
Database
Systems

15-445/645 SPRING 2025 PROF. JIGNESH PATEL

Bloom Filters, Tries, Skip
Lists, Inverted Indexes,
Vector Indexes

15-445/645 (Spring 2025)

ADMINISTRIVIA

Project #2 out; due Sunday March 2nd @ 11:59pm
→ Don’t forget to do a GitHub “pull” before starting
→ Recitation on Wednesday Feb. 19 4:00-5:00 pm, GHC 5117

Homework #3 (indices and filters) due Sunday Feb 23th @11:59pm

Mid-term Exam on Wednesday Feb 26th

→ In-class in this room

2

15-445/645 (Spring 2025)

INDEXES VS. FILTERS

An index data structure of a subset of a table's
attributes that are organized and/or sorted to the
location of specific tuples using those attributes.
→ Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a key
(likely) exists in a set but not where it is located.
→ Example: Bloom Filter

3

15-445/645 (Spring 2025)

TODAY'S AGENDA

Bloom Filters
Skip Lists
Tries / Radix Trees
Inverted Indexes
Vector Indexes
DB Flash Talk: Weaviate

4

https://weaviate.io/

15-445/645 (Spring 2025)

BLOOM FILTERS

Probabilistic data structure (bitmap) that answers
set membership queries.
→ False negatives will never occur.
→ False positives can sometimes occur.
→ See Bloom Filter Calculator.

Insert(x):

→ Use k hash functions to set bits in the filter to 1.

Lookup(x):

→ Check whether the bits are 1 for each hash function.

5

https://hur.st/bloomfilter/

15-445/645 (Spring 2025)

BLOOM FILTERS

Insert 'RZA'

Insert 'GZA'

Lookup 'RZA'

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

15-445/645 (Spring 2025)

BLOOM FILTERS

Insert 'RZA'

Insert 'GZA'

Lookup 'RZA'

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
2
('RZA') = 4444 % 8 = 4

hash
1
('RZA') = 2222 % 8 = 6

15-445/645 (Spring 2025)

BLOOM FILTERS

Insert 'RZA'

Insert 'GZA'

Lookup 'RZA'

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
2
('RZA') = 4444 % 8 = 4

hash
1
('RZA') = 2222 % 8 = 6

1 1

15-445/645 (Spring 2025)

BLOOM FILTERS

Insert 'GZA'

Lookup 'RZA'

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
2
('GZA') = 7777 % 8 = 1

hash
1
('GZA') = 5555 % 8 = 3

1 1

15-445/645 (Spring 2025)

BLOOM FILTERS

Insert 'GZA'

Lookup 'RZA'

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
2
('GZA') = 7777 % 8 = 1

hash
1
('GZA') = 5555 % 8 = 3

1 11 1

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'RZA'

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
2
('RZA') = 4444 % 8 = 4

hash
1
('RZA') = 2222 % 8 = 6

1 11 1

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'RZA'

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
2
('RZA') = 4444 % 8 = 4

hash
1
('RZA') = 2222 % 8 = 6

1 11 1

→ TRUE

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

1 11 1

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
1
('Raekwon') = 3333 % 8 = 5

3 hash
2
('Raekwon') = 8899 % 8 =

1 11 1

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
1
('Raekwon') = 3333 % 8 = 5

3 hash
2
('Raekwon') = 8899 % 8 =

1 11 1

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
1
('Raekwon') = 3333 % 8 = 5

3 hash
2
('Raekwon') = 8899 % 8 =

1 11 1

→ FALSE

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

1 11 1

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
1
('ODB') = 6699 % 8 = 3

6 hash
2
('ODB') = 9966 % 8 =

1 11 1

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
1
('ODB') = 6699 % 8 = 3

6 hash
2
('ODB') = 9966 % 8 =

1 11 1

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
1
('ODB') = 6699 % 8 = 3

6 hash
2
('ODB') = 9966 % 8 =

1 11 1

→ TRUE

15-445/645 (Spring 2025)

BLOOM FILTERS

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash
1
('ODB') = 6699 % 8 = 3

6 hash
2
('ODB') = 9966 % 8 =

1 11 1

→ TRUE

Bloom filter calculator: https://hur.st/bloomfilter/

https://hur.st/bloomfilter/

15-445/645 (Spring 2025)

OTHER FILTERS

Counting Bloom Filter

→ Supports dynamically adding and removing keys.
→ Uses integers instead of bits to count the number of

occurrences of a key in a set.

