
Database
Systems

15-445/645 SPRING 2025 PROF. JIGNESH PATEL

Beau%ful
B+Trees

15-445/645 (Spring 2025)

ADMINISTRIVIA

Project #2 out later today; due Sunday March 2nd @ 11:59pm
→ Don’t forget to do a GitHub “pull” before starting

Homework #3 (indices and filters) will be released on
Wednesday February 19th

Mid-term Exam on Wednesday Feb 26th

→ In-class in this room
→ More info next week

2

15-445/645 (Spring 2025)

New Seminar Series: Every Tue @ 4:30pm
3

https://cmu.zoom.us/j/93441451665
(Passcode 261758)

Today’s seminar:
Larry Ellison was Right (kinda)! TypeScript
Stored Procedures for the Modern Age

Speaker: James Cowling, CTO, Convex.

https://cmu.zoom.us/j/93441451665

15-445/645 (Spring 2025)

LAST CLASS

Hash tables are important data structures that are
used all throughout a DBMS.
→ Space Complexity: O(n)

→ Average Time Complexity: O(1)

Static vs. Dynamic Hashing schemes

DBMSs use mostly hash tables for their internal
data structures.

4

15-445/645 (Spring 2025)

INDEXES VS. FILTERS

An index data structure of a subset of a table's
attributes that are organized and/or sorted to the
location of specific tuples using those attributes.
→ Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a record
(likely) exists for a key but not where it is located.
→ Example: Bloom Filter

5

15-445/645 (Spring 2025)

TODAY'S AGENDA

B+Tree Overview
Design Choices
Optimizations

6

15-445/645 (Spring 2025)

7

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class
of balanced tree data structures:
→ B-Tree (1970)
→ B+Tree (1973)
→ B*Tree (1977?)
→ B

link

-Tree (1981)
→ B𝛆-Tree (2003)
→ Bw-Tree (2013)

15-445/645 (Spring 2025)

8

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class
of balanced tree data structures:
→ B-Tree (1970)
→ B+Tree (1973)
→ B*Tree (1977?)
→ B

link

-Tree (1981)
→ B𝛆-Tree (2003)
→ Bw-Tree (2013)

15-445/645 (Spring 2025)

9

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class
of balanced tree data structures:
→ B-Tree (1970)
→ B+Tree (1973)
→ B*Tree (1977?)
→ B

link

-Tree (1981)
→ B𝛆-Tree (2003)
→ Bw-Tree (2013)

15-445/645 (Spring 2025)

10

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class
of balanced tree data structures:
→ B-Tree (1970)
→ B+Tree (1973)
→ B*Tree (1977?)
→ B

link

-Tree (1981)
→ B𝛆-Tree (2003)
→ Bw-Tree (2013)

15-445/645 (Spring 2025)

11

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class
of balanced tree data structures:
→ B-Tree (1970)
→ B+Tree (1973)
→ B*Tree (1977?)
→ B

link

-Tree (1981)
→ B𝛆-Tree (2003)
→ Bw-Tree (2013)

15-445/645 (Spring 2025)

12

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class
of balanced tree data structures:
→ B-Tree (1970)
→ B+Tree (1973)
→ B*Tree (1977?)
→ B

link

-Tree (1981)
→ B𝛆-Tree (2003)
→ Bw-Tree (2013)

15-445/645 (Spring 2025)

B+TREE

A B+Tree is a self-balancing, ordered m-way tree
for searches, sequential access, insertions, and
deletions in O(log

m
 n) where m is the tree fanout.

→ It is perfectly balanced (i.e., every leaf node is at the same
depth in the tree)

→ Every node other than the root is at least half-full
m/2-1 ≤ #keys ≤ m-1

→ Every inner node with k keys has k+1 non-null children.
→ Optimized for reading/writing large data blocks.

