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ADMINISTRIVIA

Project #2 out later today; due Sunday March 2™ @ 11:59pm
— Don't forget to do a GitHub “pull” before starting

Homework #3 (indices and filters) will be released on
Wednesday February 19t

Mid-term Exam on Wednesday Feb 26™

— In-class in this room
— More info next week

15-445/645 (Spring 2025)




New Seminar Series: Every Tue @ 4:30pm

Schedule
https://cmu.zoom.us/j/93441451665
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LAST CLASS

Hash tables are important data structures that are

used all throughout a DBMS.
— Space Complexity: O(n)
— Average Time Complexity: O(1)

Static vs. Dynamic Hashing schemes

DBMSs use mostly hash tables for their internal
data structures.

£CMU-DB
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INDEXES VS. FILTERS

An 1index data structure of a subset of a table's
attributes that are organized and/or sorted to the

location of specific tuples using those attributes.
— Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a record

(likely) exists for a key but not where it is located.
— Example: Bloom Filter




TODAY'S AGENDA

B+Tree Overview
Design Choices
Optimizations

£CMU-DB
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B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class

of balanced tree data structures:
— B-Tree (1970)

— B+Tree (1973)

— B*Tree (1977?)

— Blink_Tree (1981)

— Be-Tree (2003)

— Bw-Tree (2013)

£CMU-DB
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There is a specific data struct otz > e o s

ORDERED INDICES
by

R. Bayer

People also use the term to ge

of balanced tree data structur

> B-Tree (1970)
— B+Tree (1973)
— B*Tree (1977?)
— Blink_Tree (1981)
— Be-Tree (2003)
— Bw-Tree (2013)

Mathematical and Information Sciences Report No. 20

Mathematical and Information Sciences Laboratory

BOEING SCIENTIFIC RESEARCH LABORATORIES

July 1970
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B-TREE FA

There is a specific data struct

People also use the term to ge
of balanced tree data structur

— B-Tree (1970)

— B+Tree (1973)
— B*Tree (1977?)
— Blink_Tree (1981)
— Be-Tree (2003)
— Bw-Tree (2013)

The Ubiquitous B-Tree
DOUGLAS COMER

Computer Science Department, Purdue Unwersity, West Lafayette, Indiana 47907

B-trees have become, de facto, a standard for file organization. File indexes of users,
dedicated database systems, and general-purpose access methods have all been proposed
and implemented using B-trees This Paper reviews B-trees and shows why they have

been so It di the major

of the B-tree, especially the B*-tree,

contrasting the relative merits and costs of each implementation. It illustrates a general
Ppurpose access method which uses a B-tree.

Keywords and Phrases: B-tree, B*-tree, B'-tree, file organization, index

CR Categories: 3.73 3.74 4.33 4 34

INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
computer must retrieve an item and place
it in main memory before it can be pro-
cessed. In order to make good use of the
computer resources, one must organize files
intelligently, making the retrieval process
efficient.

The choice of a good file organization
depends on the kinds of retrieval to be
performed. There are two broad classes of
retrieval commands which can be illus-
trated by the following examples:
Sequential: “From our employee file, pre-

pare a list of all employees’
names and addresses,” and
Random: “From our employee file, ex-
tract the information about
employee J. Smith”.
We can imagine a filing cabinet with three
drawers of folders, one folder for each em-
ployee. The drawers might be labeled “A-
G,” “H-R,” and “S-Z,” while the folders

might be labeled with the employees’ last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file, If the
index file is large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmost
index consists of labels on drawers, and the
next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-
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B-TREE FAMILY

Efficient Locking for Concurrent Operations
on B-Trees

PHILIP L. LEHMAN

There is a specific data structure called  zrzw

S. BING YAO
Purdue University

fore Btrco and its variants have been found to be Pighly useful (both theoreticaly and in practce)
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B-TREE FAMILY

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a class

of balanced tree data structures:
> B-Tree (1970)
— B+Tree (1973)
— B*Tree (1977?)
— Blink_Tree (1981)
— Be-Tree (2003)
— Bw-Tree (2013)
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Code

Blame

/ README (&

src/backend/access/nbtree/README

Btree Indexing

This directory contains

high-concurrency B-tree

Efficient Locking for concurrent O

a correct implementation of

Lehman and Yao's

management algorithm (P. Lehman and S. Yao,

on Database Systems, Vol 6, No. 4, December 1981, p

use a simplified versio
shasha (V. Lanin and D.
Proceedings of 1986 Fal

The basic Lehman & Yao
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shasha, A Symmetric Concurr
1 Joint Computer Conference,

Algorithm

perations on B-Trees, ACM Transactions

p 650-670). We also

ribed in Lanin and

ent B-Tree Algorithm,
pp 380-389).
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B+TREE

A B+Tree is a self-balancing, ordered m-way tree
for searches, sequential access, insertions, and
deletions in O(log,, n) where m is the tree fanout.

