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PREVIOUSLY

We presented a disk-oriented architecture where
the DBMS assumes that the primary storage
location of the database is on non-volatile disk.

We then discussed a page-oriented storage scheme
for organizing tuples across heap files.




SLOTTED PAGES

The most common layout scheme is Slot f}rray
called slotted pages. :

1 2 3 4 5 6 7

Header

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:

— The # of used slots

Tuple #4 | Tuple #3

— The offset of the starting location of the Tuple #2 | Tuple #1
last slot used. \ )
I
Fixed- and Var-length
Tuple Data
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SLOTTED PAGES

The most common layout scheme is
called slotted pages.
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Slot f}rray

1 2 3 4 5 6 7

Header

>

Tuple #4 | Tuple #3

Tuple #2 Tuple #1

|
Fixed- and Var-length
Tuple Data
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The most common layout scheme is
called slotted pages.
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SLOTTED PAGES

The most common layout scheme is
called slotted pages.
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Slot f}rray

Header

1 2 3 4 5 6 7

\ 4

Tuple #4

Tuple #2

Tuple #1

|
Fixed- and Var-length
Tuple Data




RECORD IDS

The DBMS assigns each logical tuple a

unique record identifier that resigmEiol

represents its physical location in the S (RIS,

database. 7

— File Id, Page Id, Slot # -

— Most DBMSs do not store ids in tuple. SQthC

— SQLite uses ROWID as the true primary ROWID (8-bytes)

key and stores them as a hidden attribute. Microsoft:
#SQL Server

Applications should never rely on PRI BIEESE [ e,

these IDs to mean anything. ORACLE
ROWID (10-bytes)
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https://www.sqlite.org/rowidtable.html

TUPLE-ORIENTED STORAGE

Insert a new tuple:
— Check page directory to find a page with a free slot.

— Retrieve the page from disk (if not in memory).
— Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
— Check page directory to find location of page.
— Retrieve the page from disk (if not in memory).
— Find offset in page using slot array.
— If new data fits, overwrite existing data.
Otherwise, mark existing tuple as deleted and insert new
version in a different page.
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TUPLE-ORIENTED STORAGE

Problem #1: Fragmentation
— Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk 1/0
— DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O

— Worse case scenario when updating multiple tuples is that
each tuple is on a separate page.

What if the DBMS cannot overwrite data in

pages and could only create new pages?
— Examples: Some object stores, HDFS, Google Colossus
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https://en.wikipedia.org/wiki/Apache_Hadoop
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

TODAY'S AGENDA

Log-Structured Storage
Index-Organized Storage
Data Representation
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LOG-STRUCTURED STORAGE

Instead of storing tuples in pages and updating the
in-place, the DBMS maintains a log that records
changes to tuples.

— Each log entry represents a tuple PUT/DELETE operation.

— Originally proposed as log-structure merge trees (LSM
Trees) in 1996.

The DBMS applies changes to an in-memory data
structure (MemTable) and then writes out the
changes sequentially to disk (SSTable).
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https://en.wikipedia.org/wiki/Log-structured_merge-tree

LOG-STRUCTURED STORAGE

MemTable
(1]

[V] [V]
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LOG-STRUCTURED STORAGE
PUT (key101,a;) » MemTable

Disk
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LOG-STRUCTURED STORAGE
PUT (key101,a;) » MemTable

Disk
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LOG-STRUCTURED STORAGE
PUT (key102,b;) » MemTable

Disk
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LOG-STRUCTURED STORAGE
PUT (key101,a,) » MemTable

Disk
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LOG-STRUCTURED STORAGE
PUT (key101,a,) » MemTable

Disk
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LOG-STRUCTURED STORAGE

PUT (key103,c;) » MemT able
()

Disk
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LOG-STRUCTURED STORAGE
MemTable SSTable

L[ PUT (key101,a,)

[v] [v] » PUT (key102,b1)
|
)

PUT (key103,c;)

Disk
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LOG-STRUCTURED STORAGE
MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)

PUT (key103,c;)

Disk

£2CMU-DB
15-445/645 (Fall 2024)



LOG-STRUCTURED STORAGE
MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c;)

