
Database
Systems

15-445/645 SPRING 2024 PROF. JIGNESH PATEL

Database Storage:
Files & Pages

15-445/645 (Fall 2024)

ADMINISTRIVIA

Project #0 is due January 26th @ 11:59pm

Homework #1 is due January 29th @ 11:59pm

Project #1 will be released on January 22nd

2

15-445/645 (Fall 2024)

LAST CLASS

We now understand what a database looks like at a
logical level and how to write queries to read/write
data (e.g., using SQL).

We will next learn how to build software that
manages a database (i.e., a DBMS).

3

15-445/645 (Fall 2024)

COURSE OUTLINE

Relational Databases
Storage
Query Execution
Concurrency Control
Database Recovery
Distributed Databases
Potpourri

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

4

15-445/645 (Fall 2024)

COURSE OUTLINE

Relational Databases
Storage
Query Execution
Concurrency Control
Database Recovery
Distributed Databases
Potpourri

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

5

Application

15-445/645 (Fall 2024)

COURSE OUTLINE

Relational Databases
Storage
Query Execution
Concurrency Control
Database Recovery
Distributed Databases
Potpourri

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

6

Application

SQL

15-445/645 (Fall 2024)

COURSE OUTLINE

Relational Databases
Storage
Query Execution
Concurrency Control
Database Recovery
Distributed Databases
Potpourri

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

7

Application

SQL

15-445/645 (Fall 2024)

TODAY'S AGENDA

Background
File Storage
Page Layout
Tuple Layout

8

15-445/645 (Fall 2024)

DISK-BASED ARCHITECTURE

The DBMS assumes that the primary storage
location of the database is on non-volatile disk.

The DBMS's components manage the movement of
data between non-volatile and volatile storage.

9

15-445/645 (Fall 2024)

10

STORAGE HIERARCHY
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller

Expensive

Slower
Larger

Cheaper

15-445/645 (Fall 2024)

11

STORAGE HIERARCHY
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller

Expensive

Slower
Larger

Cheaper

Volatile
Random Access

Byte-Addressable

Non-Volatile
Sequential Access
Block-Addressable

15-445/645 (Fall 2024)

12

STORAGE HIERARCHY

Memory

Disk

CPU
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller

Expensive

Slower
Larger

Cheaper

15-445/645 (Fall 2024)

13

STORAGE HIERARCHY

Memory

Disk

CPU
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller

Expensive

Slower
Larger

Cheaper

Fast Network Storage

15-445/645 (Fall 2024)

14

STORAGE HIERARCHY

Memory

Disk

CPU
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller

Expensive

Slower
Larger

Cheaper

Fast Network Storage

Persistent Memory

15-445/645 (Fall 2024)

15

STORAGE HIERARCHY

Memory

Disk

CPU
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller

Expensive

Slower
Larger

Cheaper

Fast Network Storage

Persistent Memory

15-445/645 (Fall 2024)

16

STORAGE HIERARCHY

Memory

Disk

CPU
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller

Expensive

Slower
Larger

Cheaper

Fast Network Storage

Persistent Memory

15-445/645 (Fall 2024)

17

STORAGE HIERARCHY

Memory

Disk

CPU
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller

Expensive

Slower
Larger

Cheaper

Fast Network Storage

CXL Type 3

15-445/645 (Fall 2024)

18

STORAGE HIERARCHY

Memory

Disk

CPU
CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller

Expensive

Slower
Larger

Cheaper

Fast Network Storage

CXL Type 3

15-445/645 (Fall 2024)

ACCESS TIMES

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000

ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

Latency Numbers Every Programmer Should Know

Source: Colin Scott

19

https://colin-scott.github.io/personal_website/research/interactive_latency.html

15-445/645 (Fall 2024)

ACCESS TIMES

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000

ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

1 sec

4 sec

100 sec

4.4 hours

3.3 weeks

1.5 years

31.7 years

Latency Numbers Every Programmer Should Know

Source: Colin Scott

20

https://colin-scott.github.io/personal_website/research/interactive_latency.html

15-445/645 (Fall 2024)

SEQUENTIAL VS. RANDOM ACCESS

Random access on non-volatile storage is almost
always much slower than sequential access.

DBMS will want to maximize sequential access.
→ Algorithms try to reduce number of writes to random

pages so that data is stored in contiguous blocks.
→ Allocating multiple pages at the same time is called an

extent.

21

15-445/645 (Fall 2024)

SYSTEM DESIGN GOALS

Allow the DBMS to manage databases that exceed
the amount of memory available.

Reading/writing to disk is expensive, so it must be
managed carefully to avoid large stalls and
performance degradation.

Random access on disk is usually much slower than
sequential access, so the DBMS will want to
maximize sequential access.