— It is perfectly balanced (i.e., every leaf node is at the same
depth in the tree)
— Every node other than the root is at least half-full
m/2-1 < #keys < m-1
— Every inner node with k keys has k+1 non-null children.
— Optimized for reading/writing large data blocks.

Some real-world implementations relax these
properties, but we will ignore that for now...




B+TREE EXAMPLE

20

/

10 35
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B+TREE EXAMPLE

20 Root Node

/ Inner / Non-Leaf

& o2 Nodes

N\

E |0 [ 20 51 | 53] 44]] Leaf Nodes
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B+TREE EXAMPLE

20 Root Node

/ Inner / Non-Leaf

J 35 Nodes

N\

E |0 [ 20 51 | 53] 44]] Leaf Nodes

Index Key(s) Low—High
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B+TREE EXAMPLE

<node*>|<key>|<node*>|...| <key>|<node*>

20 Root Node

/ Inner / Non-Leaf

J 35 Nodes

N\

E |0 [ 20 51 | 53] 44]] Leaf Nodes

Index Key(s) Low—High
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B+TREE EXAMPLE

<node*>|<key>|<node*>|...| <key>|<node*>

20 Root Node

/ Inner / Non-Leaf

J 35 Nodes

6 Im |2@ 31 |38 44 || Leaf Nodes

Index Key(s) Low—High

<key>|<value>|<key>|<value>
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B+TREE EXAMPLE

<node*>|<key>|<node*>|...| <key>|<node*>

20 Root Node

<20 >20
- . Inner / Non-Leaf
Nodes
<10 >10 <3/ ¥‘35
6 I 10 I 20 || 31 I 38 || 44 || Leaf Nodes

Index Key(s) Low—High

<key>|<value>|<key>|<value>
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B+TREE EXAMPLE

<node*>|<key>|<node*>|...| <key>|<node*>

10

a

<10

20 Root Node

%g Pointers

220

35

Inner / Non-Leaf
Nodes

¥‘35

::::|38

Index Key(s) Low—High

44 || Leaf Nodes

<node*>|<key>|<value>|..|<key>|<value>|<node*>
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B+TREE EXAMPLE

|6 :’lm :12@ 31 :I38 44 || Leaf Nodes

Index Key(s) Low—High
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NODES

Every B+Tree node is comprised of an array of

key/value pairs.
— The keys are derived from the index's target attribute(s).

— The values will differ based on whether the node is
classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.




B+TREE LEAF NODES

B+Tree Leaf Node

Prev Next

S —T o | K| V|| K|V, | n =

0
0
.
.
.
.
.
.
.
.
.
.
.
‘e
o
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B+TREE LEAF NODES

B+Tree Leaf Node

Prev Next

T — PageIDd—E KTV, |l K[V E—»PageID
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B+TREE LEAF NODES

B+Tree Leaf Node
* t Prev Next
— — PageID4—| a | K, | V, || K, | V, | n |—>PageID
Key+Value
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B+TREE LEAF NODES

B+Tree Leaf Node
: * Prev Next
— — PageID4—| a| K, | o || K, | o0 | n |—>PageID
Key+Value
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B+TREE LEAF NODES

B+Tree Leaf Node
Level Slots Prev  Next
# * o o
g v
Sorted Key/Value Pairs
Y Y y v I( 7 o K 2 o 1(3 o
K 4 jof I( 5 o coe
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B+TREE LEAF NODES
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B+Tree Leaf Node
Level Slots Prev  Next
# # o o
-
Sorted Keys
a—— K | K | K | K | K K,
vaes ¥ 4 4 ¥
g | o | o | o | n o




LEAF NODE VALUES

Microsoft®

Approach #1: Record IDs @ PostgresQL. #SQL Server
— A pointer to the location of the tuple to ORACLE

which the index entry corresponds.
— Most common implementation.
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LEAF NODE VALUES

Microsoft®

Approach #1: Record IDs @ PostgresQL. #SQL Server
— A pointer to the location of the tuple to ORACLE

which the index entry corresponds.
— Most common implementation.

Approach #2: Tuple Data oo iz
— Index-Organized Storage (Lecture #04) WSQL'HLB < SQL Server
— Primary Key Index: Leaf nodes store the

contents of the tuple. RMHSQLW ORACLE

— Secondary Indexes: Leaf nodes store
tuples' primary key as their values.
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B-TREE VS. B+TREE

The original B-Tree from 1971 stored keys and

values in all nodes in the tree.
— More space-efficient, since each key only appears once in
the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

£CMU-DB
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B+TREE — INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.

[f L has enough space, done!

Otherwise, split L keys into L and a new node L,

— Redistribute entries evenly, copy up middle key.
— Insert index entry pointing to L, into parent of L.

To split inner node, redistribute entries evenly, but
push up middle key.