Memory

YSr1g<moT7 £3)]

Disk
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LOG-STRUCTURED STORAGE
MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)
PUT (key103,c;)

Memory

YSr1g<moT7 £3)]

Level #0 | sstable

Disk
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LOG-STRUCTURED STORAGE
MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)

PUT (key103,c;)

YSr1g<moT7 £3)]

Memory

Level #0 | sstable || ssTable

Disk

$ZCMU-DB

15-445/645 (Fall 2024)



LOG-STRUCTURED STORAGE
MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)

PUT (key103,c;)

YSr1g<moT7 £3)]

Memory

Level #0 | sstable || ssTable

| |

Level #1 SSTable

Disk
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LOG-STRUCTURED STORAGE
MemTable SSTable
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Level #1 SSTable

Disk
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LOG-STRUCTURED STORAGE
MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)

PUT (key103,c;)

YSr1g<moT7 £3)]

Memory

Level #0 | sstable || ssTable

Level #1 SSTable

Disk
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Memory

Disk
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LOG-STRUCTURED STORAGE

MemTable

SSTable

PUT (key101,a,)

» PUT (key102,b,)

PUT (key103,c;)

YSr1g<moT7 £3)]

SSTable SSTable

| |

SSTable

SSTable




LOG-STRUCTURED STORAGE

MemTable

SSTable

Memory

PUT (key101,a,)

PUT (key102,b,)

PUT (key103,c;)

YSr1g<moT7 £3)]

Disk

Level #2
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LOG-STRUCTURED STORAGE
MemTable SSTable

PUT (key101,a,)

» PUT (key102,b,)

PUT (key103,c;)

YSr1g<moT7 £3)]

Memory

Disk e

Level #2 SSTable
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LOG-STRUCTURED STORAGE
MemTable

Disk

Level #2 SSTable
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LOG-STRUCTURED STORAGE

MemTable
(1]

Disk

Level #2 SSTable
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LOG-STRUCTURED STORAGE
GET (key101)» MemT able

(1)
[ \ 4 ] [ A\ 4 ]
|
[ A 4 ] [ A 4 ] [ A 4 ]

Disk

Level #2 SSTable
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LOG-STRUCTURED STORAGE
GET (key101)» MemT able

‘ (1)

SummaryTable

* Min/Max Key ( T ] | T )
Per SSTable ]

* Key Filter 4 \ 4 \ 4
Per Level SERER R EE

Disk

Level #2 SSTable
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LOG-STRUCTURED STORAGE
GET (key101)» MemT able

‘ (1)

SummaryTable

* Min/Max Key ( T
Per SSTable J

* Key Filter v
Per Level LLJ

Disk |

> Level #2 SSTable
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LOG-STRUCTURED STORAGE

Key-value storage that appends log [l SST able
records on disk to represent changes

to tuples (PUT, DELETE).

— Each log record must contain the tuple's
unique identifier.

— Put records contain the tuple contents.

— Deletes marks the tuple as deleted.

DEL (key100)

PUT (key101,a;)

PUT (key102,b,)

x
<
S
)
=
=

PUT (key103,c,)

As the application makes changes to
the database, the DBMS appends log
records to the end of the file without
checking previous log records.
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LOG-STRUCTURED COMPACTION

Periodically compact SST Ables to reduce wasted

space and speed up reads.
— Only keep the "latest" values for each key using a sort-
merge algorithm.

[ SSTable [ SSTable
DEL (key100) PUT (key101,a,)
PUT (key101,a;) PUT (key102,b,)
PUT (key102,b,) + DEL (key103)
PUT (key1@3,c;) PUT (key104,d,)

Newest—Oldest
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LOG-STRUCTURED COMPACTION

Periodically compact SST Ables to reduce wasted

space and speed up reads.
— Only keep the "latest" values for each key using a sort-
merge algorithm.

@ SSTable @ SSTable
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LOG-STRUCTURED COMPACTION

Periodically compact SST Ables to reduce wasted

space and speed up reads.

— Only keep the "latest" values for each key using a sort-
merge algorithm.