Some real-world implementations relax these
properties, but we will ignore that for now…

13

15-445/645 (Spring 2025)

B+TREE EXAMPLE

3510

6

20

10 20 31 38 44

15-445/645 (Spring 2025)

B+TREE EXAMPLE

3510

6

Root Node

Inner / Non-Leaf

Nodes

Leaf Nodes

20

10 20 31 38 44

15-445/645 (Spring 2025)

Index Key(s) Low→High

B+TREE EXAMPLE

3510

6

Root Node

Inner / Non-Leaf

Nodes

Leaf Nodes

20

10 20 31 38 44

15-445/645 (Spring 2025)

Index Key(s) Low→High

B+TREE EXAMPLE

3510

6

Root Node

Inner / Non-Leaf

Nodes

Leaf Nodes

20

<node*>|<key>|<node*>|…|<key>|<node*>

10 20 31 38 44

15-445/645 (Spring 2025)

Index Key(s) Low→High

B+TREE EXAMPLE

3510

6

Root Node

Inner / Non-Leaf

Nodes

Leaf Nodes

20

<node*>|<key>|<node*>|…|<key>|<node*>

<key>|<value>|<key>|<value>

10 20 31 38 44

15-445/645 (Spring 2025)

Index Key(s) Low→High

B+TREE EXAMPLE

3510

6

Root Node

Inner / Non-Leaf

Nodes

Leaf Nodes

<20 ≥20

<10 ≥10 <35 ≥35

20

<node*>|<key>|<node*>|…|<key>|<node*>

<key>|<value>|<key>|<value>

10 20 31 38 44

15-445/645 (Spring 2025)

Index Key(s) Low→High

B+TREE EXAMPLE

3510

6

Root Node

Inner / Non-Leaf

Nodes

Leaf Nodes

Sibling Pointers

<20 ≥20

<10 ≥10 <35 ≥35

20

<node*>|<key>|<node*>|…|<key>|<node*>

<key>|<value>|<key>|<value>

10 20 31 38 44

<node*>|<key>|<value>|…|<key>|<value>|<node*>

15-445/645 (Spring 2025)

Index Key(s) Low→High

B+TREE EXAMPLE

6 Leaf Nodes10 20 31 38 44

15-445/645 (Spring 2025)

NODES

Every B+Tree node is comprised of an array of
key/value pairs.
→ The keys are derived from the index's target attribute(s).
→ The values will differ based on whether the node is

classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.

22

15-445/645 (Spring 2025)

B+Tree Leaf Node

B+TREE LEAF NODES

K1 V1 • • • Kn Vn¤ ¤
Prev Next

23

15-445/645 (Spring 2025)

B+Tree Leaf Node

B+TREE LEAF NODES

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID

24

15-445/645 (Spring 2025)

B+Tree Leaf Node

B+TREE LEAF NODES

Key + Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID

25

15-445/645 (Spring 2025)

B+Tree Leaf Node

B+TREE LEAF NODES

Key + Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

¤ ¤PageID PageID

26

15-445/645 (Spring 2025)

B+Tree Leaf Node

B+TREE LEAF NODES

¤
Prev

¤
Next

#
Level

#
Slots

27

Sorted Key/Value Pairs

K1 K2¤ ¤ K3
K4

¤
¤ K5 ¤ • • •

15-445/645 (Spring 2025)

B+Tree Leaf Node

B+TREE LEAF NODES

Sorted Keys

K1 K2 K3 K4 K5 • • • Kn

¤
Prev

¤
Next

#
Level

#
Slots

Values

¤ ¤ ¤ ¤ ¤ • • • ¤

28

15-445/645 (Spring 2025)

LEAF NODE VALUES

Approach #1: Record IDs

→ A pointer to the location of the tuple to
which the index entry corresponds.

→ Most common implementation.

Approach #2: Tuple Data

→ Index-Organized Storage (Lecture #04)
→ Primary Key Index: Leaf nodes store the

contents of the tuple.
→ Secondary Indexes: Leaf nodes store

tuples' primary key as their values.

11

https://15445.courses.cs.cmu.edu/fall2024/schedule.html

15-445/645 (Spring 2025)

LEAF NODE VALUES

Approach #1: Record IDs

→ A pointer to the location of the tuple to
which the index entry corresponds.

→ Most common implementation.

Approach #2: Tuple Data

→ Index-Organized Storage (Lecture #04)
→ Primary Key Index: Leaf nodes store the

contents of the tuple.
→ Secondary Indexes: Leaf nodes store

tuples' primary key as their values.

11

https://15445.courses.cs.cmu.edu/fall2024/schedule.html

15-445/645 (Spring 2025)

B-TREE VS. B+TREE

The original B-Tree from 1971 stored keys and
values in all nodes in the tree.
→ More space-efficient, since each key only appears once in

the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

31

15-445/645 (Spring 2025)

B+TREE – INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.
If L has enough space, done!
Otherwise, split L keys into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly, but
push up middle key.

