Carnegie Mellon University

Database
Systems

Memory & Disk
Management

15-445/645 SPRING 2024)) PROF. JIGNESH PATEL

ADMINISTRIVIA

Projeet#0 is due January 26 @ 11:59pm
Homework #1 is due January 29" @ 11:59pm

Project #1 is due on February 9" @ 11:59pm

$ZCMU-DB

15-445/645 (Fall 2024)

$ZCMU-DB

15-445/645 (Fall 2024)

LAST CLASS

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory
and move data back-and-forth from disk.

£CMU-DB

15-445/645 (Fall 2024)

DATABASE STORAGE

Spatial Control:

— Where to write pages on disk.
— The goal is to keep pages that are used together often as
physically close together as possible on disk.

Temporal Control:

— When to read pages into memory, and when to write them
to disk.

— The goal is to minimize the number of stalls from having
to read data from disk.

DISK-ORIENTED DBMS

Directory

Database File

£CMU-DB

15-445/645 (Fall 2024)

— Pages

DISK-ORIENTED DBMS

— Frames

--

Qo

Database File

£CMU-DB

15-445/645 (Fall 2024)

Execution
Engine

DISK-ORIENTED DBMS

— Frames

--

Get Page #2 %

Database File

£CMU-DB

15-445/645 (Fall 2024)

Execution
Engine

P
<

Buffer Pool

Directory | :

— Frames

DISK-ORIENTED DBMS

Get Page #2 %

Database File

£CMU-DB

15-445/645 (Fall 2024)

Execution
Engine

P
<

Buffer Pool

Directory

— Frames

DISK-ORIENTED DBMS

Get Page #2 %

Database File

£CMU-DB

15-445/645 (Fall 2024)

Execution
Engine

DISK-ORIENTED DBMS

Buffer Pool <

Get Page #2 a Execution
. > O Engine

Pointer to Page #2 o

o

HER

EEE — Frames

Directory Headerl Head I Head I

mmm 2 4 || 5 [Poses

Database File

£CMU-DB

15-445/645 (Fall 2024)

Buffer Pool

Directory

— Frames

DISK-ORIENTED DBMS

Qo

Database File

£CMU-DB

15-445/645 (Fall 2024)

Execution

Engine

Buffer Pool

Directory | :

— Frames

DISK-ORIENTED DBMS

Qo

Database File

£CMU-DB

15-445/645 (Fall 2024)

Execution
Engine

P
<

Buffer Pool

Directory | :

— Frames

DISK-ORIENTED DBMS

Get Page #2 %

Database File

£CMU-DB

15-445/645 (Fall 2024)

Execution
Engine

DISK-ORIENTED DBMS

P
<

Buffer Pool

Directory | :

— Frames

Get Page #2 %

Database File

£CMU-DB

15-445/645 (Fall 2024)

Execution
Engine

DISK-ORIENTED DBMS

Buff er Pool <

Get Page #2 a _——
. : OO Engine
Pointer to Page #2
Directory | i
— Frames
Directory He aderl Head rI Head I

4 5 ooo —Pages

Database File

£2CMU-DB

15-445/645 (Fall 2024)

OTHER MEMORY POOLS

The DBMS needs memory for things other than
just tuples and indexes.

These other memory pools may not always backed

by disk. Depends on implementation.
— Sorting + Join Buffers

— Query Caches

— Maintenance Buffers

— Log Buffers

— Dictionary Caches

£CMU-DB

15-445/645 (Fall 2024)

£2CMU-DB
15-445/645 (F

all 2024)

TODAY'S AGENDA

Buffer Pool Manager

Should we use mmap() to manage data in the DBMS?
Disk I/O Scheduling

Replacement Policies

Other Memory Pools

BUFFER POOL ORGANIZATION

Memory .region organized as an array Buffer
of fixed-size pages. Pool
An array entry is called a frame. e s
: framel
When the DBMS requests a page, an | frame2 |
exact copy is placed into one of these | frame3
frames. framed |

Dirty pages are buffered and not

written to disk immediately pagel page2 || page3 | | page4
Write-Back Cach . .
T On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

BUFFER POOL ORGANIZATION

Memory region organized as an array Buffer
of fixed-size pages. Pool
An array entry is called a frame.

JERTTLLL page1
When the DBMS requests a page, an rranez
exact copy is placed into one of these frame3 |
frames. o

Dirty pages are buffered and not

written to disk immediately pagel page2 || page3 | | page4
Write-Back Cach . .

g ePack adie On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

BUFFER POOL ORGANIZATION

Memory region organized as an array Buffer
of fixed-size pages. Pool
An array entry is called a frame. E
When the DBMS requests a page, an v| page3
exact copy is placed into one of these § | frames
frames. PP

Dirty pages are buffered and not

written to disk immediately pagel page2 || page3 | | page4
Write-Back Cach . .
T On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

£CMU-DB

15-445/645 (Fall 2024)

Page
Table

agel
ot }—> pagel

page3 ‘\’
meta-data pa ge3

Buffer
Pool

frame3
frame4
pagel page2 page3 page4
On-Disk File

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

£CMU-DB

15-445/645 (Fall 2024)

Page
Table

agel
ot }—> pagel

page3 ‘\’
meta-data pa ge3

Buffer
Pool

frame3
frame4
pagel page2 page3 page4
On-Disk File

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

£CMU-DB

15-445/645 (Fall 2024)

Page
Table

agel
ot }—> pagel

meta-data pa ge3

Buffer
Pool

frame3
frame4
pagel page2 page3 page4
On-Disk File

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

£CMU-DB

15-445/645 (Fall 2024)

Page
Table

agel
paeel @— ! pagel
meta-data pa ge3

Buffer
Pool

» frame3
frame4
pagel page2 page3 page4
On-Disk File

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

£CMU-DB

15-445/645 (Fall 2024)

Page
Table

agel
paeel @— ! pagel
meta-data pa ge3

Buffer
Pool

» ﬁ frame3
frame4
pagel page2 page3 page4
On-Disk File

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

£CMU-DB

15-445/645 (Fall 2024)

Page Buffer

Table

Pool

pagel ; N
meta-data

pagel

x page3
meta-data pa ge3

page2

ez e——
meta-data

page1

page2 page3

On-Disk File

BUFFER POOL META-DATA

The page table keeps track of pages Page Buffer
that are currently in memory. Table Pool
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access. 2%, 6] pagel

x page3
meta-data pa ge3

Additional meta-data per page: » Qe o page2
— Dirty Flag retdeta T e

— Pin/Reference Counter ~ hand
—> Access Tracking Information ..

pagel page2 page3 page4

On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

BUFFER POOL META-DATA
The page table ke:*eps track of pages Page Buffer
that are currently in memory. Table Pool
— Usually a fixed-size hash table protected —
with latches to ensure thread-safe access. 5 ”Z;:g; i L
oot ‘\.@
Additional meta-data per page: page> page2

— Dirty Flag
— Pin/Reference Counter b
—> Access Tracking Information ...

pagel page2 page3 page4

On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

LOCKS VS. LATCHES

Locks:

— Protects the database's logical contents from other
transactions.

— Held for transaction duration.

— Need to be able to rollback changes.

Latches:

— Protects the critical sections of the DBMS's internal data
structure from other threads.

