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ADMINISTRIVIA

Project #0 is due January 26th @ 11:59pm

Homework #1 is due January 29th @ 11:59pm

Project #1 will be released on January 22nd
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LAST CLASS

We now understand what a database looks like at a 
logical level and how to write queries to read/write 
data (e.g., using SQL).

We will next learn how to build software that 
manages a database (i.e., a DBMS).
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COURSE OUTLINE

Relational Databases
Storage
Query Execution
Concurrency Control
Database Recovery
Distributed Databases
Potpourri

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager
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TODAY'S AGENDA

Background
File Storage
Page Layout
Tuple Layout
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DISK-BASED ARCHITECTURE

The DBMS assumes that the primary storage 
location of the database is on non-volatile disk.

The DBMS's components manage the movement of 
data between non-volatile and volatile storage.
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ACCESS TIMES

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000
 

ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

Latency Numbers Every Programmer Should Know

Source: Colin Scott
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ACCESS TIMES

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000
 

ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives
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4.4 hours
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Latency Numbers Every Programmer Should Know
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SEQUENTIAL VS. RANDOM ACCESS

Random access on non-volatile storage is almost 
always much slower than sequential access.

DBMS will want to maximize sequential access.
→ Algorithms try to reduce number of writes to random 

pages so that data is stored in contiguous blocks.
→ Allocating multiple pages at the same time is called an 

extent.
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SYSTEM DESIGN GOALS

Allow the DBMS to manage databases that exceed 
the amount of memory available.

Reading/writing to disk is expensive, so it must be 
managed carefully to avoid large stalls and 
performance degradation.

Random access on disk is usually much slower than 
sequential access, so the DBMS will want to 
maximize sequential access.
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DATABASE STORAGE

Problem #1: How the DBMS represents the 
database in files on disk.

Problem #2: How the DBMS manages its memory 
and moves data back-and-forth from disk.

← Today
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FILE STORAGE

The DBMS stores a database as one or more files on 
disk typically in a proprietary format.
→ The OS does not know anything about the contents of 

these files.
→ We will discuss portable file formats next week…

Early systems in the 1980s used custom filesystems 
on raw block storage.
→ Some enterprise DBMSs still support this.
→ Most newer DBMSs do not do this.
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STORAGE MANAGER

The storage manager is responsible for maintaining 
a database's files.
→ Some do their own scheduling for reads and writes to 

improve spatial and temporal locality of pages.

It organizes the files as a collection of pages.
→ Tracks data read/written to pages.
→ Tracks the available space.

A DBMS typically does not maintain multiple 
copies of a page on disk.
→ Assume this happens above/below storage manager.
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DATABASE PAGES

A page is a fixed-size block of data.
→ It can contain tuples, meta-data, indexes, log records…
→ Most systems do not mix page types.
→ Some systems require a page to be self-contained.

Each page is given a unique identifier (page ID).
→ A page ID could be unique per DBMS instance, per 

database, or per table.
→ The DBMS uses an indirection layer to map page IDs to 

physical locations.
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DATABASE PAGES

There are three different notions of 
"pages" in a DBMS:
→ Hardware Page (usually 4KB)
→ OS Page (usually 4KB, x64 2MB/1GB)
→ Database Page (512B-32KB)

A hardware page is the largest block 
of data that the storage device can 
guarantee failsafe writes.

DBMSs that specialize in read-only 
workloads have larger page sizes.
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Default DB Page Sizes

DATABASE PAGES

There are three different notions of 
"pages" in a DBMS:
→ Hardware Page (usually 4KB)
→ OS Page (usually 4KB, x64 2MB/1GB)
→ Database Page (512B-32KB)

A hardware page is the largest block 
of data that the storage device can 
guarantee failsafe writes.

DBMSs that specialize in read-only 
workloads have larger page sizes. 16KB

8KB
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PAGE STORAGE ARCHITECTURE

Different DBMSs manage pages in files on disk in 
different ways.
→ Heap File Organization
→ Tree File Organization
→ Sequential / Sorted File Organization (ISAM)
→ Hashing File Organization

At this point in the hierarchy, we do not need to 
know anything about what is inside of the pages.
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HEAP FILE

A heap file is an unordered collection of pages with 
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files 
and free space availability.
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HEAP FILE: PAGE DIRECTORY

The DBMS maintains special pages 
that tracks the location of data pages 
in the database files.
→ One entry per database object.
→ Must make sure that the directory pages 

are in sync with the data pages.

