
Database
Systems

15-445/645 SPRING 2024 PROF. JIGNESH PATEL

Rela%onal Model &
Algebra

15-445/645 (Spring 2025)

15-445/645 (Spring 2025)

• We do not control the waitlist.

• Admins will move students off the waitlist as spots
become available.

• To improve your chances of getting into the class
(though not a guarantee), stay in the class and
complete P0.

• This class will be offered in Fall’25 too!

WaitList
3

15-445/645 (Spring 2025)

COURSE OVERVIEW

This course is about the design/implementation of
database management systems (DBMSs).

This is not a course about how to use a DBMS to
build applications or how to administer a DBMS.
→ See CMU 95-703 (Heinz College)

4

http://www.heinz.cmu.edu/academic-resources/course-results/course-details/index.aspx?cid=273
https://api.heinz.cmu.edu/courses_api/course_detail/95-703/

15-445/645 (Spring 2025)

COURSE LOGISTICS
Course Policies + Schedule: Course Web Page
Discussion + Announcements: Piazza
Homeworks + Projects: Gradescope
Final Grades: Canvas

Notes:
→ Do not post your solutions on Github.
→ Do not email instructors / TAs for help.

5

https://15445.courses.cs.cmu.edu/spring2025
https://piazza.com/class/m4sbhddfimf6xn
https://www.gradescope.com/courses/935004
https://canvas.cmu.edu/courses/42170

15-445/645 (Spring 2025)

TEXTBOOK

Database System Concepts

7th Edition
Silberschatz, Korth, & Sudarshan

We also provide lecture notes
that cover topics not found in
textbook.

6

15-445/645 (Spring 2025)

GRADING RUBRIC

Homeworks (15%)
Projects (45%)
Midterm Exam (20%)
Final Exam (20%)

7

15-445/645 (Spring 2025)

HOMEWORKS

Six homework assignments that cover lecture and
reading material.
→ First homework is a SQL assignment.
→ The rest will be pencil-and-paper assignments.

Submit all assignments via Gradescope.

All homework should be done individually.

8

15-445/645 (Spring 2025)

PROJECTS

All projects will use the CMU DB
Group BusTub academic DBMS.
→ Each project builds on the previous one.
→ We will not teach you how to

write/debug C++17.
→ See the 15-445/645 Bootcamp.

Total of four late days the entire
semester for projects only.

We will hold an online recitation for
each project after it is released.

9

https://github.com/cmu-db/bustub
https://github.com/cmu-db/15445-bootcamp

15-445/645 (Spring 2025)

C++ Requirement
10

All the projects are in C++ …. If you are new to C++, you must pick it up quickly… If you

can take and get all the questions on the following quizzes right, you are all set:

Scoping: https://www.learncpp.com/cpp-tutorial/chapter-7-summary-and-quiz/

Type Conversion: https://www.learncpp.com/cpp-tutorial/chapter-10-summary-and-quiz/

lvalues/rvalues: https://www.learncpp.com/cpp-tutorial/chapter-12-summary-and-quiz/

Stack and heap: https://www.learncpp.com/cpp-tutorial/chapter-20-summary-and-quiz/

Move Semantics: https://www.learncpp.com/cpp-tutorial/chapter-22-summary-and-quiz/

Templates: https://www.learncpp.com/cpp-tutorial/chapter-26-summary-and-quiz/

… take it upon yourself to catch up …

… also https://db.in.tum.de/teaching/ss23/c++praktikum/slides/lecture-10.2.pdf?lang=en

Em
ail

 se
nt

 to

yo
u on Ja

n 6.

C++ Bootcamp: This Friday Jan. 17th from 3pm-4pm in GHC 4303

https://www.learncpp.com/cpp-tutorial/chapter-7-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-10-summary-and-quiz/lvalues/rvalues
https://www.learncpp.com/cpp-tutorial/chapter-12-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-20-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-22-summary-and-quiz/
https://www.learncpp.com/cpp-tutorial/chapter-26-summary-and-quiz/
https://db.in.tum.de/teaching/ss23/c++praktikum/slides/lecture-10.2.pdf?lang=en

15-445/645 (Spring 2025)

Project 0 (P0): Goals
11

→Get you started on C++, so you are not surprised later.