[ SSTable [ SSTable [ SSTable
DEL (key100) PUT (key101,a,) DEL (key100)
PUT (key101,a;) PUT (key102,b,) PUT (key101,a;)
PUT (key102,b,) + DEL (key103) PUT (key102,b,)
PUT (key103,c;) PUT (key104,d,) PUT (key103,c;)

PUT (key104,d,)

Newest—Oldest
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DISCUSSION

Log-structured storage managers are more common

today than in previous decades.
— This is partly due to the proliferation of RocksDB.

-::.-:5’-. ROCI(SDB @IevelDB

HBASE O werver: Y fquna @TiDB /Il ClickHouse
§ CockroachDB %7 & cassandra ~ WIREDTIGER l_ NEON

What are some downsides of this approach?

— Write- Amplification.
— Compaction is expensive.
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OBSERVATION

The two table storage approaches we've discussed

so far rely on indexes to find individual tuples.
— Such indexes are necessary because the tables are
inherently unsorted.

But what if the DBMS could keep tuples sorted
automatically using an index?




INDEX-ORGANIZED STORAGE 1

DBMS stores a table's tuples as the value of an index ?SQLM

data structure. N MysaL.
— Still use a page layout that looks like a slotted page.

— Tuples are typically sorted in page based on key. ORACLE

Microsoft®

B+Tree pays maintenance costs upfront, whereas & SQLServer
LSMs pay for it later.
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INDEX-ORGANIZED STORAGE

DBMS stores a table's tuples as the value of an index ?SQLM

data structure. N MysaL.
— Still use a page layout that looks like a slotted page.

— Tuples are typically sorted in page based on key. ORACLE

B+Tree pays maintenance costs upfront, whereas & SQLServer
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& pm
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INDEX-ORGANIZED STORAGE

DBMS stores a table's tuples as the value of an index ?SQLM

data structure. N MysaL.
— Still use a page layout that looks like a slotted page.

— Tuples are typically sorted in page based on key. ORACLE

Microsoft®

B+Tree pays maintenance costs upfront, whereas & SQLServer
LSMs pay for it later.

Inner ”/ \T ,
Nodes [ 1 [ 1

Leaf ................................................................................................... \l\4 .......................
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INDEX-ORGANIZED STORAGE

DBMS stores a table's tuples as the value of an index VSQLM

data structure. NMysaL.
— Still use a page layout that looks like a slotted page.

— Tuples are typically sorted in page based on key. ORACLE

Microsoft®

B+Tree pays maintenance costs upfront, whereas & SQLServer
LSMs pay for it later.

Inner ? ey»> ey ey
Nodes ”/lll _n Header offzet olf(‘f)s’et olf(‘fiet
£ \

Leaf ’_p/ \ ’_/ N
Nodes || | |
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INDEX-ORGANIZED STORAGE

DBMS stores a table's tuples as the value of an index VSQLM

data structure. NMysaL.
— Still use a page layout that looks like a slotted page.

— Tuples are typically sorted in page based on key. ORACLE

Microsoft®

B+Tree pays maintenance costs upfront, whereas & SQLServer
LSMs pay for it later.

Inner \T' ) )
Nodes ”4]_ﬂ/ [ ] Header ofg:t offeet offeet
e \
Leaf ’_p/ \ ’_/ N
Nodes | | | || ‘l' ‘1' ‘1'
o Tuple #3 | Tuple #2 | Tuple #6
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INDEX-ORGANIZED STORAGE

DBMS stores a table's tuples as the value of an index WSQLM

data structure. NMysaL.
— Still use a page layout that looks like a slotted page.

— Tuples are typically sorted in page based on key. ORACLE

Microsoft®

B+Tree pays maintenance costs upfront, whereas & SQLServer
LSMs pay for it later.

Inner ) )
w e [
/ N
| r’/ ||

"

B N\
i r‘/ N
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TUPLE STORAGE

A tuple is essentially a sequence of bytes prefixed
with a header that contains meta-data about it.

[t is the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.