DBMS also keeps meta-data about 
pages' contents:
→ Amount of free space per page.
→ List of free / empty pages.
→ Page type (data vs. meta-data).

Directory

Table X

Index Y

Table Z
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TODAY'S AGENDA

File Storage
Page Layout
Tuple Layout
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PAGE HEADER

Every page contains a header of meta-
data about the page's contents.
→ Page Size
→ Checksum
→ DBMS Version
→ Transaction Visibility
→ Compression / Encoding Meta-data
→ Schema Information
→ Data Summary / Sketches

Some systems require pages to be self-
contained (e.g., Oracle).

Data

Page

Header

57



15-445/645 (Fall 2024)

PAGE LAYOUT

For any page storage architecture, we now need to 
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a 

row-oriented storage model.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage
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TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the 
number of tuples in a page and then 
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?

Page

Num Tuples = 0
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SLOTTED PAGES

The most common layout scheme is 
called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1
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RECORD IDS

The DBMS assigns each logical tuple a 
unique record identifier that 
represents its physical location in the 
database.
→ File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary 

key and stores them as a hidden attribute.

Applications should never rely on 
these IDs to mean anything.

80
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TODAY'S AGENDA

File Storage
Page Layout
Tuple Layout
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TUPLE LAYOUT

A tuple is essentially a sequence of bytes.
→ These bytes do not have to be contiguous.

It is the job of the DBMS to interpret those bytes 
into attribute types and values.
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Tuple

TUPLE HEADER

Each tuple is prefixed with a header 
that contains meta-data about it.
→ Visibility info (concurrency control)
→ Bit Map for NULL values.

We do not need to store meta-data 
about the schema.

Header Attribute Data
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TUPLE DATA

Attributes are typically stored in the 
order that you specify them when you 
create the table.

This is done for software engineering 
reasons (i.e., simplicity).

However, it might be more efficient 
to lay them out differently.

Tuple

Header a b c d e

CREATE TABLE foo (
  a INT PRIMARY KEY,
  b INT NOT NULL,
  c INT,
  d DOUBLE,
  e FLOAT
);
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DENORMALIZED TUPLE DATA

DBMS can physically denormalize 
(e.g., "pre-join") related tuples and 
store them together in the same page.
→ Potentially reduces the amount of I/O for 

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without 

calling it physical denormalization.

CREATE TABLE foo (
  a INT PRIMARY KEY,
  b INT NOT NULL,
); CREATE TABLE bar (

  c INT PRIMARY KEY,
  a INT 
  �REFERENCES foo (a),
);

86



15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize 
(e.g., "pre-join") related tuples and 
store them together in the same page.
→ Potentially reduces the amount of I/O for 

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without 

calling it physical denormalization.

CREATE TABLE foo (
  a INT PRIMARY KEY,
  b INT NOT NULL,
); CREATE TABLE bar (

  c INT PRIMARY KEY,
  a INT 
  �REFERENCES foo (a),
);

87



15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize 
(e.g., "pre-join") related tuples and 
store them together in the same page.
→ Potentially reduces the amount of I/O for 

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without 

calling it physical denormalization.

foo

Header c a

Header c a

Header c a

bar

Header a b

88



15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize 
(e.g., "pre-join") related tuples and 
store them together in the same page.
→ Potentially reduces the amount of I/O for 

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without 

calling it physical denormalization.

foo

Header c a

Header c a

Header c a

bar

Header a b

89

SELECT * FROM foo JOIN bar
    ON foo.a = bar.a;
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CONCLUSION

Database is organized in pages.
Different ways to track pages.
Different ways to store pages.
Different ways to store tuples.
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NEXT CLASS

Log-Structured Storage
Index-Organized Storage
Value Representation
Catalogs
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