22

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

D
a

t
a

b
a

s
e

F

i
l
e

23

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages4

Header

5
Header

24

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

4
Header

5
Header

25

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

4
Header

5
Header

Execution

Engine

26

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

4
Header

5
Header

Get Page #2
Execution

Engine

27

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

4
Header

5
Header

Get Page #2

Directory

Execution

Engine

28

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

2
Header

4
Header

5
Header

Get Page #2

Directory

Execution

Engine

29

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Pointer to Page #2

Execution

Engine

30

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Interpret Page #2 layout

Pointer to Page #2

Execution

Engine

31

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Interpret Page #2 layout

Pointer to Page #2

Execution

Engine

32

Update Page #2

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Interpret Page #2 layout

Pointer to Page #2

Execution

Engine

33

Update Page #2

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Interpret Page #2 layout

Pointer to Page #2

Lectures #3-5

Execution

Engine

34

Update Page #2

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Interpret Page #2 layout

Pointer to Page #2

Lectures #3-5

Lecture #6 Execution

Engine

35

Update Page #2

Lecture #6

15-445/645 (Fall 2024)

DISK-ORIENTED DBMS

Disk

Memory

D
a

t
a

b
a

s
e

F

i
l
e

1
HeaderDirectory

2
Header

3
Header

…
Pages

B
u

f
f

e
r

P

o
o

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Interpret Page #2 layout

Pointer to Page #2

Lectures #3-5

Lecture #6

Lectures #13-14

Execution

Engine

36

Update Page #2

Lecture #6

15-445/645 (Fall 2024)

DATABASE STORAGE

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory
and moves data back-and-forth from disk.

← Today

37

15-445/645 (Fall 2024)

FILE STORAGE

The DBMS stores a database as one or more files on
disk typically in a proprietary format.
→ The OS does not know anything about the contents of

these files.
→ We will discuss portable file formats next week…

Early systems in the 1980s used custom filesystems
on raw block storage.
→ Some enterprise DBMSs still support this.
→ Most newer DBMSs do not do this.

38

15-445/645 (Fall 2024)

FILE STORAGE

The DBMS stores a database as one or more files on
disk typically in a proprietary format.
→ The OS does not know anything about the contents of

these files.
→ We will discuss portable file formats next week…

Early systems in the 1980s used custom filesystems
on raw block storage.
→ Some enterprise DBMSs still support this.
→ Most newer DBMSs do not do this.

39

15-445/645 (Fall 2024)

STORAGE MANAGER

The storage manager is responsible for maintaining
a database's files.
→ Some do their own scheduling for reads and writes to

improve spatial and temporal locality of pages.

It organizes the files as a collection of pages.
→ Tracks data read/written to pages.
→ Tracks the available space.

A DBMS typically does not maintain multiple
copies of a page on disk.
→ Assume this happens above/below storage manager.

40

15-445/645 (Fall 2024)

DATABASE PAGES

A page is a fixed-size block of data.
→ It can contain tuples, meta-data, indexes, log records…
→ Most systems do not mix page types.
→ Some systems require a page to be self-contained.

Each page is given a unique identifier (page ID).
→ A page ID could be unique per DBMS instance, per

database, or per table.
→ The DBMS uses an indirection layer to map page IDs to

physical locations.

41

15-445/645 (Fall 2024)

DATABASE PAGES

There are three different notions of
"pages" in a DBMS:
→ Hardware Page (usually 4KB)
→ OS Page (usually 4KB, x64 2MB/1GB)
→ Database Page (512B-32KB)

A hardware page is the largest block
of data that the storage device can
guarantee failsafe writes.

DBMSs that specialize in read-only
workloads have larger page sizes.

42

15-445/645 (Fall 2024)

DATABASE PAGES

There are three different notions of
"pages" in a DBMS:
→ Hardware Page (usually 4KB)
→ OS Page (usually 4KB, x64 2MB/1GB)
→ Database Page (512B-32KB)

A hardware page is the largest block
of data that the storage device can
guarantee failsafe writes.

DBMSs that specialize in read-only
workloads have larger page sizes.

43

15-445/645 (Fall 2024)

Default DB Page Sizes

DATABASE PAGES

There are three different notions of
"pages" in a DBMS:
→ Hardware Page (usually 4KB)
→ OS Page (usually 4KB, x64 2MB/1GB)
→ Database Page (512B-32KB)

A hardware page is the largest block
of data that the storage device can
guarantee failsafe writes.

DBMSs that specialize in read-only
workloads have larger page sizes. 16KB

8KB

44

4KB

15-445/645 (Fall 2024)

PAGE STORAGE ARCHITECTURE

Different DBMSs manage pages in files on disk in
different ways.
→ Heap File Organization
→ Tree File Organization
→ Sequential / Sorted File Organization (ISAM)
→ Hashing File Organization

At this point in the hierarchy, we do not need to
know anything about what is inside of the pages.