Source: Chris Re

32

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

≥4
and
<12

≥12

5 9 10 12 131 3

4 12

Insert 6

33

<4

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

≥12

5 9 10 12 131 3

4 12

Insert 6

34

[4,12)<4

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

≥12

5 9 10 12 131 3

4 12

Insert 6

35

[4,12)<4

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

≥12

5 9 10 12 131 3

4 12

Insert 6

36

[4,12)

Node is full!

<4

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

5 9 10 12 131 3

4 12

Insert 6

37

[4,12)<4

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

5 9 10 12 131 3

4 12

Insert 6

38

[4,12)<4

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

5 6 12 131 3

4 12

Insert 6

9 10

39

[4,12)<4

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

5 6 12 131 3

4 12

Insert 6

9 10

40

[4,12)<4

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

5 6 12 131 3

4 12

Insert 6

9 10

41

[4,12)<4

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

<4

5 6 12 131 3

4 ? 12

Insert 6

9 10

42

[4,12)

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

<4

5 6 12 131 3

4 ? 12

Insert 6

9 10

43

[4,12)

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

<4

5 6 12 131 3

4 ? 12

Insert 6

9 10

44

[4,12)

9

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

<4

5 6 12 131 3

4 ? 12

Insert 6

9 10

45

9

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

<4

5 6 12 131 3

4 ? 12

Insert 6

9 10

46

9
[4,9) [9,12) ≥12

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

12 131 3

4 9 12

Insert 6

9 10

47

Insert 8

5 6

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

12 131 3

4 9 12

Insert 6

9 10

48

Insert 8

5 6

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (1)

12 131 3

4 9 12

Insert 6

9 10

49

Insert 8

5 6 8

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (2)
18

20 21 2313 14 159 115 71 3

5 9 13 19

Note: New Example/Tree.

Insert 17

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (2)
18

20 21 2313 14 159 115 71 3

5 9 13 19

17

Note: New Example/Tree.

Insert 17

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
19

20 21 2313 14 15 179 115 71 3

5 9 13 19

Insert 17
Insert 16

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
19

20 21 2313 14 15 179 115 71 3

5 9 13 19

No space in the node where

the new key “belongs”.

Insert 17
Insert 16

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
19

20 21 2313 14 15 179 115 71 3

5 9 13 19

Split the node!

Copy the middle key.

Push the key up.

Insert 17
Insert 16

15-445/645 (Spring 2025)

New Node!

Shuffle keys from the node

that triggered the split.

B+TREE – INSERT EXAMPLE (3)
20

20 21 2313 14 15 179 115 71 3

5 9 13 19

Insert 17
Insert 16

15-445/645 (Spring 2025)

New Node!

Shuffle keys from the node

that triggered the split.

B+TREE – INSERT EXAMPLE (3)
20

20 21 2313 14 15 179 115 71 3

5 9 13 19

Insert 17
Insert 16

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
21

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

Insert 17
Insert 16

15-445/645 (Spring 2025)

But this is an “orphan” node!

No parent node points to it.

B+TREE – INSERT EXAMPLE (3)
21

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

Insert 17
Insert 16

15-445/645 (Spring 2025)

But this is an “orphan” node!

No parent node points to it.

B+TREE – INSERT EXAMPLE (3)
21

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

16

Insert 17
Insert 16

15-445/645 (Spring 2025)

But this is an “orphan” node!

No parent node points to it.

B+TREE – INSERT EXAMPLE (3)
21

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

16

Want to create a key, pointer

pair like this. But cannot insert it

in the root node, which is full.

Insert 17
Insert 16

15-445/645 (Spring 2025)

But this is an “orphan” node!

No parent node points to it.

B+TREE – INSERT EXAMPLE (3)
21

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

16

Want to create a key, pointer

pair like this. But cannot insert it

in the root node, which is full.

Split the root. Grow the tree!

Insert 17
Insert 16

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
22

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

16
Split the root. Grow the tree!

Insert 17
Insert 16

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
22

20 21 2313 14 159 115 71 3

5 9

13

19

16 17

16
Split the root. Grow the tree!

Insert 17
Insert 16

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
23

20 21 2313 14 159 115 71 3

5 9 16 19

16 17

13

Next, need to split the “old” root, then

point to the split nodes from the new root.