→Get you thinking about algorithms and concurrency.

→ P0 is about building a Skip List data structure.

→We will discuss Skip List in more detail later in the class.

→ P0 is published; due on Jan 26 @ 11:59pm.

→No late days allowed for P0.

If you can’t score 100% on P0, you can’t stay in this class,

even if you are currently enrolled.

https://15445.courses.cs.cmu.edu/spring2025/project0/

15-445/645 (Spring 2025)

OFFICE HOURS

Instructors and TAs will hold office hours on
weekdays (Mon-Fri) at different times.

We will also hold a TA power session on the
Saturday before each project is due.

There will not be any office hours on Sundays.

12

15-445/645 (Spring 2025)

PROJECT LATE POLICY

You will lose 10% of the points for a project or
homework for every 24 hours it is late.

You have a total of four late days to be used for
projects only.

We will grant no-penalty extensions due to extreme
circumstances (e.g., medical emergencies).
→ If something comes up, please contact the instructors as

soon as possible.

13

15-445/645 (Spring 2025)

PLAGIARISM WARNING

The homework and projects must be your own
original work. They are not group assignments.
You may not copy source code from other people or
the web.

Plagiarism is not tolerated. You will get lit up.
→ Please ask instructors (not TAs!) if you are unsure.

See CMU's Policy on Academic Integrity for
additional information.

14

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

15-445/645 (Spring 2025)

TODAY’S AGENDA

Database Systems Background
Relational Model
Relational Algebra
Alternative Data Models
Q&A Session

15

15-445/645 (Spring 2025)

DATABASE

Organized collection of inter-related data that
models some aspect of the real-world.

Databases are the core component of most
computer applications.

16

15-445/645 (Spring 2025)

DATABASE EXAMPLE

Create a database that models a digital music store
to keep track of artists and albums.

Information we need to keep track of in our store:
→ Information about Artists
→ The Albums those Artists released

17

15-445/645 (Spring 2025)

FLAT FILE STRAWMAN

Store our database as comma-separated value (CSV)
files that we manage ourselves in application code.
→ Use a separate file per entity.
→ The application must parse the files each time they want to

read/update records.

18

"Enter the Wu-Tang","Wu-Tang Clan",1993

"St.Ides Mix Tape","Wu-Tang Clan",1994

"Liquid Swords","GZA",1990

Album(name, artist, year)

"Wu-Tang Clan",1992,"USA"

"Notorious BIG",1992,"USA"

"GZA",1990,"USA"

Artist(name, year, country)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Spring 2025)

FLAT FILE STRAWMAN

Example: Get the year that GZA went solo.

for line in file.readlines():
 record = parse(line)
 if record[0] == "GZA":
 print(int(record[1]))

"Wu-Tang Clan",1992,"USA"

"Notorious BIG",1992,"USA"

"GZA",1990,"USA"

Artist(name, year, country)

19

15-445/645 (Spring 2025)

FLAT FILES: DATA INTEGRITY

How do we ensure that the artist is the same for
each album entry?

What if somebody overwrites the album year with
an invalid string?

What if there are multiple artists on an album?

What happens if we delete an artist that has
albums?

20

15-445/645 (Spring 2025)

FLAT FILES: IMPLEMENTATION

How do you find a particular record?

What if we now want to create a new application
that uses the same database? What if that
application is running on a different machine?

What if two threads try to write to the same file at
the same time?

21

15-445/645 (Spring 2025)

FLAT FILES: DURABILITY

What if the machine crashes while our program is
updating a record?

What if we want to replicate the database on
multiple machines for high availability?

