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ADMINISTRIVIA

Project #2 out later today; due Sunday March 2nd @ 11:59pm
→ Don’t forget to do a GitHub “pull” before starting

Homework #3 (indices and filters) will be released on 
Wednesday February 19th

Mid-term Exam on Wednesday Feb 26th

→ In-class in this room
→ More info next week
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New Seminar Series: Every Tue @ 4:30pm
3

https://cmu.zoom.us/j/93441451665
(Passcode 261758)

Today’s seminar: 
Larry Ellison was Right (kinda)! TypeScript 
Stored Procedures for the Modern Age 

Speaker: James Cowling, CTO, Convex.

https://cmu.zoom.us/j/93441451665
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LAST CLASS

Hash tables are important data structures that are 
used all throughout a DBMS.
→ Space Complexity: O(n)

→ Average Time Complexity: O(1)

Static vs. Dynamic Hashing schemes

DBMSs use mostly hash tables for their internal 
data structures.
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INDEXES VS. FILTERS

An index data structure of a subset of a table's 
attributes that are organized and/or sorted to the 
location of specific tuples using those attributes.
→ Example: B+Tree

A filter is a data structure that answers set 
membership queries; it tells you whether a record 
(likely) exists for a key but not where it is located.
→ Example: Bloom Filter
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TODAY'S AGENDA

B+Tree Overview
Design Choices
Optimizations
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7

B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class 
of balanced tree data structures:
→ B-Tree (1970)
→ B+Tree (1973)
→ B*Tree (1977?)
→ B

link

-Tree (1981)
→ B𝛆-Tree (2003)
→ Bw-Tree (2013)
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B+TREE

A B+Tree is a self-balancing, ordered m-way tree 
for searches, sequential access, insertions, and 
deletions in O(log

m
 n) where m is the tree fanout.

→ It is perfectly balanced (i.e., every leaf node is at the same 
depth in the tree)

→ Every node other than the root is at least half-full 
m/2-1 ≤ #keys ≤ m-1

→ Every inner node with k keys has k+1 non-null children.
→ Optimized for reading/writing large data blocks.

Some real-world implementations relax these 
properties, but we will ignore that for now…
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B+TREE EXAMPLE

3510

6

20

10 20 31 38 44
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B+TREE EXAMPLE
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Index Key(s) Low→High
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Index Key(s) Low→High

B+TREE EXAMPLE

3510

6

Root Node

Inner / Non-Leaf 

Nodes

Leaf Nodes

20

<node*>|<key>|<node*>|…|<key>|<node*>

10 20 31 38 44
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Index Key(s) Low→High

B+TREE EXAMPLE

3510

6

Root Node

Inner / Non-Leaf 

Nodes

Leaf Nodes

20

<node*>|<key>|<node*>|…|<key>|<node*>

<key>|<value>|<key>|<value>

10 20 31 38 44
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Index Key(s) Low→High

B+TREE EXAMPLE

3510

6

Root Node

Inner / Non-Leaf 

Nodes

Leaf Nodes

<20 ≥20

<10 ≥10 <35 ≥35

20

<node*>|<key>|<node*>|…|<key>|<node*>

<key>|<value>|<key>|<value>

10 20 31 38 44
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Index Key(s) Low→High

B+TREE EXAMPLE

3510

6

Root Node

Inner / Non-Leaf 

Nodes

Leaf Nodes

Sibling Pointers

<20 ≥20

<10 ≥10 <35 ≥35

20

<node*>|<key>|<node*>|…|<key>|<node*>

<key>|<value>|<key>|<value>

10 20 31 38 44

<node*>|<key>|<value>|…|<key>|<value>|<node*>
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Index Key(s) Low→High

B+TREE EXAMPLE

6 Leaf Nodes10 20 31 38 44
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NODES

Every B+Tree node is comprised of an array of 
key/value pairs.
→ The keys are derived from the index's target attribute(s). 
→ The values will differ based on whether the node is 

classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.
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B+Tree Leaf Node

B+TREE LEAF NODES

K1 V1 • • • Kn Vn¤ ¤
Prev Next
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B+Tree Leaf Node

B+TREE LEAF NODES

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID
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B+Tree Leaf Node

B+TREE LEAF NODES

Key +  Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID PageID
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B+Tree Leaf Node

B+TREE LEAF NODES

Key +  Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

¤ ¤PageID PageID

26



15-445/645 (Spring 2025)