Insert 17
Insert 16

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
24

20 21 2313 14 159 115 71 3

5 9

16 17

13

16 19

Insert 17
Insert 16

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
24

20 21 2313 14 159 115 71 3

5 9

16 17

13

16 19

≥13<13

Insert 17
Insert 16

15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
24

20 21 2313 14 159 115 71 3

5 9

16 17

13

16 19

[9,13)[5,9)<5 [13,16) [16,19) ≥19

≥13<13

Insert 17
Insert 16

15-445/645 (Spring 2025)

B+TREE – DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done!
If L has only m/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

Source: Chris Re

68

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (1)
26

5 9 101 3

4 12

9 10 12

9

6

Delete 6

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (1)
26

5 9 101 3

4 12

9 10 12

9

6

Delete 6

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (1)
26

5 9 101 3

4 12

9 10 12

9

6

Delete 6

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (1)
27

5 9 101 3

4 12

9 12 14

9

Delete 6

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (1)
27

5 9 101 3

4 12

9 12 14

9

Borrow from a “rich” sibling node.

Delete 6

Could borrow from either sibling.

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (1)
27

5 9 101 3

4 12

9 12 14

9

Borrow from a “rich” sibling node.

Delete 6

Could borrow from either sibling.

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (1)
28

5 9 101 3

4 9

12 149

Delete 6

Need to update parent node!

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (1)
28

5 9 101 3

4 9

12 149

≥9

Delete 6

Need to update parent node!

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (1)
28

5 9 101 3

4 9

12 149

≥9

Delete 6

Need to update parent node!

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (1)
28

5 9 101 3

4 9

12 14

12

9

≥12

Delete 6

Need to update parent node!

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (2)
29

21 2317 19 2013 159 115 71 3

5 9 17 21

13

Note: New Example/Tree.

Delete 15

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (2)
29

21 2317 19 2013 159 115 71 3

5 9 17 21

13

Note: New Example/Tree.

Delete 15

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (2)
29

21 2317 19 2013 159 115 71 3

5 9 17 21

13

Note: New Example/Tree.

Delete 15

Borrow from a “rich” sibling node.

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (2)
29

21 2317 19 2013 159 115 71 3

5 9 17 21

13

Note: New Example/Tree.

Delete 15

Borrow from a “rich” sibling node.

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (2)
30

21 2319 2013 179 115 71 3

5 9 17 21

13Delete 15

Need to update parent node!

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (2)
30

21 2319 2013 179 115 71 3

5 9 17 21

13Delete 15

Need to update parent node!

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (2)
30

21 2319 2013 179 115 71 3

5 9 17 21

13Delete 15

19

Need to update parent node!

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
31

21 2319 2013 179 115 71 3

5 9 19 21

13Delete 15
Delete 19

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
31

21 2319 2013 179 115 71 3

5 9 19 21

13Delete 15
Delete 19

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
31

21 2319 2013 179 115 71 3

5 9 19 21

13

Under-filled!

No “rich” sibling nodes to borrow.

Merge with a sibling

Delete 15
Delete 19

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
31

21 2319 2013 179 115 71 3

5 9 19 21

13

Under-filled!

No “rich” sibling nodes to borrow.

Merge with a sibling

Delete 15
Delete 19

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
31

21 2319 2013 179 115 71 3

5 9 19 21

13

Under-filled!

No “rich” sibling nodes to borrow.

Merge with a sibling

Delete 15
Delete 19

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
32

20 21 2313 179 115 71 3

5 9 19

13

This node is

under-filled!

Pull-down.

Delete 15
Delete 19

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
32

20 21 2313 179 115 71 3

5 9 19

13

This node is

under-filled!

Pull-down.

Delete 15
Delete 19

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
32

20 21 2313 179 115 71 3

5 9 1913
This node is

under-filled!

Pull-down.

Delete 15
Delete 19

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
32

20 21 2313 179 115 71 3

5 9 1913
This node is

under-filled!

Pull-down.

Delete 15
Delete 19

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
33

20 21 2313 179 115 71 3

5 9 13 19

The tree has shrunk in height.

Delete 15
Delete 19

15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
33

20 21 2313 179 115 71 3

5 9 13 19

The tree has shrunk in height.

