Carnegie Mellon University

Database
Systems

Relational Model &
Algebra

15-445/645 SPRING 2025)) PROF. JIGNESH PATEL

ClickHouse (&%) CONFLUENT
DATASTAX

FIREBOLT
RelationalAI StaAr4tree

“, Weaviate

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

WaitlList

We do not control the waitlist.

Admins will move students off the waitlist as spots
become available.

To improve your chances of getting into the class
(though not a guarantee), stay in the class and
complete PO.

This class will be offered in Fall’25 too!

COURSE OVERVIEW

This course is about the design/implementation of
database management systems (DBMSs).

This is not a course about how to use a DBMS to

build applications or how to administer a DBMS.
— See CMU 95-703 (Heinz College)

£CMU-DB

15-445/645 (Spring 2025)

http://www.heinz.cmu.edu/academic-resources/course-results/course-details/index.aspx?cid=273
https://api.heinz.cmu.edu/courses_api/course_detail/95-703/

COURSE LOGISTICS

Course Policies + Schedule: Course Web Page

Discussion + Announcements: Piazza

Homeworks + Projects: Gradescope

Final Grades: Canvas

Notes:
— Do not post your solutions on Github.
— Do not email instructors / TAs for help.

£CMU-DB

15-445/645 (Spring 2025)

https://15445.courses.cs.cmu.edu/spring2025
https://piazza.com/class/m4sbhddfimf6xn
https://www.gradescope.com/courses/935004
https://canvas.cmu.edu/courses/42170

TEXTBOOK

Database System Concepts
7th Edition
Silberschatz, Korth, & Sudarshan

We also provide lecture notes
that cover topics not found in
textbook.

SEVENTH EDITION

Database System Concepts

— Abraham SilBerschatz
—— Henry F-Korth—
—-S:Sudarshan — - —

£CMU-DB

15-445/645 (Spring 2025)

GRADING RUBRIC

Homeworks (15%)
Projects (45%)
Midterm Exam (20%)
Final Exam (20%)

£CMU-DB

15-445/645 (Spring 2025)

HOMEWORKS

Six homework assignments that cover lecture and

reading material.
— First homework is a SQL assignment.
— The rest will be pencil-and-paper assignments.

Submit all assignments via Gradescope.

All homework should be done individually.

£CMU-DB

15-445/645 (Spring 2025)

PROJECTS

All projects will use the CMU DB
Group BusTub academic DBMS.

— Each project builds on the previous one.

— We will not teach you how to
write/debug C++17.

— See the 15-445/645 Bootcamp.

Total of four late days the entire
semester for projects only.

We will hold an online recitation for
each project after it is released.
£2CMU-DB

15-445/645 (Spring 2025)

BusTub

https://github.com/cmu-db/bustub
https://github.com/cmu-db/15445-bootcamp

o
IR :
C++ Requirement

QQ All the projects are in C++ If you are new to C++, you must pick it up quickly... If you
can take and get all the questions on the following quizzes right, you are all set:

Scoping: https://www.learncpp.com/cpp-tutorial/chapter-7-summary-and-quiz/

Type Conversion: https://www.learncpp.com/cpp-tutorial/chapter-10-summary-and-quiz/

lvalues/rvalues: https://www.learncpp.com/cpp-tutorial/chapter-12-summary-and-quiz/

Stack and heap: https://www.learncpp.com/cpp-tutorial/chapter-20-summary-and-quiz/

Move Semantics: https://www.learncpp.com/cpp-tutorial/chapter-22-summary-and-quiz/

Templates: https://www.learncpp.com/cpp-tutorial/chapter-26-summary-and-quiz/

... take it upon yourself to catch up ...

... also https://db.in.tum.de/teaching/ss23/c++praktikum/slides/lecture-10.2.pdf?lang=en

C++ Bootcamp: This Friday Jan. 17% from 3pm-4pm in GHC 4303
£=CMU-DB

15-445/645 (Spring 2025)

https://www.learncpp.com/cpp-tutorial/chapter-7-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-10-summary-and-quiz/lvalues/rvalues
https://www.learncpp.com/cpp-tutorial/chapter-12-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-20-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-22-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-26-summary-and-quiz/
https://db.in.tum.de/teaching/ss23/c++praktikum/slides/lecture-10.2.pdf?lang=en

Project O (PO): Goals

— Get you started on C++, so you are not surprised later.
— Get you thinking about algorithms and concurrency.

— PO is about building a Skip List data structure.