DATA LAYOUT

unsigned charl]

CREATE TABLE foo (
id INT PRIMARY KEY,
value BIGINT

))F
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DATA LAYOUT

unsigned charl]

CREATE TABLE foo ( ,
id INT PRIMARY KEY, header id value
value BIGINT

))F
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DATA LAYOUT

unsigned charl]

CREATE TABLE foo ( ,
id INT PRIMARY KEY, header id value
value BIGINT

))F
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DATA LAYOUT

‘ unsigned charl]
CREATE TABLE foo (

id INT PRIMARY KEY, header id value
value BIGINT

))F
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DATA LAYOUT

‘ unsigned charl]
CREATE TABLE foo (

id INT PRIMARY KEY, header id value
value BIGINT

))F

reinterpret_cast<int32_t*>(address)
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WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (
id INT PRIMARY KEY,
cdate TIMESTAMP,
color CHAR(2),
zipcode INT

);

unsigned charl]
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15-445/645 (Fall 2024)



WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (
id INT PRIMARY KEY,
cdate TIMESTAMP,

color CHAR(2), ~—_—

zipcode INT 64-bitWord 64-bitWord 64-bit Word  64-bit Word

unsigned charl]

);
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WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to

enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (

id INT PRIMARY KEY,
cdate TIMESTAMP,
color CHAR(2),
zipcode INT

);
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unsigned charl]

WW

64-bit Word

64-bit Word

64-bit Word

64-bit Word




WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (

);

id INT PRIMARY KEY,

cdate TIMESTAMP,
color CHAR(2),
zipcode INT
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unsigned charl]

64-bit Word

64-bit Word 64-bit Word  64-bit Word




WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (

EYR4A] id INT PRIMARY KEY, unsigned char[]

ZRas] cdate TIMESTAMP, id cdate
color CHAR(2), ~—_—
zipcode INT 64-bitWord 64-bitWord 64-bit Word  64-bit Word
)
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WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (
k¥2418] id INT PRIMARY KEY,
ZZ 2N cdate TIMESTAMP, id cdate C

zipcode INT 64-bitWord 64-bitWord 64-bit Word  64-bit Word

unsigned charl]

);
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WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo (
Y248 id INT PRIMARY KEY,
EMUY cdate TIMESTAMP, id cdate c zipc

e¥2418 7ipcode INT 64-bit Word  64-bit Word  64-bit Word  64-bit Word
);

unsigned charl]
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WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to
enable the CPU to access it without any unexpected
behavior or additional work.

CREATE TABLE foo ( 3 oned charl T
EYR08] id INT PRIMARY KEY, unsignea cnar

EMUY cdate TIMESTAMP, id cdate c zipc

e¥2418 7ipcode INT 64-bit Word  64-bit Word  64-bit Word  64-bit Word
);
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WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple
is word aligned. Essentially round up the storage
size of types to the next largest word size.

CREATE TABLE foo (
Y221 id INT PRIMARY KEY,

. : 50000000 . %800
(8 cdate TIMESTAMP, 1d 0000000 cdate C | Z1PC o900

e¥2418 7ipcode INT 64-bit Word  64-bit Word  64-bit Word  64-bit Word
);
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WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical

layout to make sure they are aligned.
— May still have to use padding to fill remaining space.

CREATE TABLE foo (
Y248 id INT PRIMARY KEY,
EMUY cdate TIMESTAMP, id cdate c zipc

e¥2418 7ipcode INT 64-bit Word  64-bit Word  64-bit Word  64-bit Word
);
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WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical

layout to make sure they are aligned.
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Y248 id INT PRIMARY KEY,
EMUY cdate TIMESTAMP, id cdate c zipc
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WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical

layout to make sure they are aligned.
— May still have to use padding to fill remaining space.

CREATE TABLE foo (
Y221 id INT PRIMARY KEY,
(8 cdate TIMESTAMP,
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WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical

layout to make sure they are aligned.
— May still have to use padding to fill remaining space.

CREATE TABLE foo (
k¥2418] id INT PRIMARY KEY,
(8 cdate TIMESTAMP, id  zipc cdate C

e¥2418 7ipcode INT 64-bit Word  64-bit Word  64-bit Word  64-bit Word
);
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WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical

layout to make sure they are aligned.
— May still have to use padding to fill remaining space.