£CMU-DB Source: Chris Re
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B+TREE — INSERT EXAMPLE (1)

12
/_/ /<12 \
. .
1 3 51(9]]10 12([13

(

"/
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B+TREE — INSERT EXAMPLE (1)

4|12
/—y /[4’12)R
. .
1|3 51910 12]]13
' N4
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B+TREE — INSERT EXAMPLE (1)

Insert 6

12

MJZ)\{ﬂi_-\\\\
'’
R

4

k
i

—_
w

91|10 121|113

(
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B+TREE — INSERT EXAMPLE (1)

Insert 6

12

— /“ N

9 13
Node is full 4
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B+TREE — INSERT EXAMPLE (1)

Insert 6

4 1112
<4 /[4,12)\
N\ N
1 3 5119110 12(]13
R/ —
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B+TREE — INSERT EXAMPLE (1)

Insert 6

X
1|3 5 ([ 9|10 !! 12|[13
Y
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B+TREE — INSERT EXAMPLE (1)

Insert 6

4 1112
<4 /[4,12)\
= T
11| 3 5([ 6 91110 121113
" LL,/

$2CMU-DB

15-445/645 (Spring 2025)



B+TREE — INSERT EXAMPLE (1)

Insert 6

4 1112
<4 /[4,12)\
= T
11| 3 5([ 6 91110 121113
" LL,/
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B+TREE — INSERT EXAMPLE (1)

Insert 6

4 1112
/—y /[4’12)\
1 3 5 6 91110 12113
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B+TREE — INSERT EXAMPLE (1)

Insert 6

|| 2|2
/—y /[4,12)\§
1 3 5 6 9 1(10 121113
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B+TREE — INSERT EXAMPLE (1)

Insert 6

|| 2|2
/—y /[4,12)\§
1 3 5 6 9 1(10 121113
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B+TREE — INSERT EXAMPLE (1)

Insert 6

4 91112
/—y /[4,12)\§
1 3 5 6 9 1(10 121113
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B+TREE — INSERT EXAMPLE (1)

Insert 6

4 (19 1[12
113 51| 6 9 (|10 121113
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B+TREE — INSERT EXAMPLE (1)

Insert 6

4 119 |[12
11| 3 5(| 6 9 1[/10 12((13
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B+TREE — INSERT EXAMPLE (1)

Insert 8
4 |9 [[12
1|3 5|6 9 (|10 12(]13
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B+TREE — INSERT EXAMPLE (1)

Insert 8

1 (|3 5([ 6 91|10 12([13
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B+TREE — INSERT EXAMPLE (1)

Insert 8
4 |9 [[12
1|3 5([6]] 8 9 (|10 12(]13
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B+TREE — INSERT EXAMPLE (2)

Insert 17

Note: New Example/ Tree.
£CMU-DB

15-445/645 (Spring 2025)



B+TREE — INSERT EXAMPLE (2)

Insert 17

Note: New Example/ Tree.
£CMU-DB
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B+TREE — INSERT EXAMPLE (3)

Insert 16

£CMU-DB
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B+TREE — INSERT EXAMPLE (3)

Insert 16

11{3 5117 9 (111 13||14{|15{|17]]| [|20(|21||23

No space in the node where
the new key ‘belongs”.
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B+TREE — INSERT EXAMPLE (3)

Insert 16
51191319
1113 5|7 9111 13|({14][15][17]]|[20][21{(23
Split the node!
Copy the middle key.
Push the key up.
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B+TREE — INSERT EXAMPLE (3)

Insert 16
51(9(|13/[19
1113 5|7 9111 13|[14|[15](17 20(121(|123
New Node!
Shuffle keys from the node
that triggered the split.
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B+TREE — INSERT EXAMPLE (3)

Insert 16
51(9(|13/[19
1113 5|7 9111 13|[14|[15](17 20(121(|123
New Node!
Shuffle keys from the node
that triggered the split.
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B+TREE — INSERT EXAMPLE (3)

Insert 16
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B+TREE — INSERT EXAMPLE (3)

Insert 16

—

11{3 5117 9 (111 13||14(|15 16||17 20([21](23

But this is an “‘orphan”node!
No parent node points to it.
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B+TREE — INSERT EXAMPLE (3)

Insert 16

—

11{3 5117 9 (111 13||14(|15 16||17 20([21](23

But this is an “‘orphan”node!
No parent node points to it.
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B+TREE — INSERT EXAMPLE (3)

W ant to create a key, pointer
Insert 16 pair like this. But cannot insert it
in the root node, which is full.

51191|13||19 16

—

11{3 5117 9 (111 13||14(|15 16||17 20([21](23

But this is an “‘orphan”node!
No parent node points to it.

$ZCMU-DB
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B+TREE — INSERT EXAMPLE (3)

W ant to create a key, pointer
Insert 16 pair like this. But cannot insert it
in the root node, which is full.

S5(19]113][19 16(| Split the root. Grow the tree!