— We will discuss Skip List in more detail later in the class.

— PO is published; due on Jan 26 @ 11:59pm.

— No late days allowed for PO.

If you can’t score 100% on PO, you can’t stay in this class,

even if you are currently enrolled.
SCMU-DB

15-445/645 (Spring 2025)

https://15445.courses.cs.cmu.edu/spring2025/project0/

OFFICE HOURS

Instructors and T As will hold office hours on
weekdays (Mon-Fri) at different times.

We will also hold a TA power session on the
Saturday before each project is due.

There will not be any office hours on Sundays.

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

PROJECT LATE POLICY

You will lose 10% of the points for a project or
homework for every 24 hours it is late.

You have a total of four late days to be used for
projects only.

We will grant no-penalty extensions due to extreme

circumstances (e.g., medical emergencies).

— If something comes up, please contact the instructors as
soon as possible.

PLAGIARISM WARNING ’@’

The homework and projects must be your own
original work. They are not group assignments.

You may not copy source code from other people or
the web.

Plagiarism is not tolerated. You will get lit up.
— Please ask instructors (not TAs!) if you are unsure.

See CMU's Policy on Academic Integrity for
additional information.

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

£CMU-DB

15-445/645 (Spring 2025)

TODAY’S AGENDA

Database Systems Background
Relational Model

Relational Algebra
Alternative Data Models
Q&A Session

DATABASE

Organized collection of inter-related data that
models some aspect of the real-world.

Databases are the core component of most
computer applications.

£CMU-DB

15-445/645 (Spring 2025)

DATABASE EXAMPLE

Create a database that models a digital music store
to keep track of artists and albums.

Information we need to keep track of in our store:
— Information about Artists
— The Albums those Artists released

£CMU-DB

15-445/645 (Spring 2025)

FLAT FILE STRAWMAN

Store our database as comma-separated value (CSV)

files that we manage ourselves in application code.

— Use a separate file per entity.

— The application must parse the files each time they want to
read/update records.

Artist(name, year, country) Album(name, artist, year)

"Wu-Tang Clan",1992, "USA" "Enter the Wu-Tang","Wu-Tang Clan",1993

"St.Ides Mix Tape","Wu-Tang Clan",1994

"Notorious BIG",1992, "USA"

"Liquid Swords", "GZA",1990

"GZA",1990, "USA"

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

FLAT FILE STRAWMAN

Example: Get the year that GZA went solo.

Artist(name, year, country)

"Wu-Tang Clan", 1992, "USA"
"Notorious BIG",1992, "USA"

"GZA",1990, "USA"

$ZCMU-DB

15-445/645 (Spring 2025)

»

for line in file.readlines():
record = parse(line)
if record[0] == "GZA":
print(int(record[1]))

FLAT FILES: DATA INTEGRITY

How do we ensure that the artist is the same for
each album entry?

What if somebody overwrites the album year with
an invalid string?

What if there are multiple artists on an album?

What happens if we delete an artist that has
albums?

£CMU-DB

15-445/645 (Spring 2025)

FLAT FILES: IMPLEMENTATION

How do you find a particular record?

What if we now want to create a new application
that uses the same database? What if that
application is running on a different machine?

What if two threads try to write to the same file at
the same time?

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

FLAT FILES: DURABILITY

What if the machine crashes while our program is
updating a record?

What if we want to replicate the database on
multiple machines for high availability?

£CMU-DB

15-445/645 (Spring 2025)

DATABASE MANAGEMENT SYSTEM

A database management system (DBMS) is
software that allows applications to store and
analyze information in a database.

A general-purpose DBMS supports the definition,
creation, querying, update, and administration of
databases in accordance with some data model.

£CMU-DB

15-445/645 (Spring 2025)

DATA MODELS

A data model is a collection of concepts for
describing the data in a database.

A schema is a description of a particular collection

of data, using a given data model.

— This defines the structure of data for a data model.
— Otherwise, you have random bits with no meaning.

DATA MODELS

Relational ¢ Most DBMSs
Key/Value

Graph

Document / JSON / XML / Object
Wide-Column / Column-family

Array (Vector, Matrix, Tensor)
Hierarchical

Network

Semantic

Entity-Relationship
£CMU-DB

15-445/645 (Spring 2025)

DATA MODELS
& This Course

Graph
Document / JSON / XML / Object

Wide-Column / Column-family

Hierarchical

Network

Semantic ¢ Obsolete / Legacy / Rare

Entity-Relationship

$ZCMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

EARLY DBMSs

Early database applications were difficult to build

and maintain on available DBMSs in the 1960s.
— Examples: IDS, IMS, CODASYL
— Computers were expensive, humans were cheap.