Cuckoo Filter

→ Also supports dynamically adding and removing keys.
→ Uses a Cuckoo Hash Table but stores fingerprints instead

of full keys.

Succinct Range Filter (SuRF)
→ Immutable compact trie that supports approximate exact

matches and range filtering.

22

https://en.wikipedia.org/wiki/Counting_Bloom_filter
https://en.wikipedia.org/wiki/Cuckoo_filter
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://github.com/efficient/SuRF

15-445/645 (Spring 2025)

OTHER FILTERS

Counting Bloom Filter

→ Supports dynamically adding and removing keys.
→ Uses integers instead of bits to count the number of

occurrences of a key in a set.

Cuckoo Filter

→ Also supports dynamically adding and removing keys.
→ Uses a Cuckoo Hash Table but stores fingerprints instead

of full keys.

Succinct Range Filter (SuRF)
→ Immutable compact trie that supports approximate exact

matches and range filtering.

22

https://en.wikipedia.org/wiki/Counting_Bloom_filter
https://en.wikipedia.org/wiki/Cuckoo_filter
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://github.com/efficient/SuRF

15-445/645 (Spring 2025)

OTHER FILTERS

Counting Bloom Filter

→ Supports dynamically adding and removing keys.
→ Uses integers instead of bits to count the number of

occurrences of a key in a set.

Cuckoo Filter

→ Also supports dynamically adding and removing keys.
→ Uses a Cuckoo Hash Table but stores fingerprints instead

of full keys.

Succinct Range Filter (SuRF)
→ Immutable compact trie that supports approximate exact

matches and range filtering.

22

https://en.wikipedia.org/wiki/Counting_Bloom_filter
https://en.wikipedia.org/wiki/Cuckoo_filter
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://github.com/efficient/SuRF

15-445/645 (Spring 2025)

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.
All operations have to linear search.
→ Average Cost: O(n)

25

15-445/645 (Spring 2025)

K1 K2 K3 K4 K6K5 K7

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.
All operations have to linear search.
→ Average Cost: O(n)

25

15-445/645 (Spring 2025)

K1 K2 K3 K4 K6K5 K7

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.
All operations have to linear search.
→ Average Cost: O(n)

25

15-445/645 (Spring 2025)

K1 K2 K3 K4 K6K5 K7

OBSERVATION

The easiest way to implement a dynamic order-
preserving index is to use a sorted linked list.
All operations have to linear search.
→ Average Cost: O(n)

25

15-445/645 (Spring 2025)

SKIP LISTS

Multiple levels of linked lists with
extra pointers to skip over entries.
→ 1st level is a sorted list of all keys.
→ 2nd level links every other key
→ 3rd level links every fourth key
→ Each level has ½ the keys of one below it

Maintains keys in sorted order
without requiring global rebalancing.
→ Approximate O(log n) search times.

Mostly for in-memory data structures.
→ Example: LSM MemTable

29

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

K5

K5

K5
V5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

K5

K5

K5
V5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

K5

K5

K5
V5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

K5

K5

K5
V5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

K5

K5

K5
V5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

K5

K5

K5
V5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

K5

K5

K5
V5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

K5

K5

K5
V5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

EndLevels

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

SKIP LISTS: INSERT
30

∞

∞

∞

P=N

P=N/2

P=N/4

Insert K
5

K5

K5

K5
V5

Flip a coin to decide how many

levels to add the new key into.

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: SEARCH
50

∞

∞

∞

P=N

P=N/2

P=N/4

Find K
3

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: SEARCH
50

∞

∞

∞

P=N

P=N/2

P=N/4

Find K
3

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: SEARCH
50

∞

∞

∞

P=N

P=N/2

P=N/4

K
3
<K

5

Find K
3

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: SEARCH
50

∞

∞

∞

P=N

P=N/2

P=N/4

K
3
<K

5

K
3
>K

2

Find K
3

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: SEARCH
50

∞

∞

∞

P=N

P=N/2

P=N/4

K
3
<K

5

K
3
>K

2
K

3
<K

4

Find K
3

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: SEARCH
50

∞

∞

∞

P=N

P=N/2

P=N/4

K
3
<K

5

K
3
>K

2
K

3
<K

4

Find K
3

15-445/645 (Spring 2025)

SKIP LISTS: DELETE

First logically remove a key from the index by
setting a flag to tell threads to ignore.

Then physically remove the key once we know
that no other thread is holding the reference.