22

15-445/645 (Spring 2025)

DATABASE MANAGEMENT SYSTEM

A database management system (DBMS) is
software that allows applications to store and
analyze information in a database.

A general-purpose DBMS supports the definition,
creation, querying, update, and administration of
databases in accordance with some data model.

23

15-445/645 (Spring 2025)

DATA MODELS

A data model is a collection of concepts for
describing the data in a database.

A schema is a description of a particular collection
of data, using a given data model.
→ This defines the structure of data for a data model.
→ Otherwise, you have random bits with no meaning.

24

15-445/645 (Spring 2025)

DATA MODELS
25

Relational
Key/Value
Graph
Document / JSON / XML / Object
Wide-Column / Column-family
Array (Vector, Matrix, Tensor)
Hierarchical
Network
Semantic
Entity-Relationship

← Most DBMSs

15-445/645 (Spring 2025)

DATA MODELS
26

Relational
Key/Value
Graph
Document / JSON / XML / Object
Wide-Column / Column-family
Array (Vector, Matrix, Tensor)
Hierarchical
Network
Semantic
Entity-Relationship

← NoSQL

← ML / Science

← Obsolete / Legacy / Rare

← This Course
← Simple Apps / Caching

15-445/645 (Spring 2025)

EARLY DBMSs

Early database applications were difficult to build
and maintain on available DBMSs in the 1960s.
→ Examples: IDS, IMS, CODASYL
→ Computers were expensive, humans were cheap.

Tight coupling between logical and physical layers.

Programmers had to (roughly) know what queries
the application would execute before they could
deploy the database.

27

https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL

15-445/645 (Spring 2025)

EARLY DBMSs

Ted Codd was a mathematician at
IBM Research in the late 1960s.

Codd saw IBM’s developers rewriting
database programs every time the
database’s schema or layout changed.

Devised the relational model in 1969.

Edgar F. Codd

28

15-445/645 (Spring 2025)

EARLY DBMSs

Ted Codd was a mathematician at
IBM Research in the late 1960s.

Codd saw IBM’s developers rewriting
database programs every time the
database’s schema or layout changed.

Devised the relational model in 1969.

Edgar F. Codd

29

15-445/645 (Spring 2025)

CODASYL

The Differences and Similarities

Between the Data Base Set and

Relational Views of Data.

→ ACM SIGFIDET Workshop on Data
Description, Access, and Control in Ann
Arbor, Michigan, held 1–3 May 1974

Bachman Gray StonebrakerCodd

https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html

15-445/645 (Spring 2025)

RELATIONAL MODEL

The relational model defines a database
abstraction based on relations to avoid maintenance
overhead.

Key tenets:
→ Store database in simple data structures (relations).
→ Physical storage left up to the DBMS implementation.
→ Access data through high-level language, DBMS figures

out best execution strategy.

31

15-445/645 (Spring 2025)

RELATIONAL MODEL

Structure: The definition of the database’s relations
and their contents independent of their physical
representation.

Integrity: Ensure the database’s contents satisfy
constraints.

Manipulation: Programming interface for
accessing and modifying a database's contents.

32

15-445/645 (Spring 2025)

DATA INDEPENDENCE

Isolate the user/application from low-
level data representation.
→ The user only worries about high-level

application logic.
→ DBMS optimizes the layout according

to operating environment, database
contents, and workload.

→ DBMS can then re-optimize the
database if/when these factors changes.

Database

Storage

Physical Schema

Pages, Files, Extents…

Logical Schema

Schema, Constraints…

 (SQL)

External Schema External Schema

Views (SQL)

ApplicationApplication

33

15-445/645 (Spring 2025)

DATA INDEPENDENCE

Isolate the user/application from low-
level data representation.
→ The user only worries about high-level

application logic.
→ DBMS optimizes the layout according

to operating environment, database
contents, and workload.

→ DBMS can then re-optimize the
database if/when these factors changes.