Tight coupling between logical and physical layers.

Programmers had to (roughly) know what queries
the application would execute before they could
deploy the database.

https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL

EARLY DBMSs

Ted Codd was a mathematician at
IBM Research in the late 1960s.

Codd saw IBM’s developers rewriting
database programs every time the
database’s schema or layout changed.

Devised the relational model in 1969.

$ZCMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025

CY OF RELATIONS
AND CONSISTENC
REDUNDANCY & DATA BANKS

STORED IN LAR

. F. Codd
search Division
sfne Jose, California

DERIVABILITY,

e will
the future will
i ta banks of L i
lnteng:Edsdzegw“ in stored {mm;jundant,
: Vauouto!ed relations to be re‘ 0
; fos' ed and discussed. One ff)'rmation
b?iit'y‘ of certain kindi nz ;2 B
e g lwhef"tf\?h;{a {gnk should know
hich happen to ible for control © A :
:xiStS‘ o lesporl;:ébmeans o detechngdaxhﬁ%ns' Consistency
ek and_havg Sthe total set cf store: TELAE: o (and
inconsisterl\ci‘ttesb;nhﬂpfu‘ in tracking down Sl oy
~ 4 A
Chics‘;llag‘é ?x%udulent) changes in
po

ABSTRACT: The large,

employed to improve accessl

the data bank

1969
R3 599(# 12343) August 19,

i for
submitted 1
_ This report has been Report for early
TBUTION NOT‘(E‘BS t?;;f\ isgued as a Rei;g‘ﬁ',‘\tenﬂzd publisher,
1sewhere and As a courtesy to date of outside

f its cuntenézied until after the

it
LIMITED I?ISTR
publication e s
issemination oF onzef
:t‘\Zuld not be widely distr)
| t office Box 218,
L iatson Research Centar, Post Office
ted from I8M Thomas). Watsof
es may be Tequestet 8
o eights, New York 10598

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Cobp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not o satisfactory solution, Activities of users

and even when some aspects of the external

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only—that is, without superim-
posing any additi st for machine i
purposes. Accordingly, it provides a basis for a high level
data language which will vield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations—these are discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking

are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.
Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, @ normal
form for data base relations, and the concept of a universal
data sublanguage are infroduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user's model.
KEY WORDS AND PHRASES: data bank, dota base, dota structure, data
erganization, hierarchies of data, networks of data, relations, derivability,
redundancy, comsistency, composition, foin, retrieval language, predicate
calculus, security, data integrity
CR CATEGORIES: 370, 3.73, 3.75, 4.20, 4.22, 429

L. Relational Model and Normal Form

L1 INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data, Except for a paper
by Childs [1], the principal application of relations to data
systems has been to deductive question-answering systems,
Levein and Maron [2] provide numerous references to work
in this area,

In contrast, the problems treated here are those of data
inde the ind A f applicat

the deri of for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).
Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
tandpoint) of ing ions of data within a
single system. Examples of this clearer perspective are
cited in various parts of this Ppaper. Implementations of
systems to support the relational model are not discussed.
1.2. DaTA DEPENDENCIES 1N PRESENT SysTEMs
The provision of data description tables in recently de-
veloped information systems represents a major advance
toward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain characteristics of the data repre-
sentation stored in a data bank. However, the variety of
data representation characteristics which can be changed
without logically impairing some application programs is
still quite limited. Fy urther, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence, In some systems these
dependencies are not clearly separable from one another.
12.1. Ordering Dependence Elements of data in a
data bank may be stored in a variety of ways, some involy-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely iated with the hard dets 1 ordering

the of
and terminal activities from growth in data types and
changes in data representation—and certain kinds of data
inconsistency which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

of add: . For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of Ppresentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377

CODASYL

The Differences and Similarities
Between the Data Base Set and

Relational Views of Data.

— ACM SIGFIDET Workshop on Data

Description, Access, and Control in Ann
Arbor, Michigan, held 1-3 May 1974

N =

Bachman

Codd
S2CMU-DB

15-445/645 (Spring 2025)

Stonebraker

Gray

| Next |

COBOL/CODASYL camp:

1. The relational model is too mathematical. No
mere mortal programmer will be able to under-
stand your newfangled languages.

2. Even if you can get programmers to learn your
new languages, you won’t be able to build an
efficient implementation of them.