[9,13)[5,9)<5 ≥19[13,19)

Delete 15
Delete 19

15-445/645 (Spring 2025)

COMPOSITE INDEX

A composite index is when the key is comprised
of two or more attributes.
→ Example: Index on <a,b,c>

DBMS can use B+Tree index if the query provides a
“prefix” of composite key.
→ Supported: (a=1 AND b=2 AND c=3)
→ Supported: (a=1 AND b=2)
→ Rarely Supported: (b=2), (c=3)

97

CREATE INDEX my_idx ON xxx (a, b DESC, c NULLS FIRST);

15-445/645 (Spring 2025)

COMPOSITE INDEX

A composite index is when the key is comprised
of two or more attributes.
→ Example: Index on <a,b,c>

DBMS can use B+Tree index if the query provides a
“prefix” of composite key.
→ Supported: (a=1 AND b=2 AND c=3)
→ Supported: (a=1 AND b=2)
→ Rarely Supported: (b=2), (c=3)

98

CREATE INDEX my_idx ON xxx (a, b DESC, c NULLS FIRST);

Sort Order

15-445/645 (Spring 2025)

COMPOSITE INDEX

A composite index is when the key is comprised
of two or more attributes.
→ Example: Index on <a,b,c>

DBMS can use B+Tree index if the query provides a
“prefix” of composite key.
→ Supported: (a=1 AND b=2 AND c=3)
→ Supported: (a=1 AND b=2)
→ Rarely Supported: (b=2), (c=3)

99

CREATE INDEX my_idx ON xxx (a, b DESC, c NULLS FIRST);

Sort Order

Null Handling

15-445/645 (Spring 2025)

SELECTION CONDITIONS

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

100

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

101

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

1 ≤ 1
2 ≤ 3

102

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

1 ≤ 1
2 ≤ 3

103

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

104

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*)

105

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*)
1 ≤ 1

106

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*)
1 ≤ 1

107

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*)
1 ≤ 1

(1,*) ≤ (2,*)

108

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*)

109

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

Find Key=(*,1)
1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

Find Key=(1,*)

110

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

Find Key=(*,1)
1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

*,1 < *,3
Find Key=(1,*)

111

15-445/645 (Spring 2025)

SELECTION CONDITIONS

Find Key=(1,2)

Find Key=(*,1)
1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

*,1 < *,3
Find Key=(1,*)

(1,1) ∅(1,1)
(2,1)

(4,1)

112

15-445/645 (Spring 2025)

B+TREE – DUPLICATE KEYS

Approach #1: Append Record ID

→ Add the tuple's unique Record ID as part of the key to
ensure that all keys are unique.

→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes

→ Allow leaf nodes to spill into overflow nodes that contain
the duplicate keys.

→ This is more complex to maintain and modify.

113

15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

114

15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

115

<Key,RecordId>

15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

116

<Key,RecordId>

15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

117

<Key,RecordId>

15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

118

<Key,RecordId>

15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5 <9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

7 8

119

<Key,RecordId>

15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

7 8

7 9

<7

120

<Key,RecordId>

15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

7 8

7 9

6

≥9<9<7

121

<Key,RecordId>

15-445/645 (Spring 2025)

B+TREE – OVERFLOW LEAF NODES

<5 <7 ≥9

6 7 8 9 131 3

5 9

Insert 6

122

15-445/645 (Spring 2025)

B+TREE – OVERFLOW LEAF NODES

<5 <7 ≥9

6 7 8 9 131 3

5 9

Insert 6

123

15-445/645 (Spring 2025)

B+TREE – OVERFLOW LEAF NODES

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

124

15-445/645 (Spring 2025)

B+TREE – OVERFLOW LEAF NODES

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6
Insert 7

7

125

15-445/645 (Spring 2025)

B+TREE – OVERFLOW LEAF NODES

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6
Insert 7

7

Insert 6

6

126

15-445/645 (Spring 2025)

CLUSTERED INDEXES

The table is stored in the sort order specified by the
primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table does not contain a primary key, the DBMS will

automatically make a hidden primary key.

Other DBMSs cannot use them at all.

127

15-445/645 (Spring 2025)

CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than
sorting data for each query.

Table Pages

101 102 103 104

128

15-445/645 (Spring 2025)

CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than
sorting data for each query.

Table Pages

101 102 103 104

129

15-445/645 (Spring 2025)

CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than
sorting data for each query.

Table Pages

101 102 103 104

Scan Direction

130

15-445/645 (Spring 2025)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.
The DBMS retrieves each page once.