CREATE TABLE foo (
Sealga] id INT PRIMARY KEY,

" . . 000000000000
ma] cdate TIMESTAMP, id zipc Sedate s c 85836800050

e¥2418 7ipcode INT 64-bit Word  64-bit Word  64-bit Word  64-bit Word
);
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DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
— IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
— Header with length, followed by data bytes OR pointer to

another page/offset with data.
— Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
— 32/64-bit integer of (micro/milli)-seconds since Unix
epoch (January 1%, 1970).

$ZCMU-DB
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DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
— IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
— Header with length, followed by data bytes OR pointer to

another page/offset with data.
— Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL

— 32/64-bit integer of (micro/milli)-seconds since Unix
epoch (January 1%, 1970).
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VARIABLE PRECISION NUMBERS

[nexact, variable-precision numeric type that uses
the "native" C/C++ types.

Store directly as specified by IEEE-754.
— Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision
numbers because CPU ISA's (Xeon, Arm) have
instructions / registers to support them.

But they do not guarantee exact values...
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VARIABLE PRECISION NUMBERS

Rounding Example Output

#include <stdio.h> x+y = 0.300000
0.3 = 0.300000

int main(int argc, char* argv[]) {

float x = 0.1;
float y = 0.2;
printf("x+y = %f\n", xty);
printf("0.3 = %f\n", 0.3);
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VARIABLE PRECISION NUMBERS

Rounding Example Output
#include <stdio.h> X+y = 0.300000
im#include <stdio.h> bo8 = W, ety
) .. x+ty = 0.30000001192092895508
int main(int argc, charx argv[]) { 0.3 = 0.29999999999999998890
float x = 0.1;
float y = 0.2;
) printf("x+ty = %.20f\n", xty);
printf("0.3 = %.20f\n", 0.3);
)
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FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors are

unacceptable.
— Example: NUMERIC, DECIMAL

Many different implementations.

— Example: Store in an exact, variable-length binary
representation with additional meta-data.

— Can be less expensive if the DBMS does not provide
arbitrary precision (e.g., decimal point can be in a different
position per value).




POSTGRES: NUMERIC

typedef unsigned char NumericDigit;
typedef struct {

int ndigits;

int weight;

int scale;

int sign;

NumericDigit *digits;

} numeric;
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POSTGRES: NUMERIC

# of Digits

Weight of 1%t Digit
Scale Factor
Positive/Negative/NaN
Digit Storage
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typedef unsigned char NumericDigit;
typedef struct {

\int ndigits;

‘\int weight;
/int scale;
int sign;

/NumericDigit xdigits;

} numeric;




POSTGRES: NUMERIC

# of Digits

Weight of 1%t Digit
Scale Factor
Positive/Negative/NaN
Digit Storage
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nedef unsigned char NumericDigit:

typedef struct {

int ndigits;

/int sqgple;
int sign;

/NumericDigit xdigits;

} numeric;




#

Weight o
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Positive/Nega
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* Full version of add functionality on variable level (handling signs).
* result might point to one of the operands too without danger.
*

PGTYPESnumeric add (numeric *varl, numeric *var2, numeric *result)
{

/1“
* Decide on the signs of the two variables what to do
*

%f (varl->sign == NUMERIC POS)
1f (var2-s>sign == NUMERIC POS)
{

*

* Both are positive result = +(ABS(var1) + ABS(var2))
*

if (add abs(vari, var2, result) 1= 0)
return -1;
result->sign = NUMERIC POS;

else

/7"
* varl is positive, var2 is negative Must compare absolute values
*/

Ew;tch (cmp,abs(varl, var2))

* ABS(varl) == ABS(var2)

* result = ZERo

L) Seccommmnd

L
zero var(result);

result-srscale = Max(var1->rsca1e, var2->rsca1e);
result->dscale = Max(var1->dscale, var2->dscale);
break;

* ABS(varl) = ABS(var2)
* result = +(ABS(var1) - ABS(var2))
*

*
if (sub,abs(varl, var2, result) 1= g)
return -1;
result->sign = NUMERIC PoOs;
break;

* ABS(varl) < ABS(var2)
* result = -(ABS(var2) - ABS(varl))
*

umericDigit:
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NULL DATA TYPES

Choice #1: Null Column Bitmap Header

— Store a bitmap in a centralized header that specifies what
attributes are null.
— This is the most common approach in row-stores.