3. On-line transaction’processing applications want
to do record-oriented operations.

Empty set

Relational camp:

1. Nothing as complicated as the DBTG proposal can
possibly be the right way to do data management.

2. Any set-oriented query is too hard to program
using the DBTG data manipulation language.

3. The CODASYL model has no formal underpin-
ning with which to define the semantics of the
complex operations in the model.

The record set, basic structure of navigational (e.g. CODASYL) databse model. A set consists
of one parent record (also called "the owner"), and n child records (also called members records)

https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html

RELATIONAL MODEL

The relational model defines a database
abstraction based on relations to avoid maintenance
overhead.

Key tenets:

— Store database in simple data structures (relations).

— Physical storage left up to the DBMS implementation.

— Access data through high-level language, DBMS figures
out best execution strategy.

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

RELATIONAL MODEL

Structure: The definition of the database’s relations

and their contentsof their physical

representation.

Integrity: Ensure the database’s contents satisfy
constraints.

Manipulation: Programming interface for
accessing and modifying a database's contents.

DATA INDEPENDENCE

[Application] [Application]

Isolate the user/application from low-
level data representation.

— The user only worries about high-level [Teva=mil Schema] [External Schema]
application logic. Views (SQL)

— DBMS optimizes the layout according
to operating environment, database Lovical Schem
contents, and workload. [per o]

Schema, Constraints...

— DBMS can then re-optimize the (SOL)
database if/when these factors changes.

[Physical Schema]

Pages, Files, Extents...

Database
£ZCMU-DB ‘ Storage \

15-445/645 (Spring 2025)

DATA INDEPENDENCE

[Application] [Application]

Isolate the user/application from low-
level data representation.

— The user only worries about high-level [Teva=mil Schema] [External Schema]
application logic. Views (SOL)

— DBMS optimizes the layout according
to operating environment, database [Logical Schema]
contents, and workload. Phvsical Data Schema, Conserati il

— DBMS can then re-optimize the In dgp endence » (SQL)

database if/when these factors changes. :
[Physical Schema]

Pages, Files, Extents...

Database
£ZCMU-DB ‘ Storage \

15-445/645 (Spring 2025)

DATA INDEPENDENCE

[Application] [Application]

Isolate the user/application from low-
level data representation.

— The user only worries about high-level [Teva=mil Schema] [External Schema]
application logic.

108 . . Views (SQL)
— DBMS optimizes the layout according | éggg:: ‘IjeDr?::
to operating environment, database ezl St]
contents, and workload.] or——t
L. chema, Constraints...
— DBMS can then re-optimize the Physical Data (SOL)
, Independence
database if/when these factors changes. [Ph e Sche]
ysical Schema
Pages, Files, Extents...

Database
£ZCMU-DB ‘ Storage \

15-445/645 (Spring 2025)

RELATIONAL MODEL

A relation is an unordered set that
contain the relationship of attributes ~ Artist(name, year, country)

that represent entities. name year country
Wu-Tang Clan 1992 |USA

A tuple is a set of attribute values Notorious BIG 1992 |USA

(aka its domain) in the relation. GZA 1990 |USA

— Values are (normally) atomic/scalar.

— The special value NULL is a member of n-ary Relation

every domain (if allowed). -

Table with n columns

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL MODEL: PRIMARY KEYS

A relation's primary key uniquely

identifies a single tuple. Artist(name, year, country)
Some DBMSs automatically create an Bk year country
internal primary key if a table does Wu-Tang Clan 1992 |USA
not define one Notorious BIG 1992 [USA

GZA 1990 |USA

DBMS can auto-generation unique

primary keys via an identity column:
— IDENTITY (SQL Standard)

— SEQUENCE (PostgreSQL / Oracle)

— AUTO_INCREMENT (MySQL)

$ZCMU-DB

15-445/645 (Spring 2025)

https://en.wikipedia.org/wiki/Identity_column

RELATIONAL MODEL: PRIMARY KEYS

A relation's primary key uniquely

identifies a single tuple. Artist(id, name, year, country)
Some DBMSs automatically create an [k year country
internal primary key if a table does 101 JWu-Tang Clan 1992 |USA
not define one 102 |Notorious BIG 1992 |USA

103 JGzA 1990 |USA

DBMS can auto-generation unique

primary keys via an identity column:
— IDENTITY (SQL Standard)

— SEQUENCE (PostgreSQL / Oracle)

— AUTO_INCREMENT (MySQL)

$ZCMU-DB

15-445/645 (Spring 2025)

https://en.wikipedia.org/wiki/Identity_column

RELATIONAL MODEL: FOREIGN KEYS

A foreign key specifies that an
attribute from one relation maps to a
tuple in another relation.