Database

Storage

Physical Schema

Pages, Files, Extents…

Logical Schema

Schema, Constraints…

 (SQL)

External Schema External Schema

Views (SQL)

ApplicationApplication

34

Physical Data
Independence

15-445/645 (Spring 2025)

DATA INDEPENDENCE

Isolate the user/application from low-
level data representation.
→ The user only worries about high-level

application logic.
→ DBMS optimizes the layout according

to operating environment, database
contents, and workload.

→ DBMS can then re-optimize the
database if/when these factors changes.

Database

Storage

Physical Schema

Pages, Files, Extents…

Logical Schema

Schema, Constraints…

 (SQL)

External Schema External Schema

Views (SQL)

ApplicationApplication

35

Physical Data
Independence

Logical Data
Independence

15-445/645 (Spring 2025)

RELATIONAL MODEL

A relation is an unordered set that
contain the relationship of attributes
that represent entities.

A tuple is a set of attribute values
(aka its domain) in the relation.
→ Values are (normally) atomic/scalar.
→ The special value NULL is a member of

every domain (if allowed).
n-ary Relation

Table with n columns
=

Artist(name, year, country)
name year country

Wu-Tang Clan 1992 USA

Notorious BIG 1992 USA

GZA 1990 USA

36

15-445/645 (Spring 2025)

RELATIONAL MODEL: PRIMARY KEYS

A relation's primary key uniquely
identifies a single tuple.
Some DBMSs automatically create an
internal primary key if a table does
not define one.

DBMS can auto-generation unique
primary keys via an identity column:
→ IDENTITY (SQL Standard)
→ SEQUENCE (PostgreSQL / Oracle)
→ AUTO_INCREMENT (MySQL)

Artist(name, year, country)
name year country

Wu-Tang Clan 1992 USA

Notorious BIG 1992 USA

GZA 1990 USA

37

https://en.wikipedia.org/wiki/Identity_column

15-445/645 (Spring 2025)

RELATIONAL MODEL: PRIMARY KEYS

A relation's primary key uniquely
identifies a single tuple.
Some DBMSs automatically create an
internal primary key if a table does
not define one.

DBMS can auto-generation unique
primary keys via an identity column:
→ IDENTITY (SQL Standard)
→ SEQUENCE (PostgreSQL / Oracle)
→ AUTO_INCREMENT (MySQL)

Artist(id, name, year, country)
id name year country

101 Wu-Tang Clan 1992 USA

102 Notorious BIG 1992 USA

103 GZA 1990 USA

38

https://en.wikipedia.org/wiki/Identity_column

15-445/645 (Spring 2025)

RELATIONAL MODEL: FOREIGN KEYS

A foreign key specifies that an
attribute from one relation maps to a
tuple in another relation.

39

15-445/645 (Spring 2025)

RELATIONAL MODEL: FOREIGN KEYS

A foreign key specifies that an
attribute from one relation maps to a
tuple in another relation.

Album(id, name, artists, year)
id name artists year

11 Enter the Wu-Tang 101 1993

22 St.Ides Mix Tape ??? 1994

33 Liquid Swords 103 1995

id name year country

101 Wu-Tang Clan 1992 USA

102 Notorious BIG 1992 USA

103 GZA 1990 USA

40

Artist(id, name, year, country)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Spring 2025)

RELATIONAL MODEL: FOREIGN KEYS

A foreign key specifies that an
attribute from one relation maps to a
tuple in another relation.