— Held for operation duration.

— Do not need to be able to rollback changes.

£CMU-DB

15-445/645 (Fall 2024)

LOCKS VS. LATCHES

Locks:

— Protects the database's logical contents from other
transactions.

— Held for transaction duration.

— Need to be able to rollback changes.

Latches:
— Protects the critical sections of the DBMS's internal data

structure from other threads. & Mutex
— Held for operation duration.
— Do not need to be able to rollback changes.

$ZCMU-DB

15-445/645 (Fall 2024)

PAGE TABLE VS. PAGE DIRECTORY

The page directory is the mapping from page ids
to page locations in the database files.

— All changes must be recorded on disk to allow the DBMS
to find on restart.

The page table is the mapping from page ids to a

copy of the page in buffer pool frames.

— This is an in-memory data structure that does not need to
be stored on disk.

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the

address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the

address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide pagel || page2 || page3 || pages

page fault stalls? On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the Virtual Physical

address space of a program. Memory Memory

OS is responsible for moving file :i:

pages in and out of memory, so the Sage3

DBMS doesn't need to worry about it. —

What if‘ DBMS allows multiple ..
threads to access mmap files to hide pagel || page2 || page3 || pages
page fault stalls? On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the Virtual Physical

address space of a program. Memory Memory

OS is responsible for moving file » :i:
pages in and out of memory, so the Sage3
DBMS doesn't need to worry about it.

page4
What if‘ DBMS allows multiple ..
threads to access mmap files to hide pagel || page2 || page3 || pages
page fault stalls? On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical
address space of a program. Memory Memory

] . . pagel pagel
OS is responsible for moving file » Sage? 2
pages in and out of memory, so the Sage3 :
DBMS doesn't need to worry about it. —
What if DBMS allows multiple ::’.‘:I' ...
threads to access mmap files to hide pagel || page2 || page3 || pages

? i

page fault stalls: On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical
address space of a program. Memory Memory

] . . pagel * pagel
OS is responsible for moving file » Sage? 2
pages in and out of memory, so the Sage3 :
DBMS doesn't need to worry about it. —
What if DBMS aHOWS multlple :-:v.’: ...
threads to access mmap files to hide pagel || page2 || page3 || pages

? i

page fault stalls: On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the Virtual Physical

address space of a program. Memory Memory

pagel »| pagel
OS is responsible for moving file -
pages in and out of memory, so the » Sage3
DBMS doesn't need to worry about it. —
What if‘ DBMS allows multiple ..
threads to access mmap files to hide pagel || page2 || page3 || pages
page fault stalls? On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical
address space of a program. Memory Memory
pagel »| pagel

OS is responsible for moving file

] page?2 page3
pages in and out of memory, so the » Sage3 .
DBMS doesn't need to worry about it. ’

page4 .
What if DBMS allows mlﬂtiple :_n':
threads to access mmap files to hide pagel || page2 || page3 || pages
page fault stalls? On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical
address space of a program. Memory Memory
pagel »| pagel

OS is responsible for moving file

] page?2 page3
pages in and out of memory, so the » - f s
DBMS doesn't need to worry about it.

page4 .
What if DBMS allows mlﬂtiple :_n':
threads to access mmap files to hide pagel || page2 || page3 || pages
page fault stalls? On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the Virtual Physical

address space of a program. Memory Memory

pagel »| pagel
OS is responsible for moving file , ;
pages in and out of memory, so the » :i; f —
DBMS doesn't need to worry about it. —
What if DBMS allows mlﬂtiple ..
threads to access mmap files to hide pagel || page2 || page3 || pages
page fault stalls? On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical
address space of a program. Memory Memory
pagel »| pagel

OS is responsible for moving file 297 » bage? —
pages in and out of memory, so the age3 f
DBMS doesn't need to worry about it.

page4
What if DBMS allows mlﬂtiple ..
threads to access mmap files to hide pagel || page2 || page3 || pages
page fault stalls? On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical
address space of a program. Memory Memory
0S i ible f ing fil e [

is responsible for moving file 277 , ;
pages in and out of memory, so the » :i; f ;?ge
DBMS doesn't need to worry about it. \ﬁf;,[

page4

What if DBMS allows multiple ..
threads to access mmap files to hide pagel || page2 || page3 || page4
page fault stalls? On-Disk File

£CMU-DB

15-445/645 (Fall 2024)

MEMORY MAPPED I/O PROBLEMS

£CMU-DB

15-445/645 (Fall 2024)

MEMORY MAPPED I/O PROBLEMS

Problem #1: Transaction Safety
— OS can flush dirty pages at any time.

£2CMU-DB
15-445/645 (Fall 2024)

MEMORY MAPPED I/O PROBLEMS

Problem #1: Transaction Safety
— OS can flush dirty pages at any time.

Problem #2: I/0 Stalls

— DBMS doesn't know which pages are in memory. The OS
will stall a thread on page fault.

£CMU-DB

15-445/645 (Fall 2024)

MEMORY MAPPED I/O PROBLEMS

Problem #1: Transaction Safety
— OS can flush dirty pages at any time.

Problem #2:1/0 Stalls
— DBMS doesn't know which pages are in memory. The OS

will stall a thread on page fault.

Problem #3: Error Handling

— Difficult to validate pages. Any access can cause a SIGBUS
that the DBMS must handle.

£CMU-DB

15-445/645 (Fall 2024)

MEMORY MAPPED I/O PROBLEMS

Problem #1: Transaction Safety
— OS can flush dirty pages at any time.

Problem #2: I/0 Stalls

— DBMS doesn't know which pages are in memory. The OS
will stall a thread on page fault.

Problem #3: Error Handling

— Difficult to validate pages. Any access can cause a SIGBUS
that the DBMS must handle.

Problem #4: Performance Issues
— OS data structure contention. TLB shootdown:s.

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

There are some solutions to some of

these problems:

— madvise: Tell the OS how you expect to
read certain pages.

— mlock: Tell the OS that memory ranges
cannot be paged out.

— msync: Tell the OS to flush memory
ranges out to disk.

Using these syscalls to get the OS to
behave correctly is just as onerous as
managing memory yourself.

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

. Full Usage
There are some solutions to some of

these problems: mo n‘et b) l M D B

— madvise: Tell the OS how you expect to

read certain pages. RAVENDS @ levelbs
— mlock: Tell the OS that memory ranges

cannot be paged out. = elasticsearch Q QuestDB
— msync: Tell the OS to flush memory & Weaviate

ranges out to disk.
Partial Usage

Using these syscalls to get the OS to _
behave correctly is just as onerous as 0 MongoDB. - Q singlestore

managing memory yourself. 75 QLite @ influxdb

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

. Full Usage
There are some solutions to some of

these problems: mo n‘et b) l M D B

— madvise: Tell the OS how you expect to

read certain pages. RAQ?ENDB @ levelDB
— mlock: Tell the OS that memory ranges
cannot be paged out. = elasticsearch (! QuestDB

— msync: Tell the OS to flush memory
ranges out to disk.

gxavm

Partial Usage

Using these syscalls to get the OS to _
behave correctly is just as onerous as 0 MOXOD& O singGtore
@ iYb

managing memory yourself.

$ZCMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

. Full Usage
There are some solutions to some of

these problems: mo n‘et b) l M D B

— madvise: Tell the OS how you expect to

read certain pages. RAQ?ENDB @ levelDB
— mlock: Tell the OS that memory ranges
cannot be paged out. = elasticsearch (! QuestDB

— msync: Tell the OS to flush memory
ranges out to disk.

gxmt

Partial Usage

Using these syscalls to get the OS to _
behave correctly is just as onerous as 0 MOXOD& O singGtore
@ iYb

managing memory yourself.

$ZCMU-DB

15-445/645 (Fall 2024)

WHY NOT USE THE OS?

DBMS (almost) always wants to control things itself

and can do a better job than the OS.

— Flushing dirty pages to disk in the correct order.
— Specialized prefetching.

— Buffer replacement policy.

— Thread/process scheduling.

The OS is not your friend.

£CMU-DB

15-445/645 (Fall 2024)

WHY NOT USE

DBMS (almost) always wants t

and can do a better job than th¢

L, F : : n the

$ZCMU-DB

15-445/645 (Fall 2024)

Are You Sure You Want to Use MMAP in Your
Database Management System?

Andrew Crotty
Carnegie Mellon University
andrewer@cs.cmu.edu

ABSTRACT

mmap’s perceived ease of use has seduced database management
system (DBMS) developers for decades as a viable alternative to
implementing a buffer pool. There are, however, severe correct-
ness and performance issues with mmap that are not immediately
apparent. Such problems make it difficult, if not impossible, to use

Viktor Leis
University of Erlangen-Nuremberg
viktorleis@fau.de

Andrew Pavlo
Carnegie Mellon University
pavlo@cs.cmu.edu

than the DBMS’s buffer pool.

On the surface, mmap seems like an attractive implementation
option for managing file 1/0 in a DBMS. The most notable benefits
are ease of use and low engineering cost. The DBMS no longer

fter significant g
costs. In this way, mmap and DBMSs are like coffee and spicy food:
an unfortunate combination that becomes obvious afte the fact.

Since developers keep trying to use nmap in new DBMSs, we

main shortcomings of mmap in detail, and our experimental analysis
demonstrates clear performance limitations, Based on these find-
ings. we conclude with a prescription for when DBMS developers
might consider using mmap for file 1/0,

1 INTRODUCTION

Animportant feature of disk-based DBMSs is their ability to support
databases that are larger than the available physical memory. This

Inmemory, even if it does not fit all at once. DBMSs achieve this
illusion by reading pages of data from secondary storage (e.g., HDD,
SSD) into memory on demand. If there is not enough memory for a
new page, the DBMS will evict an existing page that is no longer
needed in order to make room.

Tradi . DBMSs impl, the of pages be-
tween secondary storage and memory in a buffer pool, which in-
teracts with secondary storage using system calls like read and

how and when it transfers Ppages.
Alternatively, the DBMS can relinquish the responsibility of data
movement to the OS, which maintains its own file mapping and

(ebis paper s published under the Creative Commans Atrbaton 20 International
(CCBY 4.0 license. Authors reserve their ights to dissemingue e work on their
personal and Web sites provided that you
puribute theoriginal work to the authors and CIDR 2022, 100 Ay v Conference on
Innavative Data Systems Research (CIDR '22) January 5.1 310n Chaminade, USA.

From a performance perspective, mmap should also have much
lower overhead than a traditional buffer pool. Specifically, mmap
does not incur the cost of explicit system calls (ie., read/write)
and avoids redundant copying to a buffer in user space because the
DBMS can access pages directly from the g page cache.

Since the early 19805, these supposed benefits have enticed DBMS
developers to forgo implementing a buffer pool and instead rely
on the OS to manage file /0 [36]. In fact, the developers of several
well-known DBMSs (see Section 2.3) have gone down this path,
With some even touting mmap as a key factor i achieving good
performance [20]

Unfortunately, mmap has a hidden dark side with many sordid
problems that make it undesirable for file 1/O in a DBMS. As we
describe in this paper, these problems involve both dats safety and
system performance concems. We contend that the engineering
steps required to overcome them negate the purported simplicity
of working with mmap. For these reasons, we believe that mmap
adds too much complexity with no commensurate performance
benefit and strongly urge DBMS developers to avoid using mmap as
a replacement for a traditional buffer pool,

The remainder of this paper is organized as follows. We begin
With a short background on mmap (Section 2), followed by a discus-
sion of its main problems (Section 3) and our experimental analysis
(Section 4). We then discuss related work (Section 5) and conclude
witha summary of our guidance for when you might consider using
mmap in your DBMS (Section 6).

2 BACKGROUND

This section provides the relevant background on map. We begin
with a high-level overview of memory-mapped file 1/O and the
POSIX mmap APL. Then, we discuss real-world implementations of
mmap-based systems.

https://db.cs.cmu.edu/mmap-cidr2022

BUFFER REPLACEMENT POLICIES

When the DBMS needs to free up a frame to make
room for a new page, it must decide which page to
evict from the buffer pool.

Goals:

— Correctness

— Accuracy

— Speed

— Meta-data overhead

£CMU-DB

15-445/645 (Fall 2024)

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the

Disk Pages

DBMS needs to evict a page, select the

pageo

one with the oldest timestamp.
— Keep the pages in sorted order to reduce

pagel

the search time on eviction.

page2

LRU List

page3

A

paged +* pagel +> page2

page4

Newest<Oldest

pageb

£CMU-DB

15-445/645 (Fall 2024)

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the

one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

pageo pagel page2

Newest<Oldest

£CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

o1 P

pagel

page2

page3

page4

pageb

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the

one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

pageo pagel page2

Newest<Oldest

£CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

o1 P

pagel

page2

page3

page4

pageb

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the

one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

pagel page0 page2

Newest<Oldest

£CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

o1 P

pagel

page2

page3

page4

pageb

LEAST-RECENTLY USED

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the

one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

pagel page0
Newest<Oldest

£CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

o1 P

pagel

page2

page3

page4

pageb

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

pagel

page4

page2

page3

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

ref=0

page2

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

ref=0

page2

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=1
pagel

page3

ref=0

ref=0

page2

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=1
pagel

page3

ref=0

ref=0

page2

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

ref=0

page2

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

” page2

page3

ref=0

ref=0

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

” page5

page3

ref=0

ref=0

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=1
page4

ref=0

pagel

” page5

page3
ref=1

ref=0

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

ref=0

pageb

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

page3

ref=0

ref=0

pageb

CLOCK

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has a reference bit.
— When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:

— As the hand visits each page, check if its

bit is set to 1.
— If yes, set to zero. If no, then evict.

£CMU-DB

15-445/645 (Fall 2024)

ref=0

page4

ref=0

pagel

page3

ref=0

ref=0

pageb

£CMU-DB

15-445/645 (Fall 2024)

OBSERVATION

LRU + CLOCK replacement policies are susceptible

to sequential flooding.

— A query performs a sequential scan that reads every page in
a table one or more times (e.g., blocked nested-loop joins).

— This pollutes the buffer pool with pages that are read once
and then never again.

In OLAP workloads, the most recently used page is
often the best page to evict.

LRU + CLOCK only tracks when a page was last
accessed, but not how often a page is accessed.