£CMU-DB

15-445/645 (Spring 2025)

=
RELATIONAL MODEL: FOREIGN KEYS

Artist(id, name, year, country)

id name year country
101 |Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA

Album(id, name, artists, year)

id name artists year
11 [Enter the Wu-Tang 101 1993
22 |St.Ides Mix Tape 2777 1994
33 [Liquid Swords 103 1995

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

RELATIONAL MODEL: FOREIGN KEYS

Artist(id, name, year, country)

id name year country
101 |Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA

Album(id, name, artists, year)

id name artists year
11 [Enter the Wu-Tang 101 1993
22 |St.Ides Mix Tape 2777 1994
33 [Liquid Swords 103 1995

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

ArtistAlbum(artist_id,

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL MODEL: FOREIGN KEYS

album_id)

artist_id album_id

101 11
101 22
103 22
102 22

Artist(id name, year,

country)

name year country
101 |Wu-Tang Clan 1992
102 |Notorious BIG 1992 USA
103 [GZA 1990 USA

id
11

Album(id, name, year)

name

Enter the Wu-Tang

year
1993

St.Ides Mix Tape

1994

Liquid Swords

1995

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

RELATIONAL MODEL: CONSTRAINTS

User-defined conditions that must

hold for any instance of the database.

— (Can validate data within a single tuple
or across entire relation(s).

— DBMS prevents modifications that
violate any constraint.

Unique key and referential (fkey)
constraints are the most common.

SQL:92 supports global asserts but
these are rarely used (too slow).

$ZCMU-DB

15-445/645 (Spring 2025)

Artist(id, name, year, country)

id name year country
101 [Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA

year INT,

);

CREATE TABLE Artist (
name VARCHAR NOT NULL,

country CHAR(60),
CHECK (year > 1900)

CREATE ASSERTION myAssert
CHECK (<SQL>);

DATA MANIPULATION LANGUAGES (DML)

The API that a DBMS exposes to applications to
store and retrieve information from a database.

Procedural: — Relational
— The query specifies the (high-level) strategy to find Aleebra
the desired result based on sets / bags. g
Non-Procedural (Declarative): — Relational
— The query specifies only what data is wanted and Calculus

not how to find it.

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA

Fundamental operations to retrieve

and manipulate tuples in a relation.
— Based on set algebra (unordered lists with
no duplicates).

O C 494 aq

Each operator takes one or more
relations as its inputs and outputs a

new relation.
— We can “chain” operators together to
create more complex operations.

£CMU-DB

15-445/645 (Spring 2025)

Select
Projection
Union
Intersection
Difference
Product

Join

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a
relation that satisfies a selection

predicate.
— Predicate acts as a filter to retain only

tuples that fulfill its qualifying
requirement.

— Can combine multiple predicates using
conjunctions / disjunctions.

SyntaX: Opredicate (R)

$ZCMU-DB

15-445/645 (Spring 2025)

R(a_id,b_id)

al

101

a2

102

a2

103

a3

104

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a
relation that satisfies a selection

predicate.
— Predicate acts as a filter to retain only

tuples that fulfill its qualifying
requirement.

— Can combine multiple predicates using
conjunctions / disjunctions.

SyntaX: Opredicate (R)

$ZCMU-DB

15-445/645 (Spring 2025)

R(a_id,b_id)

al |10
a2 |102
a2 103
a3 |104

Ca_id="a2' (R)

a2 |102

a2 103

Choose a subset of the tuples from a
relation that satisfies a selection

predicate.

— Predicate acts as a filter to retain only
tuples that fulfill its qualifying
requirement.

— Can combine multiple predicates using
conjunctions / disjunctions.

SyntaX: Opredicate (R)

$ZCMU-DB

15-445/645 (Spring 2025)

O, id='a2' (R)

a2

102

RELATIONAL ALGEBRA: SELECT

R(a_id,b_id)

al 101
a2 102
a2 103
a3 104

a2

103

Oa_id="a2'A b_id>102(R)
a_id b_id

a2

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a
relation that satisfies a selection

predicate.

— Predicate acts as a filter to retain only
tuples that fulfill its qualifying
requirement.

— Can combine multiple predicates using
conjunctions / disjunctions.