B+Tree Leaf Node

B+TREE LEAF NODES

¤
Prev

¤
Next

#
Level

#
Slots
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Sorted Key/Value Pairs

K1 K2¤ ¤ K3
K4

¤
¤ K5 ¤ • • •
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B+Tree Leaf Node

B+TREE LEAF NODES

Sorted Keys

K1 K2 K3 K4 K5 • • • Kn

¤
Prev

¤
Next

#
Level

#
Slots

Values

¤ ¤ ¤ ¤ ¤ • • • ¤
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LEAF NODE VALUES

Approach #1: Record IDs

→ A pointer to the location of the tuple to 
which the index entry corresponds.

→ Most common implementation.

Approach #2: Tuple Data

→ Index-Organized Storage (Lecture #04)
→ Primary Key Index: Leaf nodes store the 

contents of the tuple.
→ Secondary Indexes: Leaf nodes store 

tuples' primary key as their values.

11

https://15445.courses.cs.cmu.edu/fall2024/schedule.html


15-445/645 (Spring 2025)

LEAF NODE VALUES

Approach #1: Record IDs

→ A pointer to the location of the tuple to 
which the index entry corresponds.

→ Most common implementation.

Approach #2: Tuple Data

→ Index-Organized Storage (Lecture #04)
→ Primary Key Index: Leaf nodes store the 

contents of the tuple.
→ Secondary Indexes: Leaf nodes store 

tuples' primary key as their values.

11

https://15445.courses.cs.cmu.edu/fall2024/schedule.html


15-445/645 (Spring 2025)

B-TREE VS. B+TREE

The original B-Tree from 1971 stored keys and 
values in all nodes in the tree.
→ More space-efficient, since each key only appears once in 

the tree.

A B+Tree only stores values in leaf nodes. Inner 
nodes only guide the search process.
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B+TREE – INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.
If L has enough space, done!
Otherwise, split L keys into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly, but 
push up middle key. 

Source: Chris Re

32

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx
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B+TREE – INSERT EXAMPLE (1)

≥4 
and
<12

≥12

5 9 10 12 131 3

4 12

Insert 6

33
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B+TREE – INSERT EXAMPLE (1)

≥12

5 9 10 12 131 3

4 12

Insert 6

36

[4,12)

Node is full!

<4
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B+TREE – INSERT EXAMPLE (1)
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Insert 6
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B+TREE – INSERT EXAMPLE (1)

5 6 12 131 3

4 12

Insert 6

9 10

39

[4,12)<4
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9 10
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[4,12)<4
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B+TREE – INSERT EXAMPLE (1)

<4

5 6 12 131 3

4 ? 12

Insert 6

9 10

42

[4,12)
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[4,12)
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B+TREE – INSERT EXAMPLE (1)
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B+TREE – INSERT EXAMPLE (1)

<4

5 6 12 131 3

4 ? 12

Insert 6

9 10

46

9
[4,9) [9,12) ≥12
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B+TREE – INSERT EXAMPLE (1)

12 131 3

4 9 12

Insert 6

9 10

47

Insert 8

5 6
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B+TREE – INSERT EXAMPLE (1)

12 131 3

4 9 12

Insert 6

9 10

48

Insert 8

5 6
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B+TREE – INSERT EXAMPLE (1)

12 131 3

4 9 12

Insert 6

9 10

49

Insert 8

5 6 8
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B+TREE – INSERT EXAMPLE (2)
18

20 21 2313 14 159 115 71 3

5 9 13 19

Note: New Example/Tree.

Insert 17
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B+TREE – INSERT EXAMPLE (2)
18

20 21 2313 14 159 115 71 3

5 9 13 19

17

Note: New Example/Tree.

Insert 17
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B+TREE – INSERT EXAMPLE (3)
19

20 21 2313 14 15 179 115 71 3

5 9 13 19

Insert 17
Insert 16



15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
19

20 21 2313 14 15 179 115 71 3

5 9 13 19

No space in the node where 

the new key “belongs”.

Insert 17
Insert 16
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B+TREE – INSERT EXAMPLE (3)
19

20 21 2313 14 15 179 115 71 3

5 9 13 19

Split the node!

Copy the middle key.

Push the key up.

Insert 17
Insert 16
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New Node!

Shuffle keys from the node 

that triggered the split. 