Album(id, name, artists, year)
id name artists year

11 Enter the Wu-Tang 101 1993

22 St.Ides Mix Tape ??? 1994

33 Liquid Swords 103 1995

id name year country

101 Wu-Tang Clan 1992 USA

102 Notorious BIG 1992 USA

103 GZA 1990 USA

41

Artist(id, name, year, country)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Spring 2025)

RELATIONAL MODEL: FOREIGN KEYS

A foreign key specifies that an
attribute from one relation maps to a
tuple in another relation. id name year country

101 Wu-Tang Clan 1992 USA

102 Notorious BIG 1992 USA

103 GZA 1990 USA

ArtistAlbum(artist_id, album_id)
artist_id album_id

101 11

101 22

103 22

102 22

Album(id, name, year)
id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

42

Artist(id, name, year, country)

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Spring 2025)

RELATIONAL MODEL: CONSTRAINTS

User-defined conditions that must
hold for any instance of the database.
→ Can validate data within a single tuple

or across entire relation(s).
→ DBMS prevents modifications that

violate any constraint.

Unique key and referential (fkey)
constraints are the most common.
SQL:92 supports global asserts but
these are rarely used (too slow).

Artist(id, name, year, country)
id name year country

101 Wu-Tang Clan 1992 USA

102 Notorious BIG 1992 USA

103 GZA 1990 USA

43

CREATE TABLE Artist (
 name VARCHAR NOT NULL,
 year INT,
 country CHAR(60),
 CHECK (year > 1900)
);

CREATE ASSERTION myAssert
 CHECK (<SQL>);

15-445/645 (Spring 2025)

DATA MANIPULATION LANGUAGES (DML)

The API that a DBMS exposes to applications to
store and retrieve information from a database.
Procedural:

→ The query specifies the (high-level) strategy to find
the desired result based on sets / bags.

Non-Procedural (Declarative):

→ The query specifies only what data is wanted and
not how to find it.

← Relational
 Algebra

← Relational
 Calculus

44

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA

Fundamental operations to retrieve
and manipulate tuples in a relation.
→ Based on set algebra (unordered lists with

no duplicates).

Each operator takes one or more
relations as its inputs and outputs a
new relation.
→ We can “chain” operators together to

create more complex operations.

σ Select
π Projection
∪ Union
∩ Intersection
– Difference
× Product
⋈ Join

45

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a
relation that satisfies a selection
predicate.
→ Predicate acts as a filter to retain only

tuples that fulfill its qualifying
requirement.

→ Can combine multiple predicates using
conjunctions / disjunctions.

Syntax: σpredicate(R)

a_id b_id
a1 101
a2 102
a2 103
a3 104

R(a_id,b_id)

46

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a
relation that satisfies a selection
predicate.
→ Predicate acts as a filter to retain only

tuples that fulfill its qualifying
requirement.

→ Can combine multiple predicates using
conjunctions / disjunctions.

Syntax: σpredicate(R)

a_id b_id
a1 101
a2 102
a2 103
a3 104

R(a_id,b_id)

σa_id='a2'(R)
a_id b_id
a2 102
a2 103

47

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a
relation that satisfies a selection
predicate.
→ Predicate acts as a filter to retain only

tuples that fulfill its qualifying
requirement.

→ Can combine multiple predicates using
conjunctions / disjunctions.

Syntax: σpredicate(R)

σa_id='a2'∧ b_id>102(R)

a_id b_id
a1 101
a2 102
a2 103
a3 104

R(a_id,b_id)

a_id b_id
a2 103

σa_id='a2'(R)
a_id b_id
a2 102
a2 103

48

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a
relation that satisfies a selection
predicate.
→ Predicate acts as a filter to retain only

tuples that fulfill its qualifying
requirement.

→ Can combine multiple predicates using
conjunctions / disjunctions.

Syntax: σpredicate(R)

σa_id='a2'∧ b_id>102(R)

a_id b_id
a1 101
a2 102
a2 103
a3 104

R(a_id,b_id)

a_id b_id
a2 103

σa_id='a2'(R)
a_id b_id
a2 102
a2 103

SELECT * FROM R
 WHERE a_id='a2' AND b_id>102;

49

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: SELECT

Choose a subset of the tuples from a
relation that satisfies a selection
predicate.
→ Predicate acts as a filter to retain only

tuples that fulfill its qualifying
requirement.

→ Can combine multiple predicates using
conjunctions / disjunctions.