101 102 103 104

131

15-445/645 (Spring 2025)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.
The DBMS retrieves each page once.

101 102 103 104

Scan Direction

132

15-445/645 (Spring 2025)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.
The DBMS retrieves each page once.

101 102 103 104

Scan Direction

133

15-445/645 (Spring 2025)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.
The DBMS retrieves each page once.

101 102 103 104
Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Scan Direction

134

15-445/645 (Spring 2025)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.
The DBMS retrieves each page once.

101 102 103 104
Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Scan Direction

135

15-445/645 (Spring 2025)

INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.
The DBMS retrieves each page once.

101 102 103 104
Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Page 102

Page 101

Page 102
Page 102

Page 103

Page 104

Page 103

Page 104

Page 101

Page 102

Page 103

Page 104

Scan Direction

136

15-445/645 (Spring 2025)

B+TREE DESIGN CHOICES

Node Size
Merge Threshold
Variable-Length Keys
Intra-Node Search

43

15-445/645 (Spring 2025)

B+TREE DESIGN CHOICES

Node Size
Merge Threshold
Variable-Length Keys
Intra-Node Search

43

15-445/645 (Spring 2025)

NODE SIZE

The slower the storage device, the larger the
optimal node size for a B+Tree.
→ HDD: ~1MB
→ SSD: ~10KB
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals

139

15-445/645 (Spring 2025)

MERGE THRESHOLD

Some DBMSs do not always merge nodes when
they are half full.
→ Average occupancy rate for B+Tree nodes is 69%.

Delaying a merge operation may reduce the amount
of reorganization.
It may also be better to let underfilled nodes exist
and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-
balanced" B+Tree (nbtree).

140

https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree

15-445/645 (Spring 2025)

VARIABLE-LENGTH KEYS

Approach #1: Pointers

→ Store the keys as pointers to the tuple’s attribute.
→ Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes

→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding

→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection

→ Embed an array of pointers that map to the key + value list
within the node.

141

https://en.wikipedia.org/wiki/T-tree

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

Find Key=8
5 6 7 8 9 104

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

Find Key=8
5 6 7 8 9 104

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

Find Key=8
5 6 7 8 9 104

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

Find Key=8
5 6 7 8 9 104

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

Find Key=8
5 6 7 8 9 104

_mm_cmpeq_epi32_mask(a, b)

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

Find Key=8
5 6 7 8 9 104

_mm_cmpeq_epi32_mask(a, b)

8 8 88

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104

_mm_cmpeq_epi32_mask(a, b)

8 8 88

0 0 00

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104

_mm_cmpeq_epi32_mask(a, b)

8 8 88

0 0 00

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104

_mm_cmpeq_epi32_mask(a, b)

8 8 88

0 0 00 0 0 01

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104
Find Key=8

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104
Find Key=8

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104
Find Key=8

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104
Find Key=8

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104

Offset: (8-4)*7/(10-4)=4

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104

Offset: (8-4)*7/(10-4)=4

15-445/645 (Spring 2025)

INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based
on known distribution of keys.

47

5 6 7 8 9 104

Offset: (8-4)*7/(10-4)=4

15-445/645 (Spring 2025)

OPTIMIZATIONS

Prefix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert
Buffered Updates
Many more…

161

15-445/645 (Spring 2025)

PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store
only unique suffix for each key.
→ Many variations.

robbed robbing robot

162

15-445/645 (Spring 2025)

PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

Instead of storing the entire key each
time, extract common prefix and store
only unique suffix for each key.
→ Many variations.

robbed robbing robot

bed bing ot

Prefix: rob

163

15-445/645 (Spring 2025)

DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a "posting list" of
tuples with that key (similar to what
we discussed for hash tables).

50

K1 V1 K1 V2 K1 V3 K2 V4

15-445/645 (Spring 2025)

DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a "posting list" of
tuples with that key (similar to what
we discussed for hash tables).

50

K1 V1 K1 V2 K1 V3 K2 V4

15-445/645 (Spring 2025)

DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a "posting list" of
tuples with that key (similar to what
we discussed for hash tables).

50

K1 V1 K1 V2 K1 V3 K2 V4

K1 V1 V2 V3 K2 V4

15-445/645 (Spring 2025)

SUFFIX TRUNCATION

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

abcdefghijk lmnopqrstuv

… …… …

167

15-445/645 (Spring 2025)

SUFFIX TRUNCATION

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

abcdefghijk lmnopqrstuv

… …… …

168

15-445/645 (Spring 2025)

SUFFIX TRUNCATION

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed
to correctly route probes into the
index.