SEQUENTIAL FLOODING

Q1 [SELECT * FROM A WHERE id = 1 Disk Pages
page@
pagel

Buffer Pool page2
... o

£CMU-DB

15-445/645 (Fall 2024)

SEQUENTIAL FLOODING

Q1 [SELECT * FROM A WHERE id = 1 Disk Pages
Q1 * page0
pagel
Buffer Pool page2
... o

£CMU-DB

15-445/645 (Fall 2024)

SEQUENTIAL FLOODING

Q1 [SELECT * FROM A WHERE id = 1 Disk Pages
Q1 * page0
pagel
Buffer Pool page2
page@ page3

£CMU-DB

15-445/645 (Fall 2024)

SEQUENTIAL FLOODING

Q1 [SELECT * FROM A WHERE id = 1 Disk Pages
Q2 |SELECT AVG(val) FROM A QZ* page0
pagel
Buffer Pool page2
page@ page3

£CMU-DB

15-445/645 (Fall 2024)

SEQUENTIAL FLOODING

Q1 [SELECT * FROM A WHERE id = 1 Disk Pages
Q2 |SELECT AVG(val) FROM A pageod
pagel
Buffer Pool page2
page0 QZ* page3
pagel

page2

£CMU-DB

15-445/645 (Fall 2024)

SEQUENTIAL FLOODING

Q1 [SELECT * FROM A WHERE id = 1 Disk Pages
Q2 |SELECT AVG(val) FROM A pageo
pagel
Buffer Pool page2
pagel

page2

£CMU-DB

15-445/645 (Fall 2024)

SEQUENTIAL FLOODING

Q1 [SELECT * FROM A WHERE id = 1 Disk Pages
Q2 |SELECT AVG(val) FROM A pageod
pagel
Buffer Pool page2
page3 QZ* page3
pagel

page2

£CMU-DB

15-445/645 (Fall 2024)

Q1
Q2
Q3

£CMU-DB

15-445/645 (Fall 2024)

SEQUENTIAL FLOODING

SELECT * FROM A WHERE 1id

SELECT AVG(val) FROM A

SELECT * FROM A WHERE 1id

Buffer Pool

page3

pagel

page2

Disk Pages

Q2 * page0

pagel

page2

Q2 * page3

Q1
Q2
Q3

£CMU-DB

15-445/645 (Fall 2024)

SEQUENTIAL FLOODING

SELECT * FROM A WHERE 1id

SELECT AVG(val) FROM A

SELECT * FROM A WHERE 1id

Buffer Pool

page3

page2

Disk Pages

2 mp

pageo

pagel

page2

02 My

page3

BETTER POLICIES: LRU-K

Track the history of last K references to
each page as timestamps and compute the

interval between subsequent accesses.
— (Can distinguish between reference types

Use this history to estimate the next time

that page is going to be accessed.

— Replace the page with the oldest "K-th" access.

— Balances recency vs. frequency of access.

— Maintain an ephemeral in-memory cache for
recently evicted pages to prevent them from
always being evicted.

$ZCMU-DB

15-445/645 (Fall 2024)

The LRU-K Page Replacement Algorithm
For Database Disk Buffering

Elizabeth J. O'Nell!, Patrick E. O'Neill, Gerhard Weikum?

of Mathematics and Computer Scieace 2~ Department of Computer Science

1 Department
University of Massachussetts at Boston
Harbor

Boston, MA 021253393

CH-8092 Zurich
Switzerland

ABSTRACT
T pages ntroduces o scw sppronch i dusbar ik

{he LRU'K slgorithm supasoc conventona boerin st
sortms in isriminaing between ﬁeq\l:nlly mdin m[m-
queatly ref

Bebavior of bui b\lﬂeﬂng ugmmm in whluh Dage. sets it

buffer pools of specifically tuned sizes. Unlike such cus-
tomized buerig igoritins bowever, e LRU-K method
is self-tuning, not rely on externa

oad chiracerisnes. Furtbenmore the LRUK algo-
rithm adapts in real time to changing pattemns of access.

1. Introduction
1.1 Problem Statement

Al database systcms retain disk pages in memory buffers
for a period of time after they have been read in from disk
i accessd by aparicularaplicaton The e s o

‘The algorithm uilized by almost all commercial systems is
known a8 LRU. for Least Recenly Used. Whea a new
the LRU policy drops the:
that has not been accessed for the longest time. i
buffering was developed originally for patterns of use in in-
struction logic (for cxample. [DENNING], [COFFDENN)),

fit well into

as was noted also in [REITER], [STON], [SACSCH], and
[CHOUDEW]. In fact, the LRU buffering algorithm has a
ble whic s addecene by i e pope: i e
cides what page (0 drop from buffer bascd on too it in-
formation, limiting itself (0 only the time of last rfe
Specifically, LRU is unable to differentiate between pages
that have relatively frequent references and pages that have
very infrequent references nil the system has wasted a lot
v .

foran extended period.

Example 1.1. Consider a multi-user database applica-

tion, which references randomly chosen customer records

through a lusered Btre indexed key, CUST-ID, to re
cf. [TPC-A]).

cally that 20,000 customers exist, that a customer record is
2000 bytes in length, and that space nceded for the B-trec
index a the leaf level, free space included. is 20 bytes for
ech key enty, T f dik pagescontin 4000 bytes of
usable space and can be packed full, we require I

Hholdth e leve nodes of the B.-re ndex (there i a sin-

their "Five Wnuu Rule". Gray and Putzolu pose et
lowing ‘We are willing (0 pay more for memory
ufTes up (o a cerain pint, i orde (0 reduce te cost of

disk arms for synem (IGRAYPUT), sce also [CKS]).
“he ritcal buffeing decision arses when u new bufler

e et s ks W et page hocid b e

ment pollcy i dilirn uitcng lgonims. e
eir names from the type of replacement policy they im-
pose (see, for cxample,

sl d 10 Oﬂopngtslohnmmcrmqrds
‘The pattern pages (ignoring the B-trec
ot nody i nludy TR T et
ferences o random index I¢ and ages. I
e can ol affdt0 b 101 page in memmry for this
applicati 2 oot node s o e shoud
el e .t et e, e o of e sl
enced with a probability of 0 (once in each 200 general

of these leaf pages with a data page, since data pages have
only .00005 probability of reference (once in each 20,000

Pormission o aopy without fee all or part of this matrial ls

il of the publcation and Its date appar, snd notico is given

gen the LRU algorithm, how-
cre e pasBeld i ey buters il b e b
renced ones. To a first approximation,
st Ilee|=lp|gu:nd Soreeond pages. Given

Michinar. To oo i, O 0 1l ro
andior specif

SIGMOD 15193 Washington, DGUSA

©1993 ACM 0-89791-592'5/93/0005/0287...41.50

297

the recent past and that this is more likely (o happen w
e Tk page, thre wil ven be iy more ot

4L

Server

@) PostgreSQL

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

entry points ("old" vs "young").

— New pages are always inserted to the head
of the old list.

— If pages in the old list is accessed again,
then insert into the head of the young list.

Young List Old List

Disk Pages

pageo

pagel

page2

page3

»

page4 page5 [« page9 ¢

\ 4

A

page2 page8

page3 **Ipageﬁ

page4

Newest<Oldest

£CMU-DB

15-445/645 (Fall 2024)

pageb

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

entry points ("old" vs "young").