—

11{3 5117 9 (111 13||14(|15 16||17 20([21](23

But this is an “‘orphan”node!
No parent node points to it.
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B+TREE — INSERT EXAMPLE (3)

Insert 16
5119(|13|[19 16 Split the root. Grow the tree!
1113 5|7 9111 13|(14{[15 16((17 20(121(|123
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B+TREE — INSERT EXAMPLE (3)

13
Insert 16
5119 19 16 Split the root. Grow the tree!
1113 5|7 9111 13|(14{[15 16((17 20(121(|123

£CMU-DB
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B+TREE — INSERT EXAMPLE (3)

13
Insert 16
Next, need to split the ‘old”root, then
/ 2l (26 52 point to the split nodes from the new root.
1113 5(|7 9111 13([14(|15 16((17 20|121|(23

£CMU-DB
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B+TREE — INSERT EXAMPLE (3)

13
Insert 16 A
—
5(|9 16/[19
1|3 5(|7 9|11 13[14|[15 16/(17 2021(|23
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B+TREE — INSERT EXAMPLE (3)

13
Insert 16 az S N3
—
5([9 16|[19
1{[3 5|7 9|[11 13|[14][15 16|[17 20|[21|(23
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B+TREE — INSERT EXAMPLE (3)

13
Insert 16 <-|y V13
\
5(19 16|19
<5 [5,9) [9,13) [13,16) [16,19) >19
1113 5|7 9111 13|(14{[15 16((17 20(121(|123
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B+TREE — DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.

If L is at least half-full, done!

[f L has only m/2-1 entries,

— Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).
— If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

£CMU-DB Source: Chris Re
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https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+TREE — DELETE EXAMPLE (1)

Delete 6
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B+TREE — DELETE EXAMPLE (1)

Delete 6
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B+TREE — DELETE EXAMPLE (1)

Delete 6
4|9
1|3 5 9 ||10([12
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B+TREE — DELETE EXAMPLE (1)

Delete 6

)

$2CMU-DB
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B+TREE — DELETE EXAMPLE (1)

Delete 6

— 0

| ([ 9]|12][14

Borrow from a “rich” sibling node.
Could borrow from either sibling.

£CMU-DB

15-445/645 (Spring 2025)



B+TREE — DELETE EXAMPLE (1)

Delete 6

1|3 | 5 | ([ 9]|12][14

Borrow from a “rich” sibling node.
Could borrow from either sibling.
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B+TREE — DELETE EXAMPLE (1)

Delete 6

1 3 5([9 121114

Need to update parent node!
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B+TREE — DELETE EXAMPLE (1)

Delete 6

1 3 5([9 121114

Need to update parent node!

£CMU-DB

15-445/645 (Spring 2025 )



B+TREE — DELETE EXAMPLE (1)

Delete 6

1 3 5([9 121114

Need to update parent node!
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B+TREE — DELETE EXAMPLE (1)

Delete 6

1 3 5([9 121114

Need to update parent node!
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B+TREE — DELETE EXAMPLE (2)

Delete 15 13
5|9 17|[21
113 5|7 9/l11 13|[15 17|[19]|20 21|23

Note: New Example/ Tree.
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B+TREE — DELETE EXAMPLE (2)

Delete 15 13
5|9 17|[21
113 5|7 9|11 13 17|[19]|20 21|23

Note: New Example/ Tree.
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B+TREE — DELETE EXAMPLE (2)

Delete 15 13
5|9 17|[21
113 5|7 9|11 13 17|[19]|20 21|23

Borrow from a “rich” sibling node.

Note: New Example/ Tree.
£CMU-DB

15-445/645 (Spring 2025)



B+TREE — DELETE EXAMPLE (2)

Delete 15 13
5(|9 17|[21
TN
1|3 5|7 9|11 13 17|[19]|20 21|23

Borrow from a “rich” sibling node.

Note: New Example/ Tree.
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B+TREE — DELETE EXAMPLE (2)

Delete 15 13
5|9 17|[21
113 5|7 9|11 13([17 19|[20 21|23

Need to update parent node!
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B+TREE — DELETE EXAMPLE (2)

Delete 15 13
5|9 17|[21

A
1
1
1
I

113 5|7 9|11 13([17 19|[20 21|23

Need to update parent node!
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B+TREE — DELETE EXAMPLE (2)

Delete 15 13
5(|9 19|21

A
1
1
1
I

113 5|7 9|11 13([17 19|[20 21|23

Need to update parent node!
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B+TREE — DELETE EXAMPLE (3)

13
Delete 19

5(|9 19([21
113 5|7 9/l11 13([17 19|[20 21|23
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B+TREE — DELETE EXAMPLE (3)

13
Delete 19

5(|9 19([21
113 5|7 9|11 13([17 Mze 21|23
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B+TREE — DELETE EXAMPLE (3)

13

Delete 19

N

51(9 19]|21

11{3 5117 9 (111 13(117 MZQ |21 23

Under-filled!