56

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE
57

∞

∞

∞

P=N

P=N/2

P=N/4

Delete K
5

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE
57

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Delete K
5

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE
57

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Delete K
5

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE
57

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K
5

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE
57

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K
5

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE
57

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K
5

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE
57

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K
5

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K5
V5

K5

K5

K6
V6

Levels

SKIP LISTS: DELETE
57

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K
5

15-445/645 (Spring 2025)

End

K1
V1

K2

K2
V2

K3
V3

K4
V4

K4

K6
V6

Levels

SKIP LISTS: DELETE
57

∞

∞

∞

P=N

P=N/2

P=N/4

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Delete K
5

15-445/645 (Spring 2025)

SKIP LISTS

Advantages:

→ May use less memory than a B+Tree, if you do not include
reverse pointers.

→ Insertions and deletions do not require rebalancing.

Disadvantages:

→ Not disk/cache friendly because they do not optimize
locality of references.

→ Reverse search is non-trivial.

66

15-445/645 (Spring 2025)

OBSERVATION

The inner node keys in a B+Tree cannot tell you
whether a key exists in the index. You must always
traverse to the leaf node.

This means that you could have (at least) one buffer
pool page miss per level in the tree just to find out a
key does not exist.

67

15-445/645 (Spring 2025)

TRIE INDEX

Use a digital representation of keys to
examine prefixes one-by-one.
→ aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
→ Does not depend on existing keys or

insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity
where k is the length of the key.
→ Path to a leaf node represents a key.
→ Keys are stored implicitly and can be

reconstructed from paths.

68

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

15-445/645 (Spring 2025)

TRIE INDEX

Use a digital representation of keys to
examine prefixes one-by-one.
→ aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
→ Does not depend on existing keys or

insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity
where k is the length of the key.
→ Path to a leaf node represents a key.
→ Keys are stored implicitly and can be

reconstructed from paths.

68

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

15-445/645 (Spring 2025)

TRIE INDEX

Use a digital representation of keys to
examine prefixes one-by-one.
→ aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
→ Does not depend on existing keys or

insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity
where k is the length of the key.
→ Path to a leaf node represents a key.
→ Keys are stored implicitly and can be

reconstructed from paths.

68

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

15-445/645 (Spring 2025)

TRIE INDEX

Use a digital representation of keys to
examine prefixes one-by-one.
→ aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
→ Does not depend on existing keys or

insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity
where k is the length of the key.
→ Path to a leaf node represents a key.
→ Keys are stored implicitly and can be

reconstructed from paths.

68

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

15-445/645 (Spring 2025)

TRIE INDEX

Use a digital representation of keys to
examine prefixes one-by-one.
→ aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
→ Does not depend on existing keys or

insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity
where k is the length of the key.
→ Path to a leaf node represents a key.
→ Keys are stored implicitly and can be

reconstructed from paths.

68

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

15-445/645 (Spring 2025)

TRIE KEY SPAN

The span of a trie level is the number of bits that
each partial key / digit represents.
→ If the digit exists in the corpus, then store a pointer to the

next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the
physical height of the tree.
→ n-way Trie = Fan-Out of n

73

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

1-bit Span Trie

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 10x

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

Repeat 10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤
¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤
¤ ¤

Ø ¤
Ø ¤

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

TRIE KEY SPAN
Keys: K10,K25,K31

74

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

Repeat 10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤
¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤
¤ ¤

Ø ¤
Ø ¤

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

RADIX TREE

Vertically compressed trie that
compacts nodes with a single child.
→ Also known as Patricia Trie.

Can produce false positives, so the
DBMS always checks the original
tuple to see whether a key matches.

85

1-bit Span Radix Tree

¤ Ø

¤ Ø

¤ ¤
Ø ¤
¤ ¤

Repeat 10x

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

RADIX TREE

Vertically compressed trie that
compacts nodes with a single child.
→ Also known as Patricia Trie.

Can produce false positives, so the
DBMS always checks the original
tuple to see whether a key matches.