— New pages are always inserted to the head
of the old list.

— If pages in the old list is accessed again,
then insert into the head of the young list.

neao Young List neap Old List

Disk Pages

pageo

pagel

page2

page3

\ 4

A

page2 page8

|page4 pageb [« page9 +* page3 **[pageﬁ

page4

Newest<Oldest

£CMU-DB

15-445/645 (Fall 2024)

pageb

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").

— New pages are always inserted to the head

of the old list.
— If pages in the old list is accessed again,

then insert into the head of the young list.

neao Young List neap Old List

Q1

\ 4

A

page2

|page4 pageb [« page9 +* page3 **[pageﬁ

page8

Newest<Oldest

£CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

pagel

page2

page3

page4

pageb

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two Disk Pages
entry points ("old" vs "young").
— New pages are always inserted to the head SRS
of the old list.
— If pages in the old list is accessed again, Q1 pagel
then insert into the head of the young list.
page2
page3
neao Young List neap Old List
l_l_ e g e paged
page4 pageb page9 page3 page2 page8| :
page5

£CMU-DB

15-445/645 (Fall 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— If pages in the old list is accessed again,
then insert into the head of the young list.

neao Young List

wean Old List

£CMU-DB

15-445/645 (Fall 2024)

Newest<Oldest

Q1

|page4 page5 [+* page9 page3 > page2 3

Disk Pages

pageo

pagel

page2

page3

page4

pageb

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").

— New pages are always inserted to the head

of the old list.
— If pages in the old list is accessed again,

then insert into the head of the young list.

neao Young List neap Old List

Q1

\ 4

A

page6

|page4 pageb [« page9 +* page3 <-*| pagel

page2

Newest<Oldest

£CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

pagel

page2

page3

page4

pageb

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").

— New pages are always inserted to the head

of the old list.
— If pages in the old list is accessed again,

then insert into the head of the young list.

neao Young List neap Old List

Q2

\ 4

A

page6

|page4 pageb [« page9 +* page3 <-*| pagel

page2

Newest<Oldest

£CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

pagel

page2

page3

page4

pageb

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two Disk Pages
entry points ("old" vs "young").
— New pages are always inserted to the head SRS
of the old list.
— If pages in the old list is accessed again, Q2 pagel
then insert into the head of the young list.
page2
page3
neao Young List neap Old List
I_l_ e g e paged
page4 pageb page9 page3 page6 page2| :
page5

£CMU-DB

15-445/645 (Fall 2024)

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").

— New pages are always inserted to the head

of the old list.
— If pages in the old list is accessed again,

then insert into the head of the young list.

neao Young List neap Old List

Q2

\ 4

A

page6

|page1 page4 [+ pageb +* page9 <-*| page3

page2

Newest<Oldest

£CMU-DB

15-445/645 (Fall 2024)

Disk Pages

pageo

pagel

page2

page3

page4

pageb

BETTER POLICIES: LOCALIZATION

The DBMS chooses which pages to evict on a per
query basis. This minimizes the pollution of the

buffer pool from each query.
— Keep track of the pages that a query has accessed.

Example: Postgres assigns a limited number of
buffer of buffer pool pages to a query and uses it as a
circular ring buffer.

£CMU-DB

15-445/645 (Fall 2024)

https://www.postgresql.org/docs/devel/glossary.html

£2CMU-DB
15-445/645 (F

all 2024)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether a
page 1s important or not.

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page

during query execution.

[t can provide hints to the buffer pool on whether a

page 1s important or not.

index-page0

— —

index-page1 index-page4

index-page2||index-page3||index-page5||index-page6

£CMU-DB

15-445/645 (Fall 2024)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page

during query execution.

[t can provide hints to the buffer pool on whether a

page 1s important or not.

INSERT INTO A VALUES (i1d++)

£CMU-DB

15-445/645 (Fall 2024)

index-page0

— —

index-page1

index-page4

index-page2

index-page3||index-pageb

index-page6

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page

during query execution.

[t can provide hints to the buffer pool on whether a

page 1s important or not.

INSERT INTO A VALUES (i1d++)

£CMU-DB

15-445/645 (Fall 2024)

index-page0

— —

index-page1

index-page4

index-page2

index-page3||index-pageb

index-page6

100

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether a
page 1s important or not.

index-page0

Q1 [INSERT INTO A VALUES (1d++)

index-page6

index-page1

index-page2||index-page3||index-pageb

£CMU-DB

15-445/645 (Fall 2024)

101

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether a
page 1s important or not.

Q1 |INSERT INTO A VALUES (id++) SR

— —

index-page1 index-page4

index-page2||index-page3||index-page5||index-page6

£CMU-DB

15-445/645 (Fall 2024)

102

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether a
page 1s important or not.

Q1 |INSERT INTO A VALUES (id++) SR

— —

Q2 [SELECT * FROM A WHERE id = ? L}.p\gl L},p\g:

index-page2||index-page3||index-page5||index-page6

£CMU-DB

15-445/645 (Fall 2024)

103

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether a
page 1s important or not.

Q1 |INSERT INTO A VALUES (id++)

Q2 [SELECT * FROM A WHERE id = ? L}.p\gl L},p\g:

index-page2||index-page3||index-page5||index-page6

£CMU-DB

15-445/645 (Fall 2024)

104

DIRTY PAGES

Fast Path: If a page in the buffer pool is not dirty,
then the DBMS can simply "drop" it.

Slow Path: If a page is dirty, then the DBMS must
write back to disk to ensure that its changes are
persisted.

Trade-off between fast evictions versus dirty
writing pages that will not be read again in the
future.

£CMU-DB

15-445/645 (Fall 2024)

105

BACKGROUND WRITING

The DBMS can periodically walk through the page
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can
either evict the page or just unset the dirty flag.

Need to be careful that the system doesn't write
dirty pages before their log records are written...

£CMU-DB

15-445/645 (Fall 2024)

OBSERVATION

OS/hardware tries to maximize disk bandwidth by
reordering and batching I/O requests.

But they do not know which I/O requests are more
important than others.

Many DBMSs tell you to switch Linux to use the

deadline or noop (FIFO) scheduler.
— Example: Oracle, Vertica, MySQL

£CMU-DB

15-445/645 (Fall 2024)

https://docs.oracle.com/en/database/oracle/oracle-database/23/ladbi/setting-the-disk-io-scheduler-on-linux.html
https://docs.vertica.com/23.3.x/en/setup/set-up-on-premises/before-you-install/manually-configured-os-settings/io-scheduling/
https://dev.mysql.com/doc/refman/8.0/en/innodb-linux-native-aio.html

DISK I/O SCHEDULING

The DBMS maintain internal queue(s) to track page
read/write requests from the entire system.

Compute priorities based on several factors:
— Sequential vs. Random I/O

— Critical Path Task vs. Background Task

— Table vs. Index vs. Log vs. Ephemeral Data

— Transaction Information
— User-based SLAs

The OS doesn't know these things and is going to
get into the way...

£CMU-DB

15-445/645 (Fall 2024)

OS PAGE CACHE

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own
filesystem cache (aka page cache,

buffer cache).