45

15-445/645 (Fall 2024)

PAGE STORAGE ARCHITECTURE

Different DBMSs manage pages in files on disk in
different ways.
→ Heap File Organization
→ Tree File Organization
→ Sequential / Sorted File Organization (ISAM)
→ Hashing File Organization

At this point in the hierarchy, we do not need to
know anything about what is inside of the pages.

46

15-445/645 (Fall 2024)

HEAP FILE

A heap file is an unordered collection of pages with
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files
and free space availability.

47

15-445/645 (Fall 2024)

HEAP FILE

A heap file is an unordered collection of pages with
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files
and free space availability.

D
a

t
a

b
a

s
e

F

i
l
e

Page0 Page1 Page2 Page3 Page4

…

48

15-445/645 (Fall 2024)

HEAP FILE

A heap file is an unordered collection of pages with
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files
and free space availability.

D
a

t
a

b
a

s
e

F

i
l
e

Page0 Page1 Page2 Page3 Page4

…

Offset = Page# × PageSize

Get Page #2

49

15-445/645 (Fall 2024)

HEAP FILE

A heap file is an unordered collection of pages with
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files
and free space availability.

50

15-445/645 (Fall 2024)

HEAP FILE

A heap file is an unordered collection of pages with
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files
and free space availability.

51

Get Page #23

15-445/645 (Fall 2024)

HEAP FILE

A heap file is an unordered collection of pages with
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files
and free space availability.

52

Page

Directory

File Location

▶

 Page# × PageSize

Get Page #23

15-445/645 (Fall 2024)

HEAP FILE

A heap file is an unordered collection of pages with
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files
and free space availability.

53

Page

Directory

File Location

▶

 Page# × PageSize

Get Page #23

15-445/645 (Fall 2024)

HEAP FILE: PAGE DIRECTORY

The DBMS maintains special pages
that tracks the location of data pages
in the database files.
→ One entry per database object.
→ Must make sure that the directory pages

are in sync with the data pages.

DBMS also keeps meta-data about
pages' contents:
→ Amount of free space per page.
→ List of free / empty pages.
→ Page type (data vs. meta-data).

Directory

Table X

Index Y

Table Z

54

Page0

Data

Page1

Data

⋮

File 2

⋮

Page0

Data

Page1

Data

File 1

⋮

15-445/645 (Fall 2024)

HEAP FILE: PAGE DIRECTORY

The DBMS maintains special pages
that tracks the location of data pages
in the database files.
→ One entry per database object.
→ Must make sure that the directory pages

are in sync with the data pages.

DBMS also keeps meta-data about
pages' contents:
→ Amount of free space per page.
→ List of free / empty pages.
→ Page type (data vs. meta-data).

Directory

Table X

Index Y

Table Z

55

Page0

Data

Page1

Data

⋮

File 2

⋮

Page0

Data

Page1

Data

File 1

⋮

15-445/645 (Fall 2024)

TODAY'S AGENDA

File Storage
Page Layout
Tuple Layout

56

15-445/645 (Fall 2024)

PAGE HEADER

Every page contains a header of meta-
data about the page's contents.
→ Page Size
→ Checksum
→ DBMS Version
→ Transaction Visibility
→ Compression / Encoding Meta-data
→ Schema Information
→ Data Summary / Sketches

Some systems require pages to be self-
contained (e.g., Oracle).

Data

Page

Header

57

15-445/645 (Fall 2024)

PAGE LAYOUT

For any page storage architecture, we now need to
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage

58

15-445/645 (Fall 2024)

PAGE LAYOUT

For any page storage architecture, we now need to
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage

59

15-445/645 (Fall 2024)

PAGE LAYOUT

For any page storage architecture, we now need to
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage

60

Lecture #5

15-445/645 (Fall 2024)

PAGE LAYOUT

For any page storage architecture, we now need to
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage

61

Lecture #5

← Today

15-445/645 (Fall 2024)

PAGE LAYOUT

For any page storage architecture, we now need to
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage

62

Lecture #5

Lecture #4

15-445/645 (Fall 2024)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?

Page

Num Tuples = 0

63

15-445/645 (Fall 2024)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?

Page

Num Tuples = 0

Tuple #1

Tuple #2

Tuple #3

Num Tuples = 3

64

15-445/645 (Fall 2024)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?

Page

Num Tuples = 0

Tuple #1

Tuple #2

Tuple #3

Num Tuples = 3

65

15-445/645 (Fall 2024)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?

Page

Num Tuples = 0

Tuple #1

Tuple #3

Num Tuples = 3Num Tuples = 2

66

15-445/645 (Fall 2024)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?