Choice #2: Special Values

— Designate a placeholder value to represent NULL for a data
type (e.g., INT32_MIN). More common in column-stores.

Choice #3: Per Attribute Null Flag

— Store a flag that marks that a value is null.
— Must use more space than just a single bit because this
messes up with word alignment.




NULL DATA TYPES

Choice #1: Null Column Bitmap Header

— Store a bitmap in a centralized header that specifies what
attributes are null.

— This is the most common approach in row-stores.

Choice #2: Special Values

— Designate a placeholder value to represent NULL for a data
type (e.g., INT32_MIN). More common in column-stores.
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NULL DATA TY
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— Store a bitmap in a centralized heade

attributes are null. )
— This is the most common approac

Choice #2: Special Values

— Designate a placeholder value to ref
type (e.g., INT32_MIN). More comn

Choice #3: Per Attribute Null

— Store a flag that marks that a Valug
— Must use more space than just a sin

NULLS!
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ABSTRACT
Nulls are common in real-world data sets, yet recent research on Logical Compact Placeholder
columnar formats and encodings rarely address Nyl representa-
\vons. Popular il formats like Parquet and ORC follow the samm

and Null values, with Nulls being st to.a placcholder value. 1 this
work, we analyze each approach’s pros and cons under different
data distributions, encoding schemes (with different best SIMD ISA),
and implementations. We optimize the bottlenccks in the tradiiope]

Figure 1: Null Representations - Examples of copact and Placeholder
representation schemes for a logical data set,

compression ratio at encoding time. From our micro-benchmarks,  Today’s most widely used columnar file formats (i, Apache Par-
e argu that the optimal Null compression depends on severa] fac- quet [7], Apache ORC [6]) follow the same Compact layout as the
tors: decoding speed, data distribution, and Null ratio, Our analysis seminal C-Store DBMS from the 20005 [13]. For each nullable at-
shows that the Compact layout performs better when Null ratio is tribute in a table, C-Store’s scheme stores non-Null (fixed-width)
high and the Placeholder layout s better when the Nullratio s values in densely packed contiguous columns. To handle Nulls, the
low or the data is serial-correlated. scheme maintains a separate bitmap to record whether the value
ACM Reference Format: for an attribute at a given position is Null or nm: Storing values
Xiny Zeng, Ruijun Meng, Ancrcs Pavl, WesMckinney, Huanchen Zhang. . In this manner enables better compression and improves query
2024, NULLS! Revisiting Null Representation in Modern Columpas Formats, - performance. However, because the Compact layout does not store
I 20th International Workshop on Data Management on Nows Hardware Nulls, a tuple’s logical position in a table may not match its physical
(DaMoN 21), June 10, 2024, Santiago, AA, Chile. ACM, Newy York,NY,USA, position in the column, hampering random access abiliy.
10 pages. https://doi.org/10.1145/3662010 3663452 An alternative approach is to store the Null values fn place. That
15 instead of pruning the Nulls out,this scheme uses a default value
1 INTRODUCTION (e.g., zero, INT_MIN) as placeholder to represent Null for given

e Widely used in real-world applications;a recent survey showey
that ~807% of SQL developers encounter Nulls i their datafuce [34].

Despite the prevalence of Nulls, there has ot been deep in-
Yestigation into how to best handle them in a modern fle forunet
that s designed for analytical workloads processing colum. data.

BLU (321, DuckDB [31], Apache Arrow! [4], and Biyblocks [23]
adopt this Placeholder layout. Figure 1 shovs the difference be-
tween Compact and Placeholder layout.

Many DBMSs use a combination of Parquet and Arrow storage
to represent data on disk and in-memory, respectively [5, 9, 10].

nsed undera Crative Commons Attributon- NonCommercal o
Internatonal 40 gemee. " from Parquet to Arrow, which represents a comman deserialization

Huanchen Zhang i also afflated with Shanghai Qi Zhi Insitate,
ACM ISBN 979-5-4007-0667-7/24/06 The Arrow format does not specify Nulls to L any particular placeholder value, but
e and Rus) fill it as zero ory fully initalized.

messes up with word alignment.