Syntax: σpredicate(R)

σa_id='a2'∧ b_id>102(R)

a_id b_id
a1 101
a2 102
a2 103
a3 104

R(a_id,b_id)

a_id b_id
a2 103

σa_id='a2'(R)
a_id b_id
a2 102
a2 103

SELECT * FROM R
 WHERE a_id='a2' AND b_id>102;

50

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: PROJECTION

Generate a relation with tuples that
contains only the specified attributes.
→ Rearrange attributes’ ordering.
→ Remove unwanted attributes.
→ Manipulate values to create derived

attributes.

Syntax: ΠA1,A2,…,An(R)
Πb_id-100,a_id(σa_id='a2'(R))

a_id b_id
a1 101
a2 102
a2 103
a3 104

R(a_id,b_id)

b_id-100 a_id
2 a2
3 a2

SELECT b_id-100, a_id
 FROM R WHERE a_id = 'a2';

51

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: UNION

Generate a relation that contains all
tuples that appear in either only one
or both input relations.

Syntax: (R ∪ S)

a_id b_id
a1 101
a2 102
a3 103

R(a_id,b_id) S(a_id,b_id)
a_id b_id
a3 103
a4 104
a5 105

(R ∪ S)
a_id b_id
a1 101
a2 102
a3 103
a4 104
a5 105

(SELECT * FROM R)
UNION

(SELECT * FROM S);

52

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: INTERSECTION

Generate a relation that contains only
the tuples that appear in both of the
input relations.

Syntax: (R ∩ S)
(R ∩ S)

a_id b_id
a3 103

(SELECT * FROM R)
INTERSECT

(SELECT * FROM S);

53

a_id b_id
a1 101
a2 102
a3 103

R(a_id,b_id) S(a_id,b_id)
a_id b_id
a3 103
a4 104
a5 105

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: DIFFERENCE

Generate a relation that contains only
the tuples that appear in the first and
not the second of the input relations.

Syntax: (R – S)
(R – S)

a_id b_id
a1 101
a2 102

(SELECT * FROM R)
EXCEPT

(SELECT * FROM S);

54

a_id b_id
a1 101
a2 102
a3 103

R(a_id,b_id) S(a_id,b_id)
a_id b_id
a3 103
a4 104
a5 105

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: PRODUCT

Generate a relation that contains all
possible combinations of tuples from
the input relations.

Syntax: (R × S) (R × S)
R.a_id R.b_id S.a_id S.b_id
a1 101 a3 103
a1 101 a4 104
a1 101 a5 105
a2 102 a3 103
a2 102 a4 104
a2 102 a5 105
a3 103 a3 103
a3 103 a4 104
a3 103 a5 105

SELECT * FROM R CROSS JOIN S;

SELECT * FROM R, S;

55

a_id b_id
a1 101
a2 102
a3 103

R(a_id,b_id) S(a_id,b_id)
a_id b_id
a3 103
a4 104
a5 105

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all
tuples that are a combination of two
tuples (one from each input relation)
with a common value(s) for one or
more attributes.

Syntax: (R ⋈ S)

56

a_id b_id
a1 101
a2 102
a3 103

R(a_id,b_id) S(a_id,b_id,val)
a_id b_id val
a3 103 XXX
a4 104 YYY
a5 105 ZZZ

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all
tuples that are a combination of two
tuples (one from each input relation)
with a common value(s) for one or
more attributes.

Syntax: (R ⋈ S)

(R ⋈ S)
a_id b_id val
a3 103 XXX

57

a_id b_id
a1 101
a2 102
a3 103

R(a_id,b_id) S(a_id,b_id,val)
a_id b_id val
a3 103 XXX
a4 104 YYY
a5 105 ZZZ

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all
tuples that are a combination of two
tuples (one from each input relation)
with a common value(s) for one or
more attributes.