85

1-bit Span Radix Tree

¤ Ø

¤ Ø

¤ ¤
Ø ¤
¤ ¤

Repeat 10x

Tuple

Pointer

Node

Pointer

15-445/645 (Spring 2025)

RADIX TREE: MODIFICATIONS
87

¤

ELLO

¤

T

¤

VE

H

A

Insert HAIR

Delete HAT

Delete HAVE

15-445/645 (Spring 2025)

RADIX TREE: MODIFICATIONS
87

¤

ELLO

¤

T

¤

VE

H

A

Insert HAIR

Delete HAT

Delete HAVE

15-445/645 (Spring 2025)

RADIX TREE: MODIFICATIONS
87

¤

ELLO

¤

T

¤

VE

H

A

¤

IR

Insert HAIR

Delete HAT

Delete HAVE

15-445/645 (Spring 2025)

RADIX TREE: MODIFICATIONS
87

¤

ELLO

¤

T

¤

VE

H

A

¤

IR

Insert HAIR

Delete HAT

Delete HAVE

15-445/645 (Spring 2025)

RADIX TREE: MODIFICATIONS
87

¤

ELLO

¤

T

¤

VE

H

A

¤

IR

Insert HAIR

Delete HAT

Delete HAVE

15-445/645 (Spring 2025)

RADIX TREE: MODIFICATIONS
87

¤

ELLO

¤

VE

H

A

¤

IR

Insert HAIR

Delete HAT

Delete HAVE

15-445/645 (Spring 2025)

RADIX TREE: MODIFICATIONS
87

¤

ELLO

¤

VE

H

A

¤

IR

Insert HAIR

Delete HAT

Delete HAVE

15-445/645 (Spring 2025)

RADIX TREE: MODIFICATIONS
87

¤

ELLO

H

A

¤

IR

Insert HAIR

Delete HAT

Delete HAVE

15-445/645 (Spring 2025)

RADIX TREE: MODIFICATIONS
87

¤

ELLO

H

A

¤

IR

Insert HAIR

Delete HAT

Delete HAVE

15-445/645 (Spring 2025)

RADIX TREE: MODIFICATIONS
87

¤

ELLO

H

A

Insert HAIR

Delete HAT

AIR

¤
Delete HAVE

15-445/645 (Spring 2025)

OBSERVATION

The indexes that we've discussed are
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and

September 2024.

They are not good at keyword
searches:
→ Example: Find all Wikipedia articles that

contain the word "Pavlo"

97

15-445/645 (Spring 2025)

OBSERVATION

The indexes that we've discussed are
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and

September 2024.

They are not good at keyword
searches:
→ Example: Find all Wikipedia articles that

contain the word "Pavlo"

97

15-445/645 (Spring 2025)

OBSERVATION

The indexes that we've discussed are
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and

September 2024.

They are not good at keyword
searches:
→ Example: Find all Wikipedia articles that

contain the word "Pavlo"

97

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island,
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

15-445/645 (Spring 2025)

OBSERVATION

The indexes that we've discussed are
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and

September 2024.

They are not good at keyword
searches:
→ Example: Find all Wikipedia articles that

contain the word "Pavlo"

97

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island,
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

CREATE INDEX idx_rev_cntnt
 ON revisions (content);

SELECT pageID FROM revisions
 WHERE content LIKE '%Pavlo%';

15-445/645 (Spring 2025)

INVERTED INDEX

An inverted index stores a mapping
of terms to records that contain those
terms in the target attribute.
→ Sometimes called a full-text search index.
→ Originally called a concordance (1200s).

Many major DBMSs support these
natively. But there are also specialized
DBMSs and libraries.

101

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island,
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Concordance_(publishing)

15-445/645 (Spring 2025)

INVERTED INDEX

An inverted index stores a mapping
of terms to records that contain those
terms in the target attribute.
→ Sometimes called a full-text search index.
→ Originally called a concordance (1200s).

Many major DBMSs support these
natively. But there are also specialized
DBMSs and libraries.

101

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island,
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

Wu-Tang|2

Carnegie|3

Database|2

Dictionary

⋮

11 44

22 4433

33 44

Posting Lists

https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Concordance_(publishing)

15-445/645 (Spring 2025)

INVERTED INDEX

An inverted index stores a mapping
of terms to records that contain those
terms in the target attribute.
→ Sometimes called a full-text search index.
→ Originally called a concordance (1200s).

Many major DBMSs support these
natively. But there are also specialized
DBMSs and libraries.

101

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island,
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

Wu-Tang|2

Carnegie|3

Database|2

Dictionary

⋮

11 44

22 4433

33 44

Posting Lists

Term /

Frequency

https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Concordance_(publishing)

15-445/645 (Spring 2025)

INVERTED INDEX

An inverted index stores a mapping
of terms to records that contain those
terms in the target attribute.
→ Sometimes called a full-text search index.
→ Originally called a concordance (1200s).