SyntaX: Opredicate (R)

$ZCMU-DB

15-445/645 (Spring 2025)

R(a_id,b_id)

al 101
a2 102
a2 103
a3 104

Oa_id="a2" (R) Oa_id="a2'A b_id>102(R)

a2 102
a2 103

a_id b_id

a2

103

SELECT * FROM R

WHERE a_id="'a2' AND b_id>102;

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a R(a_id,b_id)
relation that satisfies a selection
: al |01
predicate. 102
— Predicate acts as a filter to retain only =2 |03
tuples that fulfill its qualifying a3 |104
requirement.
d : : : : Oa_id='a2'(R) O, jd='a2'a b_id>102(R)—
— Can combine multiple predicates using b id
conjunctions / disjunctions. oy al 1
a

a2 103

SyntaX: Opredicate (R)

SELECT * FROM R
WHERE a_id="'a2' AND b_id>102

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: PROJECTION

Generate a relation with tuples that

contains only the specified attributes.

— Rearrange attributes’ ordering.

— Remove unwanted attributes.

— Manipulate values to create derived
attributes.

Syntax: Iy »,.,an(R)

$ZCMU-DB

15-445/645 (Spring 2025)

R(a_id,b_id)

al 101
a2 102
a2 103
a3 104

Iy id-100,a_id(Ta_id="a2' (R))

b_id-100 a_id

2 a2
3 a2

SELECT b_id-100, a_id
FROM R WHERE a_id = 'a2’';

RELATIONAL ALGEBRA: UNION

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id)
tuples that appear in either only one
. . a a
or both input relations. — To T

a3 103 ab 105
Syntax: (R U S)
(R U S)

al 101

a2 102

(SELECT * FROM R) | [a3_ [103

UNION a4 104

(SELECT * FROM S); | [a5__ [105

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: INTERSECTION

Generate a relation that contains only R(a_id,b_id) S(a_id,b_id)
the tuples that appear in both of the
. . al 101 a3 103
input relations. — 102 VR TY
a3 103 ab 105
Syntax: (R N S)
(RNS)
a_id b_id
a3 103

(SELECT * FROM R)
INTERSECT
(SELECT * FROM S):

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: DIFFERENCE

Generate a relation that contains only R(a_id,b_id) S(a_id,b_id)
the tuples that appear in the first and
. . al 101 a3 103
not the second of the input relations. — 102 T
a3 103 ab 105
Syntax: (R - S)
(R - S)
al 101
a2 102

(SELECT * FROM R)
EXCEPT
(SELECT * FROM S);

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: PRODUCT

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id)
possible combinations of tuples from
5 . al 101 a3 103
the input relations. — To T
a3 103 ab 105
Syntax: (R x S) (R % S)

R.a_id R.b_id S.a_id S.b_id

al 101 a3 103

al 101 ad 104

al 101 ab 105
SELECT * FROM R CROSS JOIN S; a2 102 a3 103

a2 102 a4 104

a2 102 ab 105
SELECT * FROM R, S; a3 103 a3 103

a3 103 a4 104

a3 103 ab 105

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id,val)
tuples that are a combination of two
tuples (one from each input relation) o 23 193 XA
P p a2 102 a4 104 |YYY
with a common value(s) for one or a3 |103 a5 |105 |z27

more attributes.

Syntax: (R ™ S)

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id,val)
tuples that are a combination of two
tuples (one from each input relation) b ot G LA
P P a2 102 a4 104 |YYY
with a common value(s) for one or a3 103 a5 |105 |z22

more attributes.

(R @ S)

a_id b_id val
Syntax: (R ™ S) a3 |13 |xxx

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id,val)

tuples that are a combination of two
uples (one from each input relation — 102 o T10a Tvyy

with a common value(s) for one or a3 |103 a5 |15 |z22

more attributes.

(R 4 S)
a_id b_id val
a3 103 [XXX

R.a_id R.b_id S.a_id S.b_id S.val

-

Syntax: (R ™ S)

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id,val)

tuples that are a combination of two
uples (one from each input relation — To — T104 Tyry

with a common value(s) for one or a3 |103 a5 |15 |z22

more attributes.

(R 4 S)
a_id b_id val
a3 103 [XXX

R.a_id R.b_id s »<.d 5 “.d S.val

-

Syntax: (R ™ S)

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN 1

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id,val)
tuples that are a combination of two
tuples (one from each input relation) b ot G LA
P P a2 102 a4 104 |YYY
with a common value(s) for one or a3 103 a5 |105 |z22

more attributes.