No “rich”sibling nodes to borrow.
Merge with a sibling
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B+TREE — DELETE EXAMPLE (3)

13
Delete 19
5|19 19(|21
1113 5|7 9111 13([17 MZ@ 21(|123
Under-filled!
No “rich”sibling nodes to borrow.
Merge with a sibling
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B+TREE — DELETE EXAMPLE (3)

13
Delete 19
5|19 19
1113 5|7 9111 13([17 MZ@ 21(|123
Under-filled!
No “rich”sibling nodes to borrow.
Merge with a sibling
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B+TREE — DELETE EXAMPLE (3)

13
Delete 19
} This node is
5119 [19 I under-filled!
\ Pull-down.
1113 5117 91111 13117 20(121(|23
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B+TREE — DELETE EXAMPLE (3)

13
Delete 19
This node is
5119 | 19 I under-filled!
\ Pull-down.
1113 5117 91111 13117 20(121(|23
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B+TREE — DELETE EXAMPLE (3)

Delete 19
This node is
5119 13 | 19 I under-filled!
\ Pull-down.
1113 5117 91111 13117 20(121(|23
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B+TREE — DELETE EXAMPLE (3)

Delete 19

This node is

19 .’; 13 4‘.|19 |umkﬁﬁmﬂz
Pull-down.
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B+TREE — DELETE EXAMPLE (3)

Delete 19
The tree has shrunk in height.
51(9[13(|19
1113 51|17 91|11 13((17 20|121)|23
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B+TREE — DELETE EXAMPLE (3)

Delete 19
The tree has shrunk in height.
51(9[13(|19
<5 ﬁ d [13,19) 219
113 51|17 9|11 13](17 20|121)|23
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COMPOSITE INDEX

A composite index is when the key is comprised

of two or more attributes.
— Example: Index on <a, b, c>

CREATE INDEX my_idx ON xxx (a, b DESC, c NULLS FIRST);

£CMU-DB
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DBMS can use B+Tree index if the query provides a

“prefix’ of composite key.

— Supported: (a=1 AND b=2 AND c=3)
— Supported: (a=1 AND b=2)

— Rarely Supported: (b=2), (c=3)




COMPOSITE INDEX

A composite index is when the key is comprised

of two or more attributes.
— Example: Index on <a, b, c>

(-Sort Order

CREATE INDEX my_idx ON xxx (a, [b DESCJ] c NULLS FIRST);
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DBMS can use B+Tree index if the query provides a

“prefix’ of composite key.

— Supported: (a=1 AND b=2 AND c=3)
— Supported: (a=1 AND b=2)

— Rarely Supported: (b=2), (c=3)




COMPOSITE INDEX

A composite index is when the key is comprised

of two or more attributes.
— Example: Index on <a, b, c>

(-Sort Order

CREATE INDEX my_idx ON xxx (a, |b DESC,J{c NULLS FIRST);
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15-445/645 (Spring 2025)

KNull Handling

DBMS can use B+Tree index if the query provides a

“prefix’ of composite key.

— Supported: (a=1 AND b=2 AND c=3)
— Supported: (a=1 AND b=2)

— Rarely Supported: (b=2), (c=3)
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SELECTION CONDITIONS

2,2|[3,3

1,3
= |
~
1,1{[1,2 1,3([2,1

2,2([2,3 3,3|(3,4/|4,1
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SELECTION CONDITIONS

Find Key=(1,2)

2,2|[3,3

1,3
sl B
~
1,1{[1,2 1,3([2,1

2,2([2,3 3,3|(3,4/|4,1
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SELECTION CONDITIONS

Find Key=(1,2)

1 <1
2 <3
1,3|[2,2|3,3
1,1{[1,2 1,3([2,1 2,2|[2,3 3,3||3,4| 4,1
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SELECTION CONDITIONS

Find Key=(1,2)

1<1
2 <3
1,3([2,2|13,3
1,1{[1,2 1,3([2,1 2,2|12,3 3,3||3,4] 4,1
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SELECTION CONDITIONS

Find Key=(1,2)

2,2|[3,3

1,3
sl B
~
1,1{[1,2 1,3([2,1

2,2([2,3 3,3|(3,4/|4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

—

1,1

1,2

3,3

3,4

4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

—

1,1

1,2

3,3

3,4

4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

1<1
1,3([2,2|13,3
1,2 1,3([2,1 2,2|12,3 3,3||3,4] 4,1

1,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

1<1
1,3([2,2|13,3
1,1{[1,2 1,3(|2,1 2,2|12,3 3,3||3,4] 4,1

K| 0.0
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

—

1,1

1,2

3,3

3,4

4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

i —(x
Find Key=(*,1) T
1,1/]1,2 1,3([2,1 2,2((2,3 3,3|(3,4| (4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)

Find K 1 WLIREIL
=( %
al ey ( ’ ) 1,3/(2,2|3,3
1,1|1,2 1,3|(2,1 2,2(]2,3 3,3|13,4| (4,1
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SELECTION CONDITIONS

Find Key=(1,2)
Find Key=(1,*)
Find Key=(*,1)

x,1 < %,3

1,3

2,2

3,3

~ [

1,1{[1,2 1,3([2,1 2,2|12,3 3,3|(3,4] 4,1
(1,1) (1,1) 2 (4,1)
(2,1)
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B+TREE — DUPLICATE KEYS

Approach #1: Append Record ID

— Add the tuple's unique Record ID as part of the key to
ensure that all keys are unique.
— The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes

— Allow leaf nodes to spill into overflow nodes that contain
the duplicate keys.