B+TREE – INSERT EXAMPLE (3)
20

20 21 2313 14 15 179 115 71 3

5 9 13 19

Insert 17
Insert 16
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B+TREE – INSERT EXAMPLE (3)
21

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

Insert 17
Insert 16
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But this is an “orphan” node! 

No parent node points to it.

B+TREE – INSERT EXAMPLE (3)
21

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

Insert 17
Insert 16
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But this is an “orphan” node! 

No parent node points to it.

B+TREE – INSERT EXAMPLE (3)
21

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

16

Want to create a key, pointer 

pair like this. But cannot insert it 

in the root node, which is full.

Insert 17
Insert 16
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5 9 13 19

16 17

16
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pair like this. But cannot insert it 

in the root node, which is full.

Split the root. Grow the tree!
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B+TREE – INSERT EXAMPLE (3)
22

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

16
Split the root. Grow the tree!
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Insert 16
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B+TREE – INSERT EXAMPLE (3)
22

20 21 2313 14 159 115 71 3

5 9

13

19

16 17

16
Split the root. Grow the tree!

Insert 17
Insert 16
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B+TREE – INSERT EXAMPLE (3)
23

20 21 2313 14 159 115 71 3

5 9 16 19

16 17

13

Next, need to split the “old” root, then 

point to the split nodes from the new root.

Insert 17
Insert 16
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B+TREE – INSERT EXAMPLE (3)
24

20 21 2313 14 159 115 71 3

5 9

16 17

13

16 19

Insert 17
Insert 16



15-445/645 (Spring 2025)

B+TREE – INSERT EXAMPLE (3)
24

20 21 2313 14 159 115 71 3

5 9

16 17

13

16 19

≥13<13

Insert 17
Insert 16
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B+TREE – INSERT EXAMPLE (3)
24

20 21 2313 14 159 115 71 3

5 9

16 17

13

16 19

[9,13)[5,9)<5 [13,16) [16,19) ≥19

≥13<13

Insert 17
Insert 16
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B+TREE – DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done! 
If L has only m/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent 

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L 
or sibling) from parent of L.

Source: Chris Re

68

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx
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B+TREE – DELETE EXAMPLE (1)
26

5 9 101 3

4 12

9 10 12

9

6

Delete 6
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B+TREE – DELETE EXAMPLE (1)
27

5 9 101 3

4 12

9 12 14

9

Delete 6
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B+TREE – DELETE EXAMPLE (1)
27

5 9 101 3

4 12

9 12 14

9

Borrow from a “rich” sibling node.

Delete 6

Could borrow from either sibling.
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B+TREE – DELETE EXAMPLE (1)
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5 9 101 3

4 12

9 12 14

9

Borrow from a “rich” sibling node.

Delete 6

Could borrow from either sibling.
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B+TREE – DELETE EXAMPLE (1)
28

5 9 101 3

4 9

12 149

Delete 6

Need to update parent node!
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Need to update parent node!
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B+TREE – DELETE EXAMPLE (1)
28

5 9 101 3

4 9

12 14

12

9

≥12

Delete 6

Need to update parent node!
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B+TREE – DELETE EXAMPLE (2)
29

21 2317 19 2013 159 115 71 3

5 9 17 21

13

Note: New Example/Tree.

Delete 15
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B+TREE – DELETE EXAMPLE (2)
29

21 2317 19 2013 159 115 71 3

5 9 17 21

13

Note: New Example/Tree.

Delete 15

Borrow from a “rich” sibling node.
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B+TREE – DELETE EXAMPLE (2)
29

21 2317 19 2013 159 115 71 3

5 9 17 21

13

Note: New Example/Tree.

Delete 15

Borrow from a “rich” sibling node.
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B+TREE – DELETE EXAMPLE (2)
30

21 2319 2013 179 115 71 3

5 9 17 21

13Delete 15

Need to update parent node!
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B+TREE – DELETE EXAMPLE (2)
30

21 2319 2013 179 115 71 3

5 9 17 21

13Delete 15

19

Need to update parent node!
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B+TREE – DELETE EXAMPLE (3)
31

21 2319 2013 179 115 71 3

5 9 19 21

13Delete 15
Delete 19
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Delete 19



15-445/645 (Spring 2025)

B+TREE – DELETE EXAMPLE (3)
31

21 2319 2013 179 115 71 3

5 9 19 21

13

Under-filled!

No “rich” sibling nodes to borrow.