Page

Num Tuples = 0

Tuple #1

Tuple #3

Tuple #4

Num Tuples = 3

67

15-445/645 (Fall 2024)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?

Page

Num Tuples = 0

Tuple #1

Tuple #3

Tuple #4

Num Tuples = 3

68

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

69

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Slot Array

70

1 2 3 4 5 6 7

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

71

1 2 3 4 5 6 7

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

72

1 2 3 4 5 6 7

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

73

1 2 3 4 5 6 7

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

74

1 2 3 4 5 6 7

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

75

1 2 3 4 5 6 7

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

76

1 2 3 4 5 6 7

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2 Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

77

1 2 3 4 5 6 7

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2 Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

78

1 2 3 4 5 6 7

15-445/645 (Fall 2024)

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2 Tuple #1

Fixed- and Var-length

Tuple Data

Slot Array

79

1 2 3 4 5 6 7

15-445/645 (Fall 2024)

RECORD IDS

The DBMS assigns each logical tuple a
unique record identifier that
represents its physical location in the
database.
→ File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary

key and stores them as a hidden attribute.

Applications should never rely on
these IDs to mean anything.

80

https://www.sqlite.org/rowidtable.html

15-445/645 (Fall 2024)

RECORD IDS

The DBMS assigns each logical tuple a
unique record identifier that
represents its physical location in the
database.
→ File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary

key and stores them as a hidden attribute.

Applications should never rely on
these IDs to mean anything.

CTID (6-bytes)

ROWID (10-bytes)

ROWID (8-bytes)

81

%%physloc%% (8-bytes)

https://www.sqlite.org/rowidtable.html

15-445/645 (Fall 2024)

TODAY'S AGENDA

File Storage
Page Layout
Tuple Layout

82

15-445/645 (Fall 2024)

TUPLE LAYOUT

A tuple is essentially a sequence of bytes.
→ These bytes do not have to be contiguous.

It is the job of the DBMS to interpret those bytes
into attribute types and values.

83

15-445/645 (Fall 2024)

Tuple

TUPLE HEADER

Each tuple is prefixed with a header
that contains meta-data about it.
→ Visibility info (concurrency control)
→ Bit Map for NULL values.

We do not need to store meta-data
about the schema.

Header Attribute Data

84

15-445/645 (Fall 2024)

TUPLE DATA

Attributes are typically stored in the
order that you specify them when you
create the table.

This is done for software engineering
reasons (i.e., simplicity).

However, it might be more efficient
to lay them out differently.

Tuple

Header a b c d e

CREATE TABLE foo (
 a INT PRIMARY KEY,
 b INT NOT NULL,
 c INT,
 d DOUBLE,
 e FLOAT
);

85

15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without

calling it physical denormalization.

CREATE TABLE foo (
 a INT PRIMARY KEY,
 b INT NOT NULL,
); CREATE TABLE bar (

 c INT PRIMARY KEY,
 a INT
 �REFERENCES foo (a),
);

86

15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without

calling it physical denormalization.

CREATE TABLE foo (
 a INT PRIMARY KEY,
 b INT NOT NULL,
); CREATE TABLE bar (

 c INT PRIMARY KEY,
 a INT
 �REFERENCES foo (a),
);

87

15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without

calling it physical denormalization.

foo

Header c a

Header c a

Header c a

bar

Header a b

88

15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without

calling it physical denormalization.

foo

Header c a

Header c a

Header c a

bar

Header a b

89

SELECT * FROM foo JOIN bar
 ON foo.a = bar.a;

15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without

calling it physical denormalization.

foo

c c c …Header a b

90

SELECT * FROM foo JOIN bar
 ON foo.a = bar.a;

15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without

calling it physical denormalization.

foo

c c c …
foo bar

Header a b

91

SELECT * FROM foo JOIN bar
 ON foo.a = bar.a;

15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without

calling it physical denormalization.

foo

c c c …
foo bar

Header a b

92

15-445/645 (Fall 2024)

DENORMALIZED TUPLE DATA

DBMS can physically denormalize
(e.g., "pre-join") related tuples and
store them together in the same page.
→ Potentially reduces the amount of I/O for

common workload patterns.
→ Can make updates more expensive.

Not a new idea.
→ IBM System R did this in the 1970s.
→ Several NoSQL DBMSs do this without

calling it physical denormalization.

foo

c c c …
foo bar

Header a b

93

15-445/645 (Fall 2024)

CONCLUSION

Database is organized in pages.
Different ways to track pages.
Different ways to store pages.
Different ways to store tuples.

94

15-445/645 (Fall 2024)

NEXT CLASS

Log-Structured Storage
Index-Organized Storage
Value Representation
Catalogs

95