— This is more complex to maintain and modify.

£CMU-DB
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B+TREE — APPEND RECORD ID

5|9
1|3 _1|l6||7]|8 9 (|13
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B+TREE — APPEND RECORD ID

a

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
Ry

<Key,RecordId>
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B+TREE — APPEND RECORD ID

Insert 6

a

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
Ry

<Key,RecordId>
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B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

a

5
/<5—/<9/
‘‘‘‘ {14]3 1| 6
<Key,RecordId>
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B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

a

5
/<5—/<9/
‘‘‘‘ {14]3 —1| 6
<Key,RecordId>
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B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

5|9
//’:Si—-—”//<3//
{114]3 1| 6 7|8 _l| 9|13

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
Ry

<Key,RecordId>
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B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

5 (7|9
//’;ig————”/z<j?/
{114]3 1| 6 7|8 _l| 9|13

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
Ry

<Key,RecordId>
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B+TREE — APPEND RECORD ID

Insert <6, (Page,Slot)>

9
\%
7|8 _

5
)
{1]]3 _ 1| 6

Ry
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.*
Ry

<Key,RecordId>
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B+TREE — OVERFLOW LEAF NODES

Insert 6
5|9
/<5/<7/ 29
1|3 _1|l6||7]|8 9 (|13
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B+TREE — OVERFLOW LEAF NODES

Insert 6
5|9
/<5/<7/ 29
1|3 1|6 || 7|8 9 (|13
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B+TREE — OVERFLOW LEAF NODES

Insert 6
5|9
/<5/<7/ 29
1|3 1|6 || 7|8 9 (|13
5
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B+TREE — OVERFLOW LEAF NODES

Insert 6
Insert 7 5 (| g
/<5/<7/ 29
1|3 —I|e||l7]]8 9 [[13
6|7
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B+TREE — OVERFLOW LEAF NODES

Insert 6
Insert 7 5 (| g
Insert 6 /<5/<7/ >9
1|3 116|| 7|8 11 9 |[13
6716
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CLUSTERED INDEXES

The table is stored in the sort order specified by the
primary key.

— Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.

— [f a table does not contain a primary key, the DBMS will
automatically make a hidden primary key.

Other DBMSs cannot use them at all.
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CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than

. 101 || 102 || 103 || 104
sorting data for each query.

Table Pages
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CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

This will always be better than

. 101 || 102 || 103 || 104
sorting data for each query.

Table Pages
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CLUSTERED B+TREE

Traverse to the left-most leaf page
and then retrieve tuples from all leaf

pages.

Scan Direction

This will always be better than

. 101 || 102 || 103 || 104
sorting data for each query.

Table Pages
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the 101 102 103 104
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.
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INDEX SCAN PAGE SORTING

A
Scan Direction

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the 101 102 103 104
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.
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Scan Direction

101 102 103 104




INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.
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Scan Direction
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.
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Scan Direction
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INDEX SCAN PAGE SORTING

Retrieving tuples in the order they
appear in a non-clustered index is
inefficient due to redundant reads.

A better approach is to find all the
tuples that the query needs and then
sort them based on their page ID.

The DBMS retrieves each page once.
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Scan Direction
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101 102 103 104
1 Page 102 I Page 101
1 Page 103 Page 101
[ Page 104 [ Page 102

Page 104 Page 102
[ Page 102 Page 102
[ Page 103 Page 102
[ Page 102 [ Page 103

Page 102 Page 103
[ Page 101 Page 103
1 Page 103 [ Page 104
[ Page 104 Page 104
1 Page 103 Page 104



B+TREE DESIGN CHOICES

Node Size

Merge Threshold
Variable-Length Keys
Intra-Node Search
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B+TREE DESIGN C

Node Size

Merge Threshold
Variable-Length Keys
Intra-Node Search
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NODE SIZE

The slower the storage device, the larger the

optimal node size for a B+Tree.
— HDD: ~1MB

— SSD: ~10KB
— In-Memory: ~512B

Optimal sizes can vary depending on the workload
— Leaf Node Scans vs. Root-to-Leaf Traversals
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MERGE THRESHOLD

Some DBMSs do not always merge nodes when

they are half full.

— Average occupancy rate for B+ Tree nodes is 69%.

Delaying a merge operation may reduce the amount
of reorganization.

[t may also be better to let underfilled nodes exist
and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-
balanced" B+Tree (nbtree).
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https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree
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VARIABLE-LENGTH KEYS

Approach #1: Pointers

— Store the keys as pointers to the tuple’s attribute.
— Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes

— The size of each node in the index can vary.
— Requires careful memory management.