Merge with a sibling

Delete 15
Delete 19
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5 9 19 21

13
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B+TREE – DELETE EXAMPLE (3)
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B+TREE – DELETE EXAMPLE (3)
32

20 21 2313 179 115 71 3

5 9 19

13

This node is

under-filled!

Pull-down.

Delete 15
Delete 19
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B+TREE – DELETE EXAMPLE (3)
32

20 21 2313 179 115 71 3

5 9 1913
This node is

under-filled!

Pull-down.

Delete 15
Delete 19
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B+TREE – DELETE EXAMPLE (3)
32

20 21 2313 179 115 71 3

5 9 1913
This node is

under-filled!

Pull-down.

Delete 15
Delete 19
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B+TREE – DELETE EXAMPLE (3)
33

20 21 2313 179 115 71 3

5 9 13 19

The tree has shrunk in height.

Delete 15
Delete 19
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B+TREE – DELETE EXAMPLE (3)
33

20 21 2313 179 115 71 3

5 9 13 19

The tree has shrunk in height.

[9,13)[5,9)<5 ≥19[13,19)

Delete 15
Delete 19
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COMPOSITE INDEX

A composite index is when the key is comprised 
of two or more attributes.
→ Example: Index on <a,b,c>

DBMS can use B+Tree index if the query provides a 
“prefix” of composite key.
→ Supported: (a=1 AND b=2 AND c=3)
→ Supported: (a=1 AND b=2)
→ Rarely Supported: (b=2), (c=3)

97

CREATE INDEX my_idx ON xxx (a, b DESC, c NULLS FIRST);
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CREATE INDEX my_idx ON xxx (a, b DESC, c NULLS FIRST);

Sort Order
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COMPOSITE INDEX

A composite index is when the key is comprised 
of two or more attributes.
→ Example: Index on <a,b,c>

DBMS can use B+Tree index if the query provides a 
“prefix” of composite key.
→ Supported: (a=1 AND b=2 AND c=3)
→ Supported: (a=1 AND b=2)
→ Rarely Supported: (b=2), (c=3)

99

CREATE INDEX my_idx ON xxx (a, b DESC, c NULLS FIRST);

Sort Order

Null Handling
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SELECTION CONDITIONS

1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1
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SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3
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SELECTION CONDITIONS

Find Key=(1,2)

1,3 2,2 3,3
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1 ≤ 1
2 ≤ 3
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SELECTION CONDITIONS
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SELECTION CONDITIONS
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SELECTION CONDITIONS

Find Key=(1,2)

Find Key=(*,1)
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SELECTION CONDITIONS

Find Key=(1,2)

Find Key=(*,1)
1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

*,1 < *,3
Find Key=(1,*)

(1,1) ∅(1,1)
(2,1)

(4,1)
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B+TREE – DUPLICATE KEYS

Approach #1: Append Record ID

→ Add the tuple's unique Record ID as part of the key to 
ensure that all keys are unique.

→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes

→ Allow leaf nodes to spill into overflow nodes that contain 
the duplicate keys.

→ This is more complex to maintain and modify.
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B+TREE – APPEND RECORD ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

114



15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

115

<Key,RecordId>



15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

116

<Key,RecordId>



15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

117

<Key,RecordId>



15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

118

<Key,RecordId>



15-445/645 (Spring 2025)

B+TREE – APPEND RECORD ID
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Insert 6Insert <6,(Page,Slot)>
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Insert 6Insert <6,(Page,Slot)>
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B+TREE – OVERFLOW LEAF NODES
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<5 <7 ≥9

6 7 8 9 131 3
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Insert 6
Insert 7
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CLUSTERED INDEXES

The table is stored in the sort order specified by the 
primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table does not contain a primary key, the DBMS will 

automatically make a hidden primary key.

Other DBMSs cannot use them at all.
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CLUSTERED B+TREE

Traverse to the left-most leaf page 
and then retrieve tuples from all leaf 
pages.

This will always be better than
sorting data for each query.

Table Pages

101 102 103 104

128



15-445/645 (Spring 2025)

CLUSTERED B+TREE

Traverse to the left-most leaf page 
and then retrieve tuples from all leaf 
pages.

This will always be better than
sorting data for each query.

Table Pages

101 102 103 104

129



15-445/645 (Spring 2025)

CLUSTERED B+TREE

Traverse to the left-most leaf page 
and then retrieve tuples from all leaf 
pages.

This will always be better than
sorting data for each query.

