurs, all the data in volatile memory that has been committed but not yet
flushed to disk is at risk of being lost. This is not ideal since the user expects their committed data changes
to be persisted. Recovery algorithms act to prevent loss of information after a crash.
Why this matters: Volatile memory is significantly faster than non-volatile storage (like SSDs or HDDs),
so DBMSs use volatile memory extensively for performance. However, this creates the recovery challenge
- we need smart algorithms that allow us to benefit from fast memory while ensuring we don’t lose data.
Every recovery algorithm has two parts:

• Actions during normal transaction processing to ensure that the DBMS can recover from a failure.
• Actions after a failure to recover the database to a state that ensures atomicity, consistency, and
durability.

The key primitives used in recovery algorithms are UNDO and REDO. Not all algorithms use both primi-
tives.

• UNDO: The process of removing the effects of an incomplete or aborted transaction.
• REDO: The process of re-applying the effects of a committed transaction for durability.

2 Buffer Pool Management Policies
The DBMS needs to ensure the following guarantees:

• The changes for any transaction are durable once the DBMS has told somebody that it committed.
• No partial changes are durable if the transaction aborted.

A steal policy dictates whether the DBMS allows an uncommitted transaction to overwrite the most recent
committed value of an object in non-volatile storage.

• STEAL:TheDBMS canwrite uncommitted changes to disk before the transaction completes. (Mnemonic:
The system ”steals” dirty pages from active transactions and writes them to disk.)

• NO-STEAL:TheDBMS cannot write uncommitted changes to disk before the transaction completes.
(Mnemonic: The system cannot ”steal” dirty pages - they must stay in memory until commit time.)

A force policy dictates whether the DBMS requires that all updates made by a transaction are reflected on
non-volatile storage before the transaction is allowed to commit.

• FORCE: All changes must be written to disk at commit time. (Mnemonic: The system ”forces” all
changes to disk at commit time.)

https://15445.courses.cs.cmu.edu/spring2025/
https://15445.courses.cs.cmu.edu/spring2025/
https://jigneshpatel.org/


Spring 2025 – Lecture #20 Database Logging

• NO-FORCE: Changes are not required to be written to disk at commit time. (Mnemonic: The system
does not ”force” changes to disk - they can be written later.)

These policies create four possible combinations, but only two are commonly used in practice:
• NO-STEAL + FORCE: Simple recovery but poor runtime performance
• STEAL + NO-FORCE: Excellent runtime performance but more complex recovery

The other combinations (STEAL + FORCE, NO-STEAL + NO-FORCE) offer few practical advantages and
are rarely implemented.

3 Naive NO-STEAL + FORCE
The simplest buffer pool management policy to implement is called NO-STEAL + FORCE. In this policy, the
DBMS never has to undo changes of an aborted transaction because the changes were not written to disk.
It also never has to redo changes of a committed transaction because all the changes are guaranteed to be
written to disk at commit time. An example of NO-STEAL + FORCE is shown in Figure 1.

Figure 1: DBMS using NO-STEAL + FORCE Example – All changes from a trans-
action are only written to disk when the transaction is committed. Once the schedule
begins at Step #1, changes from T1 and T2 are written to the buffer pool. Because of
the FORCE policy, when T2 commits at Step #2, all of its changes must be written
to disk. To do this, the DBMS makes a copy of the memory in disk, applies only the
changes from T2, and writes it back to disk. This is because NO-STEAL prevents the
uncommitted changes from T1 to be written to disk. At Step #3, it is trivial for the
DBMS to rollback T1 since no dirty changes from T1 are on disk.

A critical limitation of this naive NO-STEAL + FORCE approach is that all of the data (i.e., the write
set) that a transaction needs to modify must fit into memory. Otherwise, that transaction cannot
execute because the DBMS is not allowed to write out dirty pages to disk before the transaction commits.
More frequent writes can also lead to faster wearing of storage devices like SSDs.

15-445/645 Database Systems
Page 2 of 7

https://15445.courses.cs.cmu.edu/spring2025/


Spring 2025 – Lecture #20 Database Logging

4 Shadow Paging (Smarter NO-STEAL + FORCE)
Shadow Paging is an improvement upon the naive NO-STEAL + FORCE scheme where the DBMS imple-
ments a copy-on-write approach to maintain two separate versions of the database:

• master : Contains only changes from committed transactions.
• shadow: Temporary database with changes made from uncommitted transactions.

