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ADMINISTRIVIA

Project #2 out; due Sunday March 2nd @ 11:59pm
→ Don’t forget to do a GitHub “pull” before starting 
→ Recitation on Wednesday Feb. 19 4:00-5:00 pm, GHC 5117

Homework #3 (indices and filters) due Sunday Feb 23th @11:59pm

Mid-term Exam on Wednesday Feb 26th

→ In-class in this room
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INDEXES VS. FILTERS

An index data structure of a subset of a table's 
attributes that are organized and/or sorted to the 
location of specific tuples using those attributes.
→ Example: B+Tree

A filter is a data structure that answers set 
membership queries; it tells you whether a key 
(likely) exists in a set but not where it is located.
→ Example: Bloom Filter
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TODAY'S AGENDA

Bloom Filters
Skip Lists
Tries / Radix Trees
Inverted Indexes
Vector Indexes
DB Flash Talk: Weaviate
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https://weaviate.io/
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BLOOM FILTERS

Probabilistic data structure (bitmap) that answers 
set membership queries.
→ False negatives will never occur.
→ False positives can sometimes occur.
→ See Bloom Filter Calculator.

Insert(x):

→ Use k hash functions to set bits in the filter to 1.

Lookup(x):

→ Check whether the bits are 1 for each hash function.
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BLOOM FILTERS

Insert 'RZA'

Insert 'GZA'

Lookup 'RZA' 

Lookup 'Raekwon'

Lookup 'ODB'
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BLOOM FILTERS

Lookup 'ODB'
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Bloom filter calculator: https://hur.st/bloomfilter/ 

https://hur.st/bloomfilter/
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OTHER FILTERS

Counting Bloom Filter

→ Supports dynamically adding and removing keys.
→ Uses integers instead of bits to count the number of 

occurrences of a key in a set.

Cuckoo Filter

→ Also supports dynamically adding and removing keys.
→ Uses a Cuckoo Hash Table but stores fingerprints instead 

of full keys.

Succinct Range Filter (SuRF)
→ Immutable compact trie that supports approximate exact 

matches and range filtering.
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https://en.wikipedia.org/wiki/Counting_Bloom_filter
https://en.wikipedia.org/wiki/Cuckoo_filter
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://github.com/efficient/SuRF
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OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.
All operations have to linear search.
→ Average Cost: O(n)
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SKIP LISTS

Multiple levels of linked lists with 
extra pointers to skip over entries.
→ 1st level is a sorted list of all keys.
→ 2nd level links every other key
→ 3rd level links every fourth key
→ Each level has ½ the keys of one below it

Maintains keys in sorted order 
without requiring global rebalancing.
→ Approximate O(log n) search times.

Mostly for in-memory data structures.
→ Example: LSM MemTable
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SKIP LISTS: DELETE

First logically remove a key from the index by 
setting a flag to tell threads to ignore.

Then physically remove the key once we know 
that no other thread is holding the reference.
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SKIP LISTS

Advantages:

→ May use less memory than a B+Tree, if you do not include 
reverse pointers.

→ Insertions and deletions do not require rebalancing.

Disadvantages:

→ Not disk/cache friendly because they do not optimize 
locality of references.

→ Reverse search is non-trivial.
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OBSERVATION

The inner node keys in a B+Tree cannot tell you 
whether a key exists in the index. You must always 
traverse to the leaf node.

This means that you could have (at least) one buffer 
pool page miss per level in the tree just to find out a 
key does not exist.
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TRIE INDEX

Use a digital representation of keys to 
examine prefixes one-by-one.
→ aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
→ Does not depend on existing keys or 

insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity 
where k is the length of the key.
→ Path to a leaf node represents a key.
→ Keys are stored implicitly and can be 

reconstructed from paths.
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TRIE KEY SPAN

The span of a trie level is the number of bits that 
each partial key / digit represents.
→ If the digit exists in the corpus, then store a pointer to the 

next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the 
physical height of the tree.
→ n-way Trie = Fan-Out of n
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TRIE KEY SPAN
Keys:  K10,K25,K31
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RADIX TREE

Vertically compressed trie that 
compacts nodes with a single child.
→ Also known as Patricia Trie.

Can produce false positives, so the 
DBMS always checks the original 
tuple to see whether a key matches.
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RADIX TREE: MODIFICATIONS
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OBSERVATION

The indexes that we've discussed are 
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and 

September 2024.

They are not good at keyword 
searches:
→ Example: Find all Wikipedia articles that 

contain the word "Pavlo"

97
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INVERTED INDEX

An inverted index stores a mapping 
of terms to records that contain those 
terms in the target attribute.
→ Sometimes called a full-text search index.
→ Originally called a concordance (1200s).

Many major DBMSs support these 
natively. But there are also specialized 
DBMSs and libraries.
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INVERTED INDEX: LUCENE

Uses a Finite State Transducer for 
determining offset of terms in 
dictionary.
Incrementally create dictionary 
segments and then merge them in the 
background.
→ Uses compression methods we previously 

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations 

for terms and occurrences.

102
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INVERTED INDEX: POSTGRESQL

PostgreSQL's Generalized Inverted 

Index (GIN) uses a B+Tree for the 
term dictionary that map to a posting 
list data structure.
Posting list contents varies depending 
on number of records per term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to 
avoid incremental updates.
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OBSERVATION

Inverted indexes search data based on its contents.
→ There is a little magic to tweak terms based on linguistic 

models.
→ Example: Normalization ("Wu-Tang" matches "Wu Tang").

Instead of searching for records containing exact 
keywords (e.g., "Wu-Tang"), an application may 
want search for records that are related to topics 
(e.g., "hip-hop groups with songs about slinging").
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VECTOR INDEXES

Specialized data structures to perform nearest-
neighbor searches on embeddings.
→ An embedding is an array of floating point numbers.
→ May also need to filter data before / after vector searches.

The correctness of a query depends on whether the 
result "feels right".
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VECTOR INDEXES: INVERTED FILE

Partition vectors into smaller groups 
using a clustering algorithm. 
To find a match, use same clustering 
algorithm to map into a group, then 
scan that group's vectors.
→ Also check nearby groups to improve 

accuracy.

Preprocess / quantize vectors to 
reduce dimensionality.
Example: IVFFlat

119

Source: Chi Zhang

https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
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VECTOR INDEXES: NAVIGABLE SMALL WORLDS 

Build a graph where each node 
represents a vector and it has edges to 
its n nearest neighbors.
→ Can use multiple levels of graphs (HNSW)

To find a match for a given vector, 
enter the graph and then greedily 
choose the next edge that moves 
closer to that vector.

Example: Faiss, hnswlib

120

Source: Chi Zhang

https://en.wikipedia.org/wiki/Hierarchical_navigable_small_world
https://faiss.ai/
https://github.com/nmslib/hnswlib
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CONCLUSION

We will see filters again this semester.
B+Trees are still the way to go for tree indexes.

Inverted indexes are covered in CMU 11-442.

We did not discuss geo-spatial tree indexes:
→ Examples: R-Tree, Quad-Tree, KD-Tree
→ This is covered in CMU 15-826.
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NEXT CLASS

How to make indexes thread-safe!
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