Approach #3: Padding
— Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection

— Embed an array of pointers that map to the key + value list
within the node.
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https://en.wikipedia.org/wiki/T-tree

INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.
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INTRA-NODE SEARCH

Approach #1: Linear Find Key=8

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

4 1151|61|7]||8]|9]|10
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INTRA-NODE SEARCH

Approach #1: Linear Find Key=8

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

4 1151|61|7]||8]|9]|10

*
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INTRA-NODE SEARCH

Approach #1: Linear Find Key=8

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

4 1151|61|7]||8]|9]|10

*
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INTRA-NODE SEARCH

Approach #1: Linear Find Key=8

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

4 1151|61|7]1|8]|9]|10
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INTRA-NODE SEARCH

Approach #1: Linear Find Key=8

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

4 1151|61|7]1|8]|9]|10

_mm_cmpeq_epi32_mask(a, b)
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INTRA-NODE SEARCH

Approach #1: Linear Find Key=8

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

4 1151|61|7]1|8]|9]|10

_mm_cmpeq_epi32_mask(a, b)
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

£CMU-DB
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A1/
8|8|8]|8

_mm_cmpeq_epi32_mask(a, b)




INTRA-NODE SEARCH

00|00

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

_mm_cmpeq_epi32_mask(a, b)
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INTRA-NODE SEARCH
Approach #1: Linear °1° ?\ ?\i
— Scan node keys from beginning to end. 5 3 110
— Use SIMD to vectorize comparisons. ‘
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right 4 [ 5

10

depending on comparison.
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation
— Approximate location of desired key based

on known distribution of keys. 4 (|5

10
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.

Approach #3: Interpolation

— Approximate location of desired key based
on known distribution of keys.
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INTRA-NODE SEARCH

Approach #1: Linear

— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.
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— Scan node keys from beginning to end.
— Use SIMD to vectorize comparisons.

Approach #2: Binary

— Jump to middle key, pivot left/right
depending on comparison.
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— Approximate location of desired key based
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INTRA-NODE SEARCH

Efficiently Searching In-Memory Sorted Arrays:
Revenge of the Interpolation Search?

Peter Van Sandt, Yannis Chronis, Jignesh M. Patel
Department of Computer Sciences, University of Wisconsin-Madison
{van-sandt,chronis,jignesh}@cs.wisc.edu

ABSTRACT

In this paper, we focus on the problem of searching sorted,
in-memory datasets. This is a key data operation, and Binary
Search is the de facto algorithm that is used in practice. We
consider an alternative, namely Interpolation Search, which
can take advantage of hardware trends by using complex cal-
culations to save memory accesses. Historically, Interpolation
Search was found to underperform compared to other search
algorithms in this setting, despite its superior asymptotic com-
plexity. Also, Interpolation Search is known to perform poorly
on non-uniform data. To address Lhese issues, we mtroduce
SIP (Slope reuse Interp d impl

of Interpolation Search, and TIP (Three point Interpolation), a
new search algorithm that uses linear fractions to interpolate
on non-uniform distributions. We evaluate these two algo-
rithms against a similarly optimized Binary Search method
using a variety of real and synthetic datasets. We show that
SIP is up to 4 times faster on uniformly distributed data and
TIP is 2-3 times faster on non-uniformly distributed data in
some cases. We also design a meta-algorithm to switch be-
tween these diffe methods to picking the higher
performing search algorithm, which depends on factors like
data distribution.

CCS CONCEPTS
« Information systems — Point lookups; Main memory
engines.
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In-memory search; Interpolation Search; Binary Search
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Figure 1: Speed comparison of representative pro-
cessor and main memory technologies [27]. The
performance of processors is measured in FLOPS. The
performance of main memory is measured as peak
FLOPS to sustained memory bandwidth (GFLOP/sec) /
(Words/sec) and peak FLOPS per idle memory latency
(GFLOP/sec) * sec. In the conventional von Neumann
architectural path, main memory speed is poised to
become (relatively) slower compared to the speed of
computing inside processors.
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y, sorted datasets is a fundamental data
operation [23]. Today, Binary Search is the de facto search
method that is used in practice, as it is an efficient and asymp-
totically optimal in the worst case algorithm. Binary Search
is a primitive in many popular data systems and frameworks
(e.g- LevelDB [25] and Pandas [30]).
Deslgmng algorithms around hardware trends can yield
gains. A key technological trend is
the dlvergmg CPU and memory speeds, which is illustrated
in Figure 1. This trend favors algorithms that can use more
computation to reduce memory accesses [4, 6, 16, 21, 27, 38].
The focus of this paper is on exploring the impact of this trend
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OPTIMIZATIONS

Prefix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert

Buffered Updates
Many more...
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PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

robbed || robbing|| robot

Instead of storing the entire key each
time, extract common prefix and store

only unique suffix for each key.
— Many variations.
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PREFIX COMPRESSION

Sorted keys in the same leaf node are
likely to have the same prefix.

robbed || robbing|| robot

Instead of storing the entire key each

time, extract common prefix and store ’,
only unique suffix for each key.
— Many variations. Prefix: rob

bed [[bing|| ot
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DEDUPLICATION

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes. Ko | Vi | Ko [ Vo | Ko [ Vs | Ky | vy

The leaf node can store the key once
and then maintain a "posting list" of
tuples with that key (similar to what
we discussed for hash tables).
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SUFFIX TRUNCATION

The keys in the inner nodes are only
used to "direct traffic".