LARGE VALUES

CREATE TABLE foo (
Most DBMSs do not allow a tuple to id INT PRIMARY KEY,

exceed the size of a single page. data INT,
contents TEXT

);

To store values that are larger than a
page, the DBMS uses separate Header | INT[INT|  TEXT

overflow storage pages.

— Postgres: TOAST (>2KB)

— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings
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LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)
— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (

id INT PRIMARY KEY,
data INT,
contents TEXT

);

Header | INT|INT|  TEXT
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LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)
— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (

id INT PRIMARY KEY,
data INT,
contents TEXT

);

Header | INT|INT|  TEXT
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Overflow Page

VARCHAR DATA
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LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)
— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (

id INT PRIMARY KEY,
data INT,
contents TEXT

);

Header | INT | INT |size| location
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Overflow Page

VARCHAR DATA
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LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)
— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (
id INT PRIMARY KEY,
data INT,

contents TEXT

);

Header

INT | INT |size loc%tion
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Overflow Page

VARCHAR DATA
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LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)
— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (
id INT PRIMARY KEY,
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data INT,
contents TEXT
);
Header | INT | INT |size locition
Overflow Page
—> VARCHAR DATA @
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EXTERNAL VALUE STORAGE

Some systems allow you to store a Tuple
large value in an external file. o ) ]

eaaer | a C e
Treated as a BLOB type.

— Oracle: BFILE data type
— Microsoft: FILESTREAM data type

External File

The DBMS cannot manipulate the

contents of an external file.
— No durability protections. Data
— No transaction protections.
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EXTERNAL VALUE STORAGE

Some systems allow you to store a Tuple
large value in an external file. o ) ]
eaaer | a C e
Treated as a BLOB type.
— Oracle: BFILE data type I
— Microsoft: FILESTREAM data type

External File

The DBMS cannot manipulate the

contents of an external file.
— No durability protections. Data
— No transaction protections.
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EXTERNAL VALUE S

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?

Russell Sears’, Catharine van Ingen', Jim Gray'
1: Microsoft Research, 2: University of California ot Berkeley

sears @cs.berkeley.edu, soft.com, gray com
MSR-TR2006-45

Some systems allow you to store a .

1. Introduction
Application designers must decide whether to store Application data objects are getting larger as digital
M Large objects (BLOBS) in a filesystem or in a database. 1oty hecomes ubiquitous.  Furthermore,  the
e l l e x e I I l . Generally, this decision is based on factors suct, S increasing popularity of web serviecs and soiher
I e v a u 1 application simplicity or manageability. Often, system network applications means. that systems that once
managed static archives of “finished” objects now

d  effi Manage frequently modified versions of application
large numbers of small objects, while filesystems are dsta as it is bein

e n ¢ created and updated. Rather than
t e more cfficient for large objects.  Where is the updating these objects, the archive cither stores
aS a ° break-even point? When is accessing a BLOB stored multiple versions of the objects (the V of WebDAV
re a as a file cheaper than accessing a BLOB stored g6 4 stands for “versioning”). or simply does wholocst
database record? replacement (as in SharePoint ~ Team Services

Of course, this depends on  the particular [SharePoint])
] I L E ata t e filesystem, database system, and workload in question. Application designers have the choice of storing
—_— raC e o This study shows that when comparing the NTTS i