Updates are only made in the shadow copy. When a transaction commits, the shadow copy is atomically
switched to become the new master. The old master is eventually garbage collected. This is an example of
a NO-STEAL + FORCE system. A high-level example of shadow paging is shown in Figure 2.

Figure 2: Shadow Paging – The database root points to a master page table which
in turn points to the pages on disk (all of which contain committed data). When
an updating transaction occurs, a shadow page table is created that points to the
same pages as the master. Modifications are made to a temporary space on disk and
the shadow table is updated. To complete the commit, the database root pointer is
redirected to the shadow table, which becomes the new master.

Implementation
The DBMS organizes the database pages in a tree structure where the root is a single disk page. There are
two copies of the tree, the master and shadow. The root always points to the current master copy. When a
transaction executes, it only makes changes to the shadow copy.
When a transactionwants to commit, the DBMSmust install its updates. To do this, it only has to overwrite
the root to make it point to the shadow copy of the database, thereby swapping the master and shadow.
Before overwriting the root, none of the transaction’s updates are part of the disk-resident database. After
overwriting the root, all the transaction’s updates are part of the disk resident database. This overwriting
of the root can be done atomically.

Recovery
• Undo: Remove the shadow pages. Leave the master and DB root pointer alone.

15-445/645 Database Systems
Page 3 of 7

https://15445.courses.cs.cmu.edu/spring2025/


Spring 2025 – Lecture #20 Database Logging

• Redo: Not needed at all.

Disadvantages
Shadow paging has several key limitations:

• High overhead: Copying the entire page table is expensive. In practice, only paths in the tree that
lead to updated leaf nodes need to be copied, not the entire tree.

• Expensive commits: Commits require the page table, root page, and every updated page to be
flushed, causing lots of writes to random non-contiguous pages.

• Data fragmentation: Potentially related data gets divided between different pages as updates occur.
• Concurrency limitations: While technically possible to support multiple shadow pages for differ-
ent transactions, this approach becomes increasingly inefficient with concurrent writers.

5 Journal File
When a transaction modifies a page, the DBMS copies the original page to a separate journal file before
overwriting the master version. After restarting, if a journal file exists, the DBMS collects the original
pages and blindly overwrites the pages with those original pages to restore data to the state before the
uncommitted transaction.
The journal file approach allows for STEAL (unlike shadow paging), solving the memory limitation prob-
lem by permitting dirty pages to be written to disk before commit. However, it’s typically limited to one
writer at a time, which was acceptable for SQLite’s design goals prior to 2010. After 2010, SQLite switched
their implementation to use a write-ahead log instead for better performance.

6 Write-Ahead Logging
With write-ahead logging, the DBMS records all the changes made to the database in a log file (on stable
storage) before the change is made to a disk page. The log contains sufficient information to perform the
necessary undo and redo actions to restore the database after a crash. The DBMS must write to disk the
log file records that correspond to changes made to a database object before it can flush that object to disk.
An example of WAL is shown in Figure 3.
WAL is an example of a STEAL + NO-FORCE system:

• STEAL allows dirty pages to be written to disk before commit, solving the memory limitation issue
• NO-FORCEmeanswe don’t need towrite all changes to disk at commit time, improving performance
• However, this introduces the need to handle both UNDO (for rolled-back transactions that wrote to
disk) and REDO (for committed transactions whose changes weren’t forced to disk)

In shadow paging, the DBMS was required to perform writes to random non-contiguous pages on disk.
Write-ahead logging insteadworks with sequential writes, which aremuch faster. Thus, almost everymod-
ern DBMS uses write-ahead logging (WAL) because it has the fastest runtime performance, even though
the DBMS’s recovery time with WAL is slower than shadow paging because it has to replay the log.

Implementation
The DBMS first stages all of a transaction’s log records in volatile storage. All log records pertaining to an
updated page are then written to non-volatile storage before the page itself is allowed to be overwritten in
non-volatile storage. A transaction is not considered committed until all its log records have been written
to stable storage.

15-445/645 Database Systems
Page 4 of 7

https://15445.courses.cs.cmu.edu/spring2025/


Spring 2025 – Lecture #20 Database Logging

Figure 3: Write Ahead Logging – When the transaction begins, all changes are
recorded in the WAL buffer in memory before being made to the buffer pool. At the
time of commit, the WAL buffer is flushed out to disk. The transaction result can be
written out to disk, once the WAL buffer is safely on disk.