Table Pages

101 102 103 104

Scan Direction
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they 
appear in a non-clustered index is 
inefficient due to redundant reads.

A better approach is to find all the 
tuples that the query needs and then 
sort them based on their page ID.
The DBMS retrieves each page once.

101 102 103 104
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they 
appear in a non-clustered index is 
inefficient due to redundant reads.

A better approach is to find all the 
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B+TREE DESIGN CHOICES

Node Size
Merge Threshold
Variable-Length Keys
Intra-Node Search
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NODE SIZE

The slower the storage device, the larger the 
optimal node size for a B+Tree.
→ HDD: ~1MB
→ SSD: ~10KB 
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals
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MERGE THRESHOLD

Some DBMSs do not always merge nodes when 
they are half full.
→ Average occupancy rate for B+Tree nodes is 69%.

Delaying a merge operation may reduce the amount 
of reorganization.
It may also be better to let underfilled nodes exist 
and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-
balanced" B+Tree (nbtree).
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VARIABLE-LENGTH KEYS

Approach #1: Pointers

→ Store the keys as pointers to the tuple’s attribute.
→ Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes

→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding

→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection

→ Embed an array of pointers that map to the key + value list 
within the node.
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INTRA-NODE SEARCH

Approach #1: Linear

→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary

→ Jump to middle key, pivot left/right 
depending on comparison.

Approach #3: Interpolation

→ Approximate location of desired key based 
on known distribution of keys.

47
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OPTIMIZATIONS

Prefix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert
Buffered Updates
Many more…
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PREFIX COMPRESSION

Sorted keys in the same leaf node are 
likely to have the same prefix.

Instead of storing the entire key each 
time, extract common prefix and store 
only unique suffix for each key.
→ Many variations.

robbed robbing robot
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PREFIX COMPRESSION

Sorted keys in the same leaf node are 
likely to have the same prefix.

Instead of storing the entire key each 
time, extract common prefix and store 
only unique suffix for each key.
→ Many variations.

robbed robbing robot

bed bing ot

Prefix: rob
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DEDUPLICATION

Non-unique indexes can end up 
storing multiple copies of the same 
key in leaf nodes.

The leaf node can store the key once 
and then maintain a "posting list" of 
tuples with that key (similar to what 
we discussed for hash tables).

50
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SUFFIX TRUNCATION

The keys in the inner nodes are only 
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed 
to correctly route probes into the 
index.

abcdefghijk lmnopqrstuv

… …… …
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SUFFIX TRUNCATION

The keys in the inner nodes are only 
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is needed 
to correctly route probes into the 
index.

… …… …

abc lmn

169



15-445/645 (Spring 2025)

POINTER SWIZZLING

Nodes use page ids to reference other 
nodes in the index. The DBMS must 
get the memory location from the 
page table during traversal.

If a page is pinned in the buffer pool, 
then we can store raw pointers 
instead of page ids. This avoids 
address lookups from the page table.
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instead of page ids. This avoids 
address lookups from the page table.
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BULK INSERT

The fastest way to build a new 
B+Tree for an existing table is to first 
sort the keys and then build the index 
from the bottom up.
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BULK INSERT

The fastest way to build a new 
B+Tree for an existing table is to first 
sort the keys and then build the index 
from the bottom up.

Keys: 3, 7, 9, 13, 6, 1
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BULK INSERT

The fastest way to build a new 
B+Tree for an existing table is to first 
sort the keys and then build the index 
from the bottom up.

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13
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BULK INSERT

The fastest way to build a new 
B+Tree for an existing table is to first 
sort the keys and then build the index 
from the bottom up.

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13
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BULK INSERT

The fastest way to build a new 
B+Tree for an existing table is to first 
sort the keys and then build the index 
from the bottom up.

6 9

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13
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OBSERVATION

Modifying a B+tree is expensive when the DBMS 
has to split/merge nodes.
→ Worst case is when DBMS reorganizes the entire tree.
→ The worker that causes a split/merge is responsible for 

doing the work.

What if there was a way to delay updates and then 
apply multiple changes together in a batch?
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ aka Fractal Trees / B𝛆-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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CONCLUSION

The venerable B+Tree is (almost) always a good 
choice for your DBMS.

194



15-445/645 (Spring 2025)

NEXT CLASS

Bloom Filters
Tries / Radix Trees / Patricia Trees
Skip Lists
Inverted Indexes
Vector Indexes
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