Syntax: (R ⋈ S)

(R ⋈ S)
a_id b_id val
a3 103 XXX

R.a_id R.b_id S.a_id S.b_id S.val
a3 103 a3 103 XXX

58

a_id b_id
a1 101
a2 102
a3 103

R(a_id,b_id) S(a_id,b_id,val)
a_id b_id val
a3 103 XXX
a4 104 YYY
a5 105 ZZZ

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all
tuples that are a combination of two
tuples (one from each input relation)
with a common value(s) for one or
more attributes.

Syntax: (R ⋈ S)

(R ⋈ S)
a_id b_id val
a3 103 XXX

R.a_id R.b_id S.a_id S.b_id S.val
a3 103 a3 103 XXX

59

a_id b_id
a1 101
a2 102
a3 103

R(a_id,b_id) S(a_id,b_id,val)
a_id b_id val
a3 103 XXX
a4 104 YYY
a5 105 ZZZ

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all
tuples that are a combination of two
tuples (one from each input relation)
with a common value(s) for one or
more attributes.

Syntax: (R ⋈ S)

(R ⋈ S)
a_id b_id val
a3 103 XXX

60

a_id b_id
a1 101
a2 102
a3 103

R(a_id,b_id) S(a_id,b_id,val)
a_id b_id val
a3 103 XXX
a4 104 YYY
a5 105 ZZZ

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all
tuples that are a combination of two
tuples (one from each input relation)
with a common value(s) for one or
more attributes.

Syntax: (R ⋈ S)

(R ⋈ S)

SELECT * FROM R NATURAL JOIN S;

a_id b_id val
a3 103 XXX

SELECT * FROM R JOIN S USING (a_id, b_id);

61

a_id b_id
a1 101
a2 102
a3 103

R(a_id,b_id) S(a_id,b_id,val)
a_id b_id val
a3 103 XXX
a4 104 YYY
a5 105 ZZZ

SELECT * FROM R JOIN S
 ON R.a_id = S.a_id AND R.b_id = S.b_id;

15-445/645 (Spring 2025)

RELATIONAL ALGEBRA: EXTRA OPERATORS

Rename (ρ)
Assignment (R←S)
Duplicate Elimination (δ)
Aggregation (γ)
Sorting (τ)
Division (R÷S)

62

15-445/645 (Spring 2025)

OBSERVATION

Relational algebra defines an ordering of the high-
level steps of how to compute a query.
→ Example: σb_id=102(R⋈S) vs. (R⋈(σb_id=102(S))

A better approach is to state the high-level answer
that you want the DBMS to compute.
→ Example: Retrieve the joined tuples from R and S where

b_id equals 102.

63

15-445/645 (Spring 2025)

RELATIONAL MODEL: QUERIES

The relational model is independent of any query
language implementation.

SQL is the de facto standard (many dialects).

for line in file.readlines():
 record = parse(line)
 if record[0] == "GZA":
 print(int(record[1]))

SELECT year FROM artists
 WHERE name = 'GZA';

64

15-445/645 (Spring 2025)

DATA MODELS
65

Relational
Key/Value
Graph
Document / JSON / XML / Object
Wide-Column / Column-family
Array (Vector, Matrix, Tensor)
Hierarchical
Network
Semantic
Entity-Relationship

← New Hotness

← Leading Alternative

← This Course

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

A collection of record documents containing a
hierarchy of named field/value pairs.
→ A field’s value can be either a scalar type, an array of values,

or another document.
→ Modern implementations use JSON. Older systems use

XML or custom object representations.

Avoid “relational-object impedance mismatch” by
tightly coupling objects and database.