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

£CMU-DB

15-445/645 (Fall 2024)

DBMS

User-space

Kernel-space

Filesystem

OS Page Cache

https://linux.die.net/man/2/open

OS PAGE CACHE

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own
filesystem cache (aka page cache,

buffer cache).

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

£CMU-DB

15-445/645 (Fall 2024)

User-sp

ace

read(...

)

Kernel-

space

OS Page Cache

T
E—
]

https://linux.die.net/man/2/open

OS PAGE CACHE

Most disk operations go through the

OS API. Unless the DBMS tells it not
to, the OS maintains its own Um_gpm

filesystem cache (aka page cache, Kernel-space

buffer cache).

Filesystem

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

OS Page Cache

£CMU-DB

15-445/645 (Fall 2024)

https://linux.die.net/man/2/open

OS PAGE CACHE

Most disk operations go through the
OS API. Unless the DBMS tells it not

to, the OS maintains its own .
ser-sp

ace read(...)

filesystem cache (aka page cache,

buffer cache).

Kernel-

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

£CMU-DB

15-445/645 (Fall 2024)

space

-
|05 Page Cache

OS Page Cache

https://linux.die.net/man/2/open

Krishnakumar R*3rd+

3 Group Engineering Manager, PostgresqL engine @ Micros...
OS PA

DirectI0 in PostgresqQL ang double buffering

' h the
isk operations go throug.
1(\)/ISO ilglll.SUn{)ess the DBMS tells it nof
to, the OS maintains its own)
ﬁlésystem cache (aka page cache,

buffer cache).

to the table (refresh note: PostgreSQL uses fi|

in the kernel, Note that pg has 8K block size
this case).

es for jts data Storage) is cached
while Kerne| has 4K pages (x64 in

On the right You can see developer debug setting which js present from pg1g
onwards for enabling direct jo is switched on for data’. This results in the
Pages no longer cached in kerne| Page cache ang only cached in buffer poo)

of pg. As resultant you can see from the output from fincore Not pages are
cached in Page cache,

#postgres #PostgreSQL #Kernel #PageCache #Linux #LinuxKerne|

irect I/O
t DBMSs use direct |
?(/)[OI;IRECT) to bypass the OS's cach

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

$2CMU-DB

15-445/645 (Fall 2024)

https://linux.die.net/man/2/open

FSYNC PROBLEMS

[f the DBMS calls fwrite, what happens?
[f the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?

£2CMU-DB
15-445/645 (Fall 2024)

FSYNC PROBLEMS

[f the DBMS calls fwrite, what happens?
[f the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?

— Linux marks the dirty pages as clean.
— If the DBMS calls fsync again, then Linux tells you that
the flush was successful. Since the DBMS thought the OS

was its friend, it assumed the write was successful...

£CMU-DB

15-445/645 (Fall 2024)

FSYNC PROBLEMS

[f the DBMS calls fwrite, what happens?
[f the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?
*al — Linux marks the dirty pages as clean.
Q » — If the DBMS calls fsync again, then Linux tells you that

* " the flush was successful. Since the DBMS thought the OS
Don t was its friend, it assumed the write was successful...
Do This!

$ZCMU-DB

15-445/645 (Fall 2024)

\ i

oo/

Don't
Do This!

$ZCMU-DB

15-445/645 (Fall 2024)

I

F

If the DBMS c4

If the DBMS cf

If fsync fails (

— Linux marks 1

— If the DBMS
the flush was
was its friend

navigation

| tools S
= What links here

search

= Main Page

= Random page

= Recent changes
= Help

= Related changes
= Special pages

= Printable version
= Permanent link
= Page information

Search PostgreSQL wi :

Go | | Search

|

log i

Page || discussion view source

Fsync Errors

This article covers the current status, history,
discussed on the PostgresSQL mailing list and

history

and OS and 0S version differences relating to the circa 2018 fsync() reliability issue
elsewhere. It has sometimes been referred to as "fsyncgate 2018".

| Contents [hide] |

“ 1 Current status “

| 2 Articles and news |

| 3 Research notes and 0S differences “

3.1 Open source kernels |

| 3.2 Closed source kernels
3.3 Special cases

3.4 History and notes

. - —

Current status
As of this PostgreSQL 12 commitcd, PostgreSQL will now PANIC on fsync() failure. It was backpatched to PostgresqQL 11, 10, 9.6, 9.9
and 9.4. Thanks to Thomas Munro, Andres Freund, Robert Haas, and Craig Ringer.

Linux kernel 4.13 improved fsync() error handling and the man page for fsync() is somewhat improved & as well. See:

= Kernelnewbies for 4.13&
= Particularly significant 4.13 commits include;
= "fs: new infrastructure for writeback error handling and reporting"cf
= "ext4: use errseq_t based error handling for reporting data writeback errors" g
= "Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors" @&
= "mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error" &
Many thanks to Jeff Layton for work done in this area.
Similar changes were made in InnoDB/MySQL &, WiredTiger/MongoDB®& and no doubt other software as a result of the PR around
this.
A proposed follow-up change to PostgreSQL was discussed in the thread Refactoring the checkpointer's fsync request queuer].

The patch that was committed @ did not incorporate the file-descriptor passing changes proposed. There is still discussion open of
some additional safeguards that may use file system error counters and/or filesystem-wide flushing.

Articles and news

= The "fsyncgate 2018" mailing list thread &
= LWN.net article "PostgreSQL's fsync() surprise"g&f
= LWN.net article "Improved block-layer error handling" &

117

BUFFER POOL OPTIMIZATIONS

Multiple Buffer Pools
Pre-Fetching

Scan Sharing

Bufter Pool Bypass

£2CMU-DB
15-445/645 (Fall 2024)

118

MULTIPLE BUFFER POOLS

The DBMS does not always have a single buffer “MysaL.

pool for the entire system.
— Multiple buffer pool instances

— Per-database buffer pool ORACLE
— Per-page type buffer pool

S SYBASE

Partitioning memory across multiple pools helps

/ . , o Qo m
reduce latch contention and improve locality. & SQLServer
— Avoids contention on LRU tracking meta-data. Inform i3

$ZCMU-DB

15-445/645 (Fall 2024)

119

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids
and then maintain a mapping from objects
to specific buffer pools.

Buf ffer Pool #1

Buf fer Pool #2

£CMU-DB

15-445/645 (Fall 2024)

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids
and then maintain a mapping from objects
to specific buffer pools.

Buf ffer Pool #1

Q1

GET RECORD #123

Buf fer Pool #2

120

£CMU-DB

15-445/645 (Fall 2024)

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids
and then maintain a mapping from objects
to specific buffer pools.

Buf ffer Pool #1

Q1

GET RECORD

#123

<ObjectId, Pageld, SlotNum>

Buf fer Pool #2

121

£CMU-DB

15-445/645 (Fall 2024)

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids
and then maintain a mapping from objects
to specific buffer pools.

Buf ffer Pool #1

01 [GET RECORD

#123

A

ObjectId| PageId, SlotNum>

Buf fer Pool #2

122

£CMU-DB

15-445/645 (Fall 2024)

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids
and then maintain a mapping from objects
to specific buffer pools.