Many major DBMSs support these
natively. But there are also specialized
DBMSs and libraries.

101

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island,
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

Wu-Tang|2

Carnegie|3

Database|2

Dictionary

⋮

11 44

22 4433

33 44

Posting Lists

Term /

Frequency

https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Concordance_(publishing)

15-445/645 (Spring 2025)

INVERTED INDEX: LUCENE

Uses a Finite State Transducer for
determining offset of terms in
dictionary.
Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

102

Dictionary

BR1

BRAV2

PAV3

PLA4

http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Spring 2025)

INVERTED INDEX: LUCENE

Uses a Finite State Transducer for
determining offset of terms in
dictionary.
Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

102

Dictionary

BR1

BRAV2

PAV3

PLA4

B

weight=1

P

weight=2

A

weight=1
R

weight=0

A

weight=1

A

weight=0

L

weight=2

V

weight=0

http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Spring 2025)

INVERTED INDEX: LUCENE

Uses a Finite State Transducer for
determining offset of terms in
dictionary.
Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

102

Dictionary

BR1

BRAV2

PAV3

PLA4

B

weight=1

P

weight=2

A

weight=1
R

weight=0

A

weight=1

A

weight=0

L

weight=2

V

weight=0

Find PAV

Offset= 0

http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Spring 2025)

INVERTED INDEX: LUCENE

Uses a Finite State Transducer for
determining offset of terms in
dictionary.
Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

102

Dictionary

BR1

BRAV2

PAV3

PLA4

B

weight=1

P

weight=2

A

weight=1
R

weight=0

A

weight=1

A

weight=0

L

weight=2

V

weight=0

Find PAV

Offset= 2

http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Spring 2025)

INVERTED INDEX: LUCENE

Uses a Finite State Transducer for
determining offset of terms in
dictionary.
Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

102

Dictionary

BR1

BRAV2

PAV3

PLA4

B

weight=1

P

weight=2

A

weight=1
R

weight=0

A

weight=1

A

weight=0

L

weight=2

V

weight=0

Find PAV

Offset= 3

http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Spring 2025)

INVERTED INDEX: LUCENE

Uses a Finite State Transducer for
determining offset of terms in
dictionary.
Incrementally create dictionary
segments and then merge them in the
background.
→ Uses compression methods we previously

discussed (e.g., delta, bit packing).
→ Also supports precomputed aggregations

for terms and occurrences.

102

Dictionary

BR1

BRAV2

PAV3

PLA4

B

weight=1

P

weight=2

A

weight=1
R

weight=0

A

weight=1

A

weight=0

L

weight=2

V

weight=0

Find PAV

Offset= 3

http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

15-445/645 (Spring 2025)

INVERTED INDEX: POSTGRESQL

PostgreSQL's Generalized Inverted

Index (GIN) uses a B+Tree for the
term dictionary that map to a posting
list data structure.
Posting list contents varies depending
on number of records per term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to
avoid incremental updates.

103

Dictionary

mod log

Pending List

https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html

15-445/645 (Spring 2025)

INVERTED INDEX: POSTGRESQL

PostgreSQL's Generalized Inverted

Index (GIN) uses a B+Tree for the
term dictionary that map to a posting
list data structure.
Posting list contents varies depending
on number of records per term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to
avoid incremental updates.

103

Posting List

Dictionary

mod log

Pending List

https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html

15-445/645 (Spring 2025)

INVERTED INDEX: POSTGRESQL

PostgreSQL's Generalized Inverted

Index (GIN) uses a B+Tree for the
term dictionary that map to a posting
list data structure.
Posting list contents varies depending
on number of records per term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to
avoid incremental updates.

103

Posting List

Dictionary

mod log

Pending List

Posting List

https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html

15-445/645 (Spring 2025)

INVERTED INDEX: POSTGRESQL

PostgreSQL's Generalized Inverted

Index (GIN) uses a B+Tree for the
term dictionary that map to a posting
list data structure.
Posting list contents varies depending
on number of records per term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to
avoid incremental updates.

103

Posting Tree

Posting List

Dictionary

mod log

Pending List

Posting List

https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html

15-445/645 (Spring 2025)

INVERTED INDEX: POSTGRESQL

PostgreSQL's Generalized Inverted

Index (GIN) uses a B+Tree for the
term dictionary that map to a posting
list data structure.
Posting list contents varies depending
on number of records per term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to
avoid incremental updates.