(R @ S)

a_id b_id val
Syntax: (R ™ S) a3 |13 |xxx

$ZCMU-DB

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id,val)

tuples that are a combination of two
uples (one from each input relation — T ETYRY

with a common value(s) for one or a3 |103 a5 |105 |z27

more attributes.

(R 6 S)

a_id b_id val
Syntax: (R ™ S) a3 |13 |xxx

SELECT * FROM R NATURAL JOIN S;

SELECT * FROM R JOIN S USING (a_id, b_id);

SELECT * FROM R JOIN S
$2CMU-DB ON R.a_id = S.a_id AND R.b_id = S.b_id;

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: EXTRA OPERATORS

Rename (p)

Assignment (ReS)
Duplicate Elimination (&)
Aggregation (Y)

Sorting (T)

Division (R=S)

$2CMU-DB

15-445/645 (Spring 2025)

OBSERVATION

Relational algebra defines an ordering of the high-

level steps of how to compute a query.
— Example: Gp_j4=192(RMS) vs. (RM(Gp_;4-162(S))

A better approach is to state the high-level answer

that you want the DBMS to compute.

— Example: Retrieve the joined tuples from R and S where
b_id equals 102.

£CMU-DB

15-445/645 (Spring 2025)

RELATIONAL MODEL: QUERIES

The relational model is independent of any query
language implementation.

SQL is the de facto standard (many dialects).

for line in file.readlines(): SELECT year FROM artists

record = parse(line) WHERE name = 'GZA':

if record[0] == "GZA":

print(int(record[1]))

£CMU-DB

15-445/645 (Spring 2025)

$ZCMU-DB

15-445/645 (Spring 2025)

DATA MODELS
& This Course

Key/Value
Graph

Document / JSON / XML / Object | ¢ Leading Alternative

Wide-Column / Column-family

Array Matrix, Tensor) & New Hotness
Hierarchical

Network

Semantic

Entity-Relationship

DOCUMENT DATA MODEL

A collection of record documents containing a

hierarchy of named field/value pairs.

— A field’s value can be either a scalar type, an array of values,
or another document.

— Modern implementations use JSON. Older systems use
XML or custom object representations.

Avoid “relational-object impedance mismatch” by
tightly coupling objects and database.

0 MongoDB. RAVENDS amazon P\ Firebase

. C DB DynamoDB
=) Couc - | <EROSPIKE
$2CMU-DB relax Q Couchbase ® MarkLogic)’ fauna

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist

!

ArtistAlbum

!

Album

$2CMU-DB

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist » R,(id,..)

!

ArtistAlbum | ™ R,(artist_id,album_id)

!

Album ® R;(id,..)

£CMU-DB

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist ®» R, (id,..)
| >
ArtistAlbum | ™ R,(artist_id,album_id)
| >
Album = R;(id,..)

$ZCMU-DB

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist » R,(id,..)
P
m R,(artist_id,album_id)
P
Album = R;(id,..)

$ZCMU-DB

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist

Album

$2CMU-DB

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Application Code

Artist

Album

£CMU-DB
15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Application Code

"name": "GZA",
"year": 1990,
"albums": [
{
"name": "Liquid Swords",
"year": 1995
T,
{

"name": "Beneath the Surface",
"year": 1999

Artist

Album

£CMU-DB

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Application Code

"name": "GZA",
"year": 1990,
"albums": [
{
"name": "Liquid Swords",
"year": 1995
1)
{

"name": "Beneath the Surface",
"year": 1999

Artist

Album

£CMU-DB

15-445/645 (Spring 2025)

VECTOR DATA MODEL

One-dimensional arrays used for nearest-neighbor

search (exact or approximate).

— Used for semantic search on embeddings generated by ML-
trained transformer models (think ChatGPT).

— Native integration with modern ML tools and APIs (e.g.,

LangChain, OpenAl).

At their core, these systems use specialized indexes
to perform NN searches quickly.