Buf fer Pool #1

01 [GET RECORD

#123

A

ObjectId| PageId, SlotNum>

Buf fer Pool #2

123

£CMU-DB

15-445/645 (Fall 2024)

MULTIPLE BUFFER POOLS

Approach #1: Object Id

124

— Embed an object identifier in record ids Q1 [GET RECORD |#123

and then maintain a mapping from objects
to specific buffer pools.

Approach #2: Hashing
— Hash the page id to select which Buffer Pool #1

Buf fer Pool #2

buffer pool tO access.

£CMU-DB

15-445/645 (Fall 2024)

MULTIPLE BUFFER POOLS

Approach #1: Object Id

125

— Embed an object identifier in record ids Q1 [GET RECORD |#123
and then maintain a mapping from objects
to specific buffer pools. HASH(123) % n
Approach #2: Hashing
— Hash the page id to select which Buffer Pool #1 Buffer Pool #2
buffer pool to access. e | [F—

£CMU-DB

15-445/645 (Fall 2024)

126

PRE-FETCHING
The DBMS can also prefetch pages Disk Pages
based on a query plan.
— Examples: Sequential vs. Index Scans page0
Some DBMS prefetch to fill in empty page1
frames upon start-up.
Buffer Pool S
... g3
... -
... ages
E—

15-445/645 (Fall 2024)

127

PRE-FETCHING
The DBMS can also prefetch pages Disk Pages
based on a query plan. *
— Examples: Sequential vs. Index Scans Q1 B
Some DBMS prefetch to fill in empty page1
frames upon start-up.
Buffer Pool S
... g3
... -
... ages
E—

15-445/645 (Fall 2024)

128

PRE-FETCHING
The DBMS can also prefetch pages Disk Pages
based on a query plan. *
— Examples: Sequential vs. Index Scans Q1 page@
Some DBMS prefetch to fill in empty pg':.ge1
frames upon start-up.
Buffer Pool | Page2
pageo I page3
... -
... ages
£CMU-DB

15-445/645 (Fall 2024)

129

PRE-FETCHING
The DBMS can also prefetch pages Disk Pages
based on a query plan.
— Examples: Sequential vs. Index Scans page0
Some DBMS prefetch to fill in empty page1
frames upon start-up.
Buffer Pool page2
page0 page3
page1l SR page4
... ages

£CMU-DB

15-445/645 (Fall 2024)

130

PRE-FETCHING

The DBMS can also prefetch pages Disk Pages
based on a query plan.

— Examples: Sequential vs. Index Scans B
Some DBMS prefetch to fill in empty 01 page1
frames upon start-up.

Buffer Pool S
page0 page3
page1 page4

... ages

£CMU-DB

15-445/645 (Fall 2024)

131

PRE-FETCHING

The DBMS can also prefetch pages Disk Pages
based on a query plan.
— Examples: Sequential vs. Index Scans B
Some DBMS prefetch to fill in empty 01 pagel
frames upon start-up.
Buffer Pool page2
pagel page4

£CMU-DB

15-445/645 (Fall 2024)

The DBMS can also prefetch pages

based on a query plan.

— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty

frames upon start-up.

Buffer Pool

PRE-FETCHING

pagel

£CMU-DB

15-445/645 (Fall 2024)

.
"
.
.
o
*
»
g
g
g
g
D
Page3 [Reeeeeieeees -

»

Ll

L]

L]

L]

L]

Ll

L]
L]

B
B
R
.
Y

Disk Pages

pageo

pagel

page2

page3

page4

pageb

132

133

PRE-FETCHING

The DBMS can also prefetch pages Disk Pages
based on a query plan.

— Examples: Sequential vs. Index Scans B
Some DBMS prefetch to fill in empty pagel
frames upon start-up.

Buffer Pool Q1 # page2
page3 page3
page1 page4
page2 paged

£CMU-DB

15-445/645 (Fall 2024)

134

PRE-FETCHING

The DBMS can also prefetch pages Disk Pages
based on a query plan.

— Examples: Sequential vs. Index Scans B
Some DBMS prefetch to fill in empty pagel
frames upon start-up.

Buffer Pool page2
page3 page3
page4 page4
page5 paged

£CMU-DB

15-445/645 (Fall 2024)

PRE-FETCHING

Q‘] SELECT * FROM A
WHERE val BETWEEN 100 AND 250

Buffer Pool

£CMU-DB

15-445/645 (Fall 2024)

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

135

PRE-FETCHING

index-page0

— —

index-page1

index-page4

index-page2

index-page3

index-page5||index-pageb

£CMU-DB

15-445/645 (Fall 2024)

Buffer Pool

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

136

index-page0

— —

index-page1

PRE-FETCHING

index-page4

index-page2

index-page3||index-pageb

index-page6

£CMU-DB

15-445/645 (Fall 2024)

100--—--—-- »199 200-------»299 300-------»399

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

137

PRE-FETCHING

index-page0

/\

index-page1

index-page4

index-page2

index-page3

index-page5||index-pageb

£CMU-DB

15-445/645 (Fall 2024)

100--—--—-- »199 200-------»299 300-------»399

Disk Pages

o1

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

138

PRE-FETCHING

index-page0

/\

index-page1

index-page4

index-page2

index-page3

index-page5||index-pageb

£CMU-DB

15-445/645 (Fall 2024)

100--—--—-- »199 200-------»299 300-------»399

Buffer Pool

index-page0

Disk Pages

o1

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

139

index-page0

index-page1

PRE-FETCHING

index-page4

index-page2

index-page3

index-page5

index-page6

[— »99 100-------- »199 200-------»299 300-------»399

£CMU-DB

15-445/645 (Fall 2024)

Buffer Pool

index-page0

index-page1

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

140

141

PRE-FETCHING

ticles e Disk Pages
/\

index-page1 index-page4 index-page0

e Lndex-pagef

» Buffer Pool index-page2

index-page0 index-page3

index-pagef1 index-page4

... —

£CMU-DB

15-445/645 (Fall 2024)

142

PRE-FETCHING

index page Disk Pages
/\
index-page1 index-page4 index-page®
index-page2 Iindex—page3 index—pageSI index-page6 index_ a e1
- »99 100------—- »199 200-------»299 300-------»399 Q1 Pag

» Buffer Pool index-page?2

index-page0
index-page1 index-page4

...

£CMU-DB

15-445/645 (Fall 2024)

143

SCAN SHARING

Allow multiple queries to attach to a single cursor
that scans a table.

— Also called synchronized scans.

— This is different from result caching.

Examples:

— Fully supported in DB2, MSSQL, Teradata, and Postgres.
— Oracle only supports cursor sharing for identical queries.

TERADATA ZSOLServer EEEMEYE ORACLE @ PostgreSQL

£CMU-DB

15-445/645 (Fall 2024)

144

SCAN SHARING

Allow multiple queries to attach to a single cursor
that scans a table.

— Also called synchronized scans.

— This is different from result caching.

Examples:

— Fully supported in DB2, MSSQL, Teradata, and Postgres.
— Oracle only supports cursor sharing for identical queries.

TERADATA ZSOLServer EEEMEYE ORACLE @ PostgreSQL

$ZCMU-DB

15-445/645 (Fall 2024)

[

SCAN SHARING

Allow multiple queries to attach to a single cursor

that scans a table.
— Also called synchronized scans.
— This is different from result caching.