103

Posting Tree

Posting List

Dictionary

mod log

Pending List

Posting List

https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html

15-445/645 (Spring 2025)

INVERTED INDEX: POSTGRESQL

PostgreSQL's Generalized Inverted

Index (GIN) uses a B+Tree for the
term dictionary that map to a posting
list data structure.
Posting list contents varies depending
on number of records per term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to
avoid incremental updates.

103

Posting Tree

Posting List

Dictionary

mod log

Pending List

Posting List

https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html

15-445/645 (Spring 2025)

OBSERVATION

Inverted indexes search data based on its contents.
→ There is a little magic to tweak terms based on linguistic

models.
→ Example: Normalization ("Wu-Tang" matches "Wu Tang").

Instead of searching for records containing exact
keywords (e.g., "Wu-Tang"), an application may
want search for records that are related to topics
(e.g., "hip-hop groups with songs about slinging").

117

15-445/645 (Spring 2025)

VECTOR INDEXES

Specialized data structures to perform nearest-
neighbor searches on embeddings.
→ An embedding is an array of floating point numbers.
→ May also need to filter data before / after vector searches.

The correctness of a query depends on whether the
result "feels right".

118

15-445/645 (Spring 2025)

VECTOR INDEXES: INVERTED FILE

Partition vectors into smaller groups
using a clustering algorithm.
To find a match, use same clustering
algorithm to map into a group, then
scan that group's vectors.
→ Also check nearby groups to improve

accuracy.

Preprocess / quantize vectors to
reduce dimensionality.
Example: IVFFlat

119

Source: Chi Zhang

https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Spring 2025)

VECTOR INDEXES: INVERTED FILE

Partition vectors into smaller groups
using a clustering algorithm.
To find a match, use same clustering
algorithm to map into a group, then
scan that group's vectors.
→ Also check nearby groups to improve

accuracy.

Preprocess / quantize vectors to
reduce dimensionality.
Example: IVFFlat

119

Source: Chi Zhang

https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Spring 2025)

VECTOR INDEXES: INVERTED FILE

Partition vectors into smaller groups
using a clustering algorithm.
To find a match, use same clustering
algorithm to map into a group, then
scan that group's vectors.
→ Also check nearby groups to improve

accuracy.

Preprocess / quantize vectors to
reduce dimensionality.
Example: IVFFlat

119

Source: Chi Zhang

https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Spring 2025)

VECTOR INDEXES: INVERTED FILE

Partition vectors into smaller groups
using a clustering algorithm.
To find a match, use same clustering
algorithm to map into a group, then
scan that group's vectors.
→ Also check nearby groups to improve

accuracy.

Preprocess / quantize vectors to
reduce dimensionality.
Example: IVFFlat

119

Source: Chi Zhang

https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Spring 2025)

VECTOR INDEXES: NAVIGABLE SMALL WORLDS

Build a graph where each node
represents a vector and it has edges to
its n nearest neighbors.
→ Can use multiple levels of graphs (HNSW)

To find a match for a given vector,
enter the graph and then greedily
choose the next edge that moves
closer to that vector.

Example: Faiss, hnswlib

120

Source: Chi Zhang

https://en.wikipedia.org/wiki/Hierarchical_navigable_small_world
https://faiss.ai/
https://github.com/nmslib/hnswlib
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Spring 2025)

VECTOR INDEXES: NAVIGABLE SMALL WORLDS

Build a graph where each node
represents a vector and it has edges to
its n nearest neighbors.
→ Can use multiple levels of graphs (HNSW)

To find a match for a given vector,
enter the graph and then greedily
choose the next edge that moves
closer to that vector.

Example: Faiss, hnswlib

120

Source: Chi Zhang

https://en.wikipedia.org/wiki/Hierarchical_navigable_small_world
https://faiss.ai/
https://github.com/nmslib/hnswlib
https://skyzh.github.io/write-you-a-vector-db

15-445/645 (Spring 2025)

CONCLUSION

We will see filters again this semester.
B+Trees are still the way to go for tree indexes.

Inverted indexes are covered in CMU 11-442.

We did not discuss geo-spatial tree indexes:
→ Examples: R-Tree, Quad-Tree, KD-Tree
→ This is covered in CMU 15-826.

125

https://boston.lti.cs.cmu.edu/classes/11-642/
https://db.cs.cmu.edu/courses/

15-445/645 (Spring 2025)

NEXT CLASS

How to make indexes thread-safe!

126