66

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist

ArtistAlbum

Album

67

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist

ArtistAlbum

R1(id,…)

Album

R2(artist_id,album_id)

R3(id,…)

68

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist

ArtistAlbum

R1(id,…)

⨝

⨝
Album

R2(artist_id,album_id)

R3(id,…)

69

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist

ArtistAlbum

R1(id,…)

⨝

⨝
Album

R2(artist_id,album_id)

R3(id,…)

70

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist

Album

71

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist

Album

class Artist {
 int id;
 String name;
 int year;
 Album albums[];
}
class Album {
 int id;
 String name;
 int year;
}

Application Code

72

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist

{
 "name": "GZA",
 "year": 1990,
 "albums": [
 {
 "name": "Liquid Swords",
 "year": 1995
 },
 {
 "name": "Beneath the Surface",
 "year": 1999
 }
]
}

Album

class Artist {
 int id;
 String name;
 int year;
 Album albums[];
}
class Album {
 int id;
 String name;
 int year;
}

Application Code

73

15-445/645 (Spring 2025)

DOCUMENT DATA MODEL

Artist

{
 "name": "GZA",
 "year": 1990,
 "albums": [
 {
 "name": "Liquid Swords",
 "year": 1995
 },
 {
 "name": "Beneath the Surface",
 "year": 1999
 }
]
}

Album

class Artist {
 int id;
 String name;
 int year;
 Album albums[];
}
class Album {
 int id;
 String name;
 int year;
}

Application Code

74

15-445/645 (Spring 2025)

VECTOR DATA MODEL

One-dimensional arrays used for nearest-neighbor
search (exact or approximate).
→ Used for semantic search on embeddings generated by ML-

trained transformer models (think ChatGPT).
→ Native integration with modern ML tools and APIs (e.g.,

LangChain, OpenAI).

At their core, these systems use specialized indexes
to perform NN searches quickly.

75

15-445/645 (Spring 2025)

VECTOR DATA MODEL

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Album(id, name, year)

76

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Spring 2025)

VECTOR DATA MODEL

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Transformer

Album(id, name, year)

77

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Spring 2025)

VECTOR DATA MODEL

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Transformer

Album(id, name, year)

78

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Spring 2025)

VECTOR DATA MODEL

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Embeddings

Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

⋮
Transformer

Album(id, name, year)

79

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

15-445/645 (Spring 2025)

VECTOR DATA MODEL

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Embeddings

Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

Transformer

Album(id, name, year)

80

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

15-445/645 (Spring 2025)

VECTOR DATA MODEL

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Embeddings

Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

Transformer

Find albums similar
to "Liquid Swords"

Query

Album(id, name, year)

81

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

15-445/645 (Spring 2025)

VECTOR DATA MODEL

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Embeddings

Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

Transformer

Find albums similar
to "Liquid Swords"

Query

Album(id, name, year)

82

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

15-445/645 (Spring 2025)

VECTOR DATA MODEL

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Embeddings

Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

[0.02, 0.10, 0.24, ...]

Transformer

Find albums similar
to "Liquid Swords"

Query

Album(id, name, year)

83

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

15-445/645 (Spring 2025)

VECTOR DATA MODEL

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Embeddings

Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

[0.02, 0.10, 0.24, ...]

Transformer

Ranked List of Ids
Find albums similar
to "Liquid Swords"

Query

Album(id, name, year)

84

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

15-445/645 (Spring 2025)

VECTOR DATA MODEL

id name year

11 Enter the Wu-Tang 1993

22 St.Ides Mix Tape 1994

33 Liquid Swords 1995

Embeddings

Id1 → [0.32, 0.78, 0.30, ...]

Id2 → [0.99, 0.19, 0.81, ...]

Id3 → [0.01, 0.18, 0.85, ...]

⋮

Vector
Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

[0.02, 0.10, 0.24, ...]

Transformer

Ranked List of Ids
Find albums similar
to "Liquid Swords"

Query

Album(id, name, year)

85

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

15-445/645 (Spring 2025)

CONCLUSION

Databases are ubiquitous.

Relational algebra defines the primitives for
processing queries on a relational database.

We will see relational algebra again when we talk
about query optimization + execution.

86

15-445/645 (Spring 2025)

NEXT CLASS

Modern SQL
→ Make sure you understand basic SQL before the lecture.

87