))| g spaces, case, and comments. For e
following statements cannot use the same shared SQL area: KamplegIhG

SELECT * FROM employees;

SELECT * FROM Employees;

[C
SELECT * Sl

FROM employees;

TeER/
& CMU-DB

15-445/645 (Fall 2024)

- o ORACLE

eSQL

145

146

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages

page@

pagel

Buffer Pool page2

page3

page4

pageb

£CMU-DB

15-445/645 (Fall 2024)

147

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages

Q1 * page®

pagel

Buffer Pool page2

page3

page4

pageb

£CMU-DB

15-445/645 (Fall 2024)

148

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages

Q1 * page®

pagel

Buffer Pool page2
pageo0 page3

page4

pageb

£CMU-DB

15-445/645 (Fall 2024)

149

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages
page@
pagel

Buffer Pool Q1 ‘ page2
page@ page3
pagel page4
page2 pageb

£CMU-DB

15-445/645 (Fall 2024)

150

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages
page@
pagel

Buffer Pool page2
page@ page3
page] page4

page2 paged

£CMU-DB

15-445/645 (Fall 2024)

151

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages
page@
pagel

Buffer Pool page2
page1l page4
page2 pageb

£CMU-DB

15-445/645 (Fall 2024)

152

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages
page@
pagel

Buffer Pool page2
page1l page4
page2 pageb

£CMU-DB

15-445/645 (Fall 2024)

153

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages
Q2 |SELECT AVG(val) FROM A page0
pagel
Buffer Pool page2
page3 page3
page1l page4

page2 paged

£CMU-DB

15-445/645 (Fall 2024)

154

SCAN SHARING

Q1 [SELECT SUM(val) FROM A Disk Pages
Q2 [SELECT AVG(val) FROM A QZ* page0
pagel
Buffer Pool page2
page3 Q1 * page3
pagel page4
page2 pageb

£CMU-DB

15-445/645 (Fall 2024)

155

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages
Q2 |SELECT AVG(val) FROM A page0
pagel
Buffer Pool page2
page3 page3
page1l page4

page2 paged

£CMU-DB

15-445/645 (Fall 2024)

156

SCAN SHARING

Q1 [SELECT SUM(val) FROM A Disk Pages
Q2 |SELECT AVG(val) FROM A page0
pagel
Buffer Pool page2
page3 page3
page4 page4
pageb pageb

£CMU-DB

15-445/645 (Fall 2024)

157

SCAN SHARING

Q1 [SELECT SUM(val) FROM A Disk Pages
Q2 [SELECT AVG(val) FROM A QZ* page0
pagel
Buffer Pool page2
page3 page3
page4 page4
pageb pageb

£CMU-DB

15-445/645 (Fall 2024)

158

SCAN SHARING

Q1 [SELECT SUM(val) FROM A Disk Pages
Q2 |SELECT AVG(val) FROM A page0
pagel
Buffer Pool Q2 ‘ page2
page@ page3
page1l page4
page2 pageb

£CMU-DB

15-445/645 (Fall 2024)

159

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages
page@
pagel

Buffer Pool Q2 ‘ page2
page@ page3
pagel page4
page2 pageb

£CMU-DB

15-445/645 (Fall 2024)

160

SCAN SHARING

Q1 |SELECT SUM(val) FROM A Disk Pages
page@
Q2’|SELECT * FROM A LIMIT 100 pageT
Buffer Pool page2
page@ page3
page1l page4

page2 paged

£CMU-DB

15-445/645 (Fall 2024)

161

BUFFER POOL BYPASS

The sequential scan operator will not store fetched

pages in the buffer pool to avoid overhead.

— Memory is local to running query.

— Works well if operator needs to read a large sequence of
pages that are contiguous on disk.

— Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.

Microsoft®

ORACLE Z$0Lserver INnformix

$ZCMU-DB

15-445/645 (Fall 2024)

https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm

162

CONCLUSION

The DBMS can almost always manage memory
better than the OS.

Leverage the semantics about the query plan to

make better decisions:
— Evictions

— Allocations

— Pre-fetching

£CMU-DB

15-445/645 (Fall 2024)

163

NEXT CLASS: BACK TO STORAGE STRUCTURES

Log-Structured Storage
Index-Organized Storage
Value Representation

Catalogs

£CMU-DB

15-445/645 (Fall 2024)

164

PROJECT #1

You will build the first component of

your storage manager.
— LRU-K Replacement Policy

— Disk Scheduler
— Buffer Pool Manager Instance

We will provide you with the basic
APIs for these components.

BusTub

Due Date:
Sunday Feb 9" @ 11:59pm

£2CMU-DB
15-445/645 (Fall 2024)

165

TASK #1 — LRU-K REPLACEMENT POLICY

Build a data structure that tracks the usage of pages
using the LRU-K policy.

General Hints:
— Your LRUKReplacer needs to check the "pinned" status of

a Page.
— If there are no pages touched since last sweep, then return
the lowest page id.

£CMU-DB

15-445/645 (Fall 2024)

TASK #2 — DISK SCHEDULER

Create a background worker to
read/write pages from disk.

— Single request queue. Database
— Simulates asynchronous IO using (On-Disk)
std: :promise for callbacks. | &
» 3 » page0
\ . § pagel
It's up to you to decide how you want » 2 (q@|
to batch, reorder, and issue read/write | 2 =

requests to the local disk.
Make sure it is thread-safe!

£CMU-DB

15-445/645 (Fall 2024)

167

TASK #3 — BUFFER POOL MANAGER

Use your LRU-K replacer to manage

the allocation of pages.
— Need to maintain internal data Buffer Pool Database
structures to track allocated + free pages. (In-Memory) (On-Disk)
— Implement page guards.
— Use whatever data structure you want mp |L_Pageo
page1l

for the page table.
« page2

A A 4
Disk Scheduler

Make sure you get the order of
operations correct when pinning!

£CMU-DB

15-445/645 (Fall 2024)

168

THINGS TO NOTE

Do not change any file other than the ones that the
spec. says you must hand in. Other changes will not

be graded.
The projects are cumulative.
We will not be providing solutions.

Post any questions on Piazza or come to office
hours, but we will not help you debug.

£CMU-DB

15-445/645 (Fall 2024)

169

CODE QUALITY

We will automatically check whether you are

writing good code.
— Google C++ Style Guide
— Doxygen Javadoc Style

You need to run these targets before you submit
your implementation to Gradescope.

— make format
— make check-clang-tidy-p1

£CMU-DB

15-445/645 (Fall 2024)

https://google.github.io/styleguide/cppguide.html
http://www.doxygen.nl/manual/docblocks.html

170

EXTRA CREDIT

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class will

receive extra credit for this assignment.
— #1: 50% bonus points

— #2-10: 25% bonus points

— #11-20: 10% bonus points

Student with the most bonus points at the end of
the semester will receive a BusTub schwag!

£CMU-DB

15-445/645 (Fall 2024)

171

PLAGIARISM WARNING ’@’

The homework and projects must be your own
original work. They are not group assignments.

You may not copy source code from other people or
the web.

Plagiarism is not tolerated. You will get lit up.
— Please ask me if you are unsure.

See CMU's Policy on Academic Integrity for
additional information.

$ZCMU-DB

15-445/645 (Fall 2024)

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