{3Pinecone (@) Weaviate (&) milvus ‘drant
2 CMU-DB “mqrqo gChseVector .‘VectorDB turbopuffer <(°0°)>

15-445/645 (Spring 2025)

VECTOR DATA MODEL

Album(id, name, year)

id name year
11 [Enter the Wu-Tang 1993
22 |St.Ides Mix Tape 1994
33 |Liquid Swords 1995

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

VECTOR DATA MODEL

Album(id, name, year)

id name year
11 [Enter the Wu-Tang 1993
, Transformer
22 |St.Ides Mix Tape 1994
33 [Liquid Swords 1995

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

VECTOR DATA MODEL

Album(id name, year)

@ Openal & wasur
Enter the Wu-Tang 1993
Transformer
22 |St.Ides Mix Tape 1994

33 [Liquid Swords 1995

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

VECTOR DATA MODEL

Album(id, name, year) Embeddings

@ OpenAl & mesmre [t e o

Enter the Wu-Tang 1993 I1d2 » [0.99, 0.19, 0.81, ...]
Transformer

22 [St.Ides Mix Tape 1994 Id3 » [0.01, 0.18, 0.85, ...]

33 [Liquid Swords 1995

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

VECTOR DATA MODEL

Album(id, name, year) Embeddings

id name year @OpenAl ¥ Hugging Face Id1 » [0.32, 0.78, 0.30, ...

11 [Enter the Wu-Tang 1993 I1d2 » [0.99, 0.19, 0.81, ...
, Transformer

22 |St.Ides Mix Tape 1994 Id3 » [0.01, 0.18, 0.85, ...

33 [Liquid Swords 1995 :

¥

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

VECTOR DATA MODEL

Album(id, name, year) Embeddings

id name year @OpenAl ¥ Hugging Face Id1 » [0.32, 0.78, 0.30, ...

11 [Enter the Wu-Tang 1993 I1d2 » [0.99, 0.19, 0.81, ...
, Transformer

22 |St.Ides Mix Tape 1994 Id3 » [0.01, 0.18, 0.85, ...

33 [Liquid Swords 1995 :

Query ¥

Find albums similar
to "Liquid Swords"

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

VECTOR DATA MODEL

Album(id, name, year)

Embeddings
id name year @OpenAl *7, Hugging Face Id1 » [0.32, 0.78, 0.30, ...
11 [Enter the Wu-Tang 1993

» » Id2 » [0.99, 0.19, 0.81, ...
22 |St.Ides Mix Tape 1994 Id3 » [0.01, 0.18, 0.85, ...

33 [Liquid Swords 1995 .

Query ¥

Find albums similar

Vector

to|"Li9uid Swords'|-/ Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

VECTOR DATA MODEL

Album(id, name, year)

id name year
11 |Enter the Wu-Tang 1993
22 |St.Ides Mix Tape 1994
33 |Liquid Swords 1995

Query

Find albums similar

$ZCMU-DB

15-445/645 (Spring 2025)

to|"Li9uid Swords'|-/

Embeddings

@OPGHN +, Hugging Face Id1 » [0.32, 0.78, 0.30, ...

»

Id2 » [0.99, 0.19, 0.81, ...
Transformer

[0.02, 0.10, 0.24, ...

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

Id3 » [0.01, 0.18, 0.85, ...

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

VECTOR DATA MODEL

Album(id, name, year)

id name year
11 |Enter the Wu-Tang 1993
22 |St.Ides Mix Tape 1994
33 |Liquid Swords 1995

Query

Find albums similar

$ZCMU-DB

15-445/645 (Spring 2025)

to|"Li9uid Swords'|-/

Embeddings

@OPGHN +, Hugging Face Id1 » [0.32, 0.78, 0.30, ...

»

Id2 » [0.99, 0.19, 0.81, ...
Transformer

[0.02, 0.10, 0.24, ...

Ranked List of Ids e——

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

Id3 » [0.01, 0.18, 0.85, ...

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

VECTOR DATA MODEL

Album(id, name, year)

id name year
11 |Enter the Wu-Tang 1993
22 |St.Ides Mix Tape 1994
33 |Liquid Swords 1995

Query

Find albums similar

to|"Li9uid Swords'|-/

$ZCMU-DB

15-445/645 (Spring 2025)

@ OpenAl (¥ HuggingFace

» »

Embeddings
I1d1 » [0.32, 0.78, 0.30, ...
Id2 » [0.99, 0.19, 0.81, ...
1d3 » [0.01, 0.18, 0.85, ...

[0.02, 0.10, 0.24, }...

Ranked List of Ids +

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

CONCLUSION

Databases are ubiquitous.

Relational algebra defines the primitives for
processing queries on a relational database.

We will see relational algebra again when we talk
about query optimization + execution.

£CMU-DB

15-445/645 (Spring 2025)

NEXT CLASS

Modern SQL

— Make sure you understand basic SQL before the lecture.

£CMU-DB

15-445/645 (Spring 2025)