Folklore tells us that databases efficiently handle

large objects as files in the filesystem, a5 BLOB,
system and SQL Server 2005 database system on 4 (binary large objects) in a database, o e

t e create,  {read, replace* = delete combination of both. Only folklore i availabls
M . I L EST a a yp workload, BLOBs smaller than 256KB are more regarding the tradeoffs — often the design decision iy
) Mlcro SO t. cfficiently handled by SQL Server, while NTES s baced on which technology the designer knows best.
thore efficient BLOBS larger than IMB. OFf course, Most designers wil tell you that a database is probably
this break-even point will vary among differen; ;

database systems, filesystems, and workloads,

By measuring the performance of a storage server What are the tradeoffs?
workload typical of web applications which use get/put This article characterizes the performance of an
. Protocols such as WebDAV [WebDAV], we found that iy req wrile-intensive web application that deals
e the break-even point depends on many  factons. with relatively large objects. Two versions of fhe
an 1 | I a e powexer, our experimens suggest that storage age, he system are compared; one uses a relational database to
I h e D B C an n O fatio of bytes in deleted or replaced objects to Vs in o targe objects, while the other version stores the

live objects, is dominant. As storage age increases, objects as files in the filesystem.  We measure how

fragmentation tends to increase. The filesysiem e performance changes over time as the storage becomes

study has better fragmentation  control ‘than  the fragmented. The article concludes by describing and

database we used, suggesting the database system quantifying the factors that a designer should consider

e x e ° Wwould benefit from incorporating ideas from filesystem [ picking a storage system, I ajon suggests

I ) e I I 21 I l architecture. - Conversely, filesystem performancs ndly filesystem and database improvemens for large object
be improved by using database techniques to handl, support,

1. . small files § One surprising (to us at least) conclusion of our

tlon S Surprisingly, for thesestudies, when averge o TR storage fragmentation s the main

N O ura 111 y pro o object size is held constant, the distribution of oot determinant of the brealc-even point in e, gade L

sizes did not significantly affect performance, We s Therefore, much of our work and much of this argele

found that, in addition to low percentage free space, a oo storage fragmentation issucs. In essence,
low ratio of free space to average object size loads 13

.
1 1 0 S : 3 = % filesystems seem to have better fragmentation handling
— No transaction protections. B e e

down from about IMB to about 256KB.

$ZCMU-DB

15-445/645 (Fall 2024)



£CMU-DB

15-445/645 (Fall 2024)

SYSTEM CATALOGS

A DBMS stores meta-data about databases in its

internal catalogs.
— Tables, columns, indexes, views

— Users, permissions
— Internal statistics

Almost every DBMS stores the database's catalog

inside itself (i.e., as tables).

— Wrap object abstraction around tuples.
— Specialized code for "bootstrapping” catalog tables.
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SYSTEM CATALOGS

You can query the DBMS’s internal

INFORMATION_SCHEMA catalog to get info about the
database.

— ANSI standard set of read-only views that provide info

about all the tables, views, columns, and procedures in a
database

DBMSs also have non-standard shortcuts to
retrieve this information.




ACCESSING TABLE SCHEMA

List all the tables in the current database:

SELECT * SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_catalog = '<db name>';

\d; Postgres
SHOW TABLES; MySQL
.tables SQLite
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ACCESSING TABLE SCHEMA

List all the tables in the student table:

SELECT = sSQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name = 'student'

\d student; Postgres

DESCRIBE student; MysQL

.schema student SQlLite
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SCHEMA CHANGES

ADD COLUMN:

— NSM: Copy tuples into new region in memory.
— DSM: Just create the new column segment on disk.

DROP COLUMN:

— NSM #1: Copy tuples into new region of memory.
— NSM #2: Mark column as "deprecated", clean up later.
— DSM: Just drop the column and free memory.

CHANGE COLUMN:

— Check whether the conversion is allowed to happen.
Depends on default values.
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INDEXES

CREATE INDEX:

— Scan the entire table and populate the index.

— Have to record changes made by txns that modified the
table while another txn was building the index.

— When the scan completes, lock the table and resolve
changes that were missed after the scan started.

DROP INDEX:

— Just drop the index logically from the catalog.
— [t only becomes "invisible" when the txn that dropped it
commits. All existing txns will still have to update it.

£CMU-DB

15-445/645 (Fall 2024)



100

CONCLUSION

Log-structured storage is an alternative approach to

the tuple-oriented architecture.
— Ideal for write-heavy workloads because it maximizes
sequential disk I/O.

The storage manager is not entirely independent
from the rest of the DBMS.
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NEXT CLASS

Breaking your preconceived notion that a DBMS
stores everything as rows...
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