… …… …

abc lmn

169

15-445/645 (Spring 2025)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

52

15-445/645 (Spring 2025)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

52

6 9

6 71 3

B
u

f
f

e
r

P

o
o

l

1
Header

2
Header

3
Header

15-445/645 (Spring 2025)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

52

6 9

6 71 3

B
u

f
f

e
r

P

o
o

l

1
Header

2
Header

3
Header

Find Key>3

15-445/645 (Spring 2025)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

52

6 9

6 71 3

B
u

f
f

e
r

P

o
o

l

1
Header

2
Header

3
Header

Find Key>3

15-445/645 (Spring 2025)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

52

6 9

6 71 3

Page #2

B
u

f
f

e
r

P

o
o

l

1
Header

2
Header

3
Header

Find Key>3

15-445/645 (Spring 2025)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

52

6 9

6 71 3

Page #2

B
u

f
f

e
r

P

o
o

l

1
Header

2
Header

3
Header

Page #2 → <Page*>

Find Key>3

15-445/645 (Spring 2025)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

52

6 9

6 71 3

Page #2

Page #3

B
u

f
f

e
r

P

o
o

l

1
Header

2
Header

3
Header

Page #2 → <Page*>

Find Key>3

15-445/645 (Spring 2025)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

52

6 9

6 71 3

Page #2

Page #3

B
u

f
f

e
r

P

o
o

l

1
Header

2
Header

3
Header

Page #2 → <Page*>
Page #3 → <Page*>

Find Key>3

15-445/645 (Spring 2025)

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

52

6 9

6 71 3

B
u

f
f

e
r

P

o
o

l

1
Header

2
Header

3
Header

Find Key>3

<Page*>

<Page*>

15-445/645 (Spring 2025)

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

179

15-445/645 (Spring 2025)

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

Keys: 3, 7, 9, 13, 6, 1

180

15-445/645 (Spring 2025)

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

181

15-445/645 (Spring 2025)

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

182

15-445/645 (Spring 2025)

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.

6 9

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

183

15-445/645 (Spring 2025)

OBSERVATION

Modifying a B+tree is expensive when the DBMS
has to split/merge nodes.
→ Worst case is when DBMS reorganizes the entire tree.
→ The worker that causes a split/merge is responsible for

doing the work.

What if there was a way to delay updates and then
apply multiple changes together in a batch?

54

15-445/645 (Spring 2025)

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

55

20

35

6 3810 20

10

https://en.wikipedia.org/wiki/Fractal_tree_index

15-445/645 (Spring 2025)

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

55

20

35

6 3810 20

10

Mod Log

https://en.wikipedia.org/wiki/Fractal_tree_index

15-445/645 (Spring 2025)

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

55

20

35

6 3810 20

10

Insert 7

https://en.wikipedia.org/wiki/Fractal_tree_index

15-445/645 (Spring 2025)

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

55

20

35

6 3810 20

10

Insert 7

https://en.wikipedia.org/wiki/Fractal_tree_index

15-445/645 (Spring 2025)

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

55

20

35

6 3810 20

10

Insert 7
Delete 10

https://en.wikipedia.org/wiki/Fractal_tree_index

15-445/645 (Spring 2025)

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

55

20

35

6 3810 20

10

Find 10

https://en.wikipedia.org/wiki/Fractal_tree_index

15-445/645 (Spring 2025)

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

55

20

35

6 3810 20

10

Insert 40

https://en.wikipedia.org/wiki/Fractal_tree_index

15-445/645 (Spring 2025)

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

55

20

35

6 3810 20

10

Insert 40

https://en.wikipedia.org/wiki/Fractal_tree_index

15-445/645 (Spring 2025)

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

55

20

35

6 3810 20

10

Insert 40

https://en.wikipedia.org/wiki/Fractal_tree_index

15-445/645 (Spring 2025)

CONCLUSION

The venerable B+Tree is (almost) always a good
choice for your DBMS.

194

15-445/645 (Spring 2025)

NEXT CLASS

Bloom Filters
Tries / Radix Trees / Patricia Trees
Skip Lists
Inverted Indexes
Vector Indexes

195