When the transaction starts, write a <BEGIN> record to the log for each transaction to mark its starting
point.
When a transaction finishes, write a <COMMIT> record to the log and make sure all log records are flushed
before it returns an acknowledgment to the application.
Each log entry contains information necessary to rewind or replay the changes to a single object:

• Transaction ID.
• Object ID.
• Before Value (used for UNDO).
• After Value (used for REDO).
• . . . Some system dependent data (e.g. timestamp, checksum)

Note: When using Multi-Version Concurrency Control (MVCC), the ”Before Value” may not be needed for
UNDO operations since previous versions are alreadymaintained by the system - an example of convenient
synergy between concurrency control and recovery mechanisms.
The DBMS must flush all of a transaction’s log entries to disk before it can tell the outside world that a
transaction has successfully committed. The system can use the “group commit” optimization to batch
multiple log flushes together to amortize overhead. Flushes happen either when the log buffer is full, or if
sufficient time has passed between successive flushes. The DBMS can write dirty pages to disk whenever
it wants to, as long as it is after flushing the corresponding log records.

Buffer Pool Policies Tradeoff
Most DBMSs employ the NO-FORCE + STEAL policy due to its superior runtime performance compared
to FORCE + NO-STEAL. However, this tradeoff means:

• Runtime Performance: STEAL + NO-FORCE is much faster during normal operation
• Recovery Speed: FORCE + NO-STEAL recovers faster after a crash

15-445/645 Database Systems
Page 5 of 7

https://15445.courses.cs.cmu.edu/spring2025/


Spring 2025 – Lecture #20 Database Logging

Change Data Capture
WAL can also serve purposes beyond recovery. Since the log contains a complete sequence of changes to
the database, it can be used to propagate changes to external systems. This approach, known as Change
Data Capture (CDC), allows other systems to subscribe to database changes and stay synchronized with
the primary database. The same log that ensures durability for recovery can efficiently feed data to replicas,
data warehouses, or microservices.

7 Logging Schemes
The contents of a log record can vary based on the implementation.
Physical Logging:

• Record the byte-level changes made to a specific location in the database.
• Example: git diff

Logical Logging:

• Record the high level operations executed by transactions.
• Not necessarily restricted to a single page.
• Requires less data written in each log record than physical logging because each record can update
multiple tuples over multiple pages. However, it is difficult to implement recovery with logical
logging when there are concurrent transactions in a non-deterministic concurrency control scheme.
Additionally recovery takes longer because you must re-execute every transaction.

• Example: The UPDATE, DELETE, and INSERT queries invoked by a transaction.
Physiological Logging:

• Hybrid approach where log records target a single page but does not specify data organization of the
page. That is, identify tuples based on a slot number in the page without specifying exactly where
in the page the change is located. Therefore the DBMS can reorganize pages after a log record has
been written to disk.

• Most common approach used in DBMSs.

8 Checkpoints
The main problem with a WAL-based DBMS is that the log file will grow forever. Some database systems
have been running continuously for decades, potentially accumulating petabytes of logs if not managed
properly. After a crash, the DBMS would have to replay the entire log, which can take an impractically
long time.
Thus, the DBMS periodically takes a checkpoint where it flushes all buffers out to disk. Checkpoints serve
two critical purposes:

• Log Pruning: Old log records before the checkpoint can be safely discarded
• Recovery Efficiency: The DBMS only needs to perform REDO/UNDO operations from the most
recent checkpoint, not from the beginning of time

How often the DBMS should take a checkpoint depends on the application’s performance and downtime
requirements. Taking a checkpoint too often causes the DBMS’s runtime performance to degrade. But
waiting a long time between checkpoints can potentially be just as bad, as the system’s recovery time after
a restart increases.
Blocking Checkpoint Implementation:

15-445/645 Database Systems
Page 6 of 7

https://15445.courses.cs.cmu.edu/spring2025/


Spring 2025 – Lecture #20 Database Logging

• The DBMS stops accepting new transactions and waits for all active transactions to complete.
• Flush all log records and dirty blocks currently residing in main memory to stable storage.
• Write a <CHECKPOINT> entry to the log and flush to stable storage.

In this implementation, the DBMS must halt everything when it takes a checkpoint to ensure a consistent
snapshot. This is bad for runtime performance but makes recovery straightforward.

15-445/645 Database Systems
Page 7 of 7

https://15445.courses.cs.cmu.edu/spring2025/

	Crash Recovery
	Buffer Pool Management Policies
	Naive NO-STEAL + FORCE
	Shadow Paging (Smarter NO-STEAL + FORCE)
	Journal File
	Write-Ahead Logging
	Logging Schemes
	Checkpoints