— We don't need the entire key. abcdefghijk|| lmnopgrstuv
Store a minimum prefix that is needed & \

to correctly route probes into the

index.
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SUFFIX TRUNCATION

The keys in the inner nodes are only
used to "direct traffic".

— We don't need the entire key. abcdefghijk]|1mnopq rstuvl]
Store a minimum prefix that is needed } \

to correctly route probes into the

index.
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SUFFIX TRUNCATION

The keys in the inner nodes are only

used to "direct traffic".
— We don't need the entire key. abc 1mn|

Store a minimum prefix that is needed & \

to correctly route probes into the
index.
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POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.
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POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must 61l 9

[f a page is pinned in the buffer pool,

get the memory location from the
page table during traversal. / \\
X
1 (|3 6
N

then we can store raw pointers
instead of page ids. This avoids

address lookups from the page table.

Buffer Pool
—_
N
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nodes in the index. The DBMS must
get the memory location from the
page table during traversal.
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POINTER SWIZZLING

Nodes use page ids to reference other Find Key>3

nodes in the index. The DBMS must

get the memory location from the
page table during traversal.
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POINTER SWIZZLING

Nodes use page ids to reference other Find Key>3
nodes in the index. The DBMS must

get the memory location from the ~Page #2
page table during traversal. :

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids

n
N
.
.
.
.
.
; 3
.
.
*e
“x
Y.
*

Page #2 » <Pagex>

address lookups from the page table.

I-Ieaderl Headerl Headerl

1 2 (| 3

Buffer Pool.--
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POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
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address lookups from the page table.

£CMU-DB

15-445/645 (Spring 2025)

Page #2

Page #3

IIIII-I‘IHII-I

Find Key>3

6

9

Page #2 » <Pagex>

Buffer Pool

I-Ieaderl

/-Ieaa’erl

Headerl

1

2

3




£CMU-DB

POINTER SWIZZLING

Nodes use page ids to reference other Find Key>3
nodes in the index. The DBMS must 619

get the memory location from the Page #2

page table during traversal. “Page #3

[f a page is pinned in the buffer pool, Inll-l‘lnll-l

then we can store raw pointers i Page #2 » <Pagex>
instead of page ids. This avoids :  Page #3 > <Pagex>
address lookups from the page table.
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POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS must
get the memory location from the
page table during traversal.

[f a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page table.

£CMU-DB

15-445/645 (Spring 2025 )

<Page*>

<Page*>

IIIII-I‘IHII-I

Find Key>3

6

9

Buffer Pool




179

BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index
from the bottom up.
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BULK INSERT

The fastest way to build a new

B+Tree for an existing table is to first

sort the keys and then build the index Keys: 3,7,9,13, 6, 1
from the bottom up.
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BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index Keys: 3,7,9,13, 6,1

from the bottom up. Sorted Keys: 1, 3,6,7,9,13
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BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the index Keys: 3,7,9,13, 6,1

from the bottom up. Sorted Keys: 1, 3,6,7,9,13

) )
1|3 6|7 9 |[13
—/ —/
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BULK INSERT

The fastest way to build a new
B+Tree for an existing table is to first

sort the keys and then build the index
from the bottom up.
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Keys:3,7,9,13, 6,1
Sorted Keys: 1, 3,6,7,9,13

13
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OBSERVATION

Modifying a B+tree is expensive when the DBMS

has to split/merge nodes.
— Worst case is when DBMS reorganizes the entire tree.

— The worker that causes a split/merge is responsible for
doing the work.

What if there was a way to delay updates and then
apply multiple changes together in a batch?
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value

entries in log buffers at inner nodes.

—> aka Fractal Trees / Be-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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https://en.wikipedia.org/wiki/Fractal_tree_index

WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
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WRITE-OPTIMIZED B+TREE
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updates, store changes to key/value
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value

entries in log buffers at inner nodes.
— aka Fractal Trees / Be-trees.
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying
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Find 10
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WRITE-OPTIMIZED B+TREE

Instead of immediately applying
updates, store changes to key/value

entries in log buffers at inner nodes.
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WRITE-OPTIMIZED B+TREE
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CONCLUSION

The venerable B+Tree is (almost) always a good
choice for your DBMS.
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NEXT CLASS

Bloom Filters

Tries / Radix Trees / Patricia Trees
Skip Lists

Inverted Indexes

Vector Indexes
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