Carnegie Mellon University

Database
Systems

Index Concurrency
Control

15-445/645 SPRING 2025)) PROF. JIGNESH PATEL

ADMINISTRIVIA

Project #2 out; due Sunday March 2™ @ 11:59pm
— Don't forget to do a GitHub “pull” before starting.
— Recitation on Wednesday Feb. 19 4:00-5:00 pm, GHC 5117.

Homework #3 (indices and filters) due Sunday Feb 23® @11:59pm.

Mid-term Exam on Wednesday Feb 26™
— In-class; in this room.
— Study guide is available online. What to bring to the exam?
* Your CMU ID (Mandatory)
* A calculator is recommended (e.g., logarithms)
* A single letter-size page of handwritten notes. You may use both sides.

$ZCMU-DB

15-445/645 (Spring 2025)

https://15445.courses.cs.cmu.edu/spring2025/midterm-guide.html

UPCOMING DATABASE TALK

TUM (DB Seminar)

Towards Sanity in Query Languages
— Monday Feb 17% @ 4:30pm ET

— https://cmu.zoom.us/j/93441451665

£CMU-DB

15-445/645 (Spring 2025)

https://db.cs.cmu.edu/events/sql-death-towards-sanity-in-query-languages/

£CMU-DB

15-445/645 (Spring 2025)

OBSERVATION

We (mostly) assumed all the data structures that we
have discussed so far are single-threaded.

A modern DBMS needs to allow multiple threads to

safely access data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

$ZCMU-DB

15-445/645 (Spring 2025)

OBSERVATION

We (mostly) assumed all the data structures that we
have discussed so far are single-threaded.

A modern DBMS needs to allow multiple threads to

safely access data structures to take advantage of
additional CPU cores and hide disk I/O stalls.

k They Don't Do This!

VYOLUTDB KX

Redles [-Store

£CMU-DB

15-445/645 (Spring 2025)

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:

— Logical Correctness: Can a thread see the data that it is
supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?

CONCURRENCY CONTROL

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:
— Logical Correctness: Can a thread see the data that it is
supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?

£CMU-DB

15-445/645 (Spring 2025)

TODAY'S AGENDA

Latches Overview
Hash Table Latching
B+Tree Latching

[Leaf Node Scans
Project #2 Announcement

£CMU-DB

15-445/645 (Spring 2025)

LOCKS VS. LATCHES

Locks (Transactions)

— Protect the database's logical contents from other
transactions.

— Held for transaction's duration.

— Need to be able to rollback changes.

Latches (Workers)

— Protect the critical sections of the DBMS's internal data
structure from other workers (e.g., threads).

— Held for operation duration.

— Do not need to be able to rollback changes.

£CMU-DB

15-445/645 (Spring 2025)

LOCKS VS. LATCHES

Locks Latches
Separate... Transactions Workers (threads, processes)
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure

Source: Goetz Graefe

£CMU-DB

15-445/645 (Spring 2025)

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

Lecture #15 ’,

LOCKS VS. LATCHES

Locks Latches
Separate... Transactions Workers (threads, processes)
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Read, Write
Intention
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure

Source: Goetz Graefe

$ZCMU-DB

15-445/645 (Spring 2025)

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

LATCH MODES

Read Mode

_, Multiple threads can read the same object — e
1t the same time. ~ Compatibility Matrix

— A thread can acquire the read latch if Read Write
another thread has it in read mode. Read| %

Write Mode Write| X X

— Only one thread can access the object. s
— A thread cannot acquire a write latch if
another thread has it in any mode.

£CMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATION GOALS

Small memory footprint.
Fast execution path when no contention.
Decentralized management of latches.

Avoid expensive system calls.

Source: Filip Pizlo
£CMU-DB

15-445/645 (Spring 2025)

https://webkit.org/blog/6161/locking-in-webkit/

Source: Filip Pizlo
£2CMU-DB

15-445/645 (Spring 2025)

LATCH |

Measuring.

First off, spinlocks can only be used if You actually knoy you're not being Scheduled while using them. Byt the blog post author seems to be
O I' implementing his own spinlocks jn user space with No regard for Whether the lock user might be scheduled or not. And the code used for the
S m al II)- e m Y Claimed "lock not held" timing is complete garbage.

* That's pure garbage. What happens s that
F ast eXe Cutlo n (a) since you're Spinning, you're using CPU time
(b)ata random time, the scheduler wij| schedule you out
(c) that random time might ne just after you reaqd the "current time", but before yoy actually releaseq the spinlock.

.
D ecentrallzed So now you stij| hold the lock, byt You got scheduleq away from the cpy, because yoy hag used up your time slice. The "current time" yoy

read is basically now stale, and hag nothing to do with the (future) time when you are actually going to release the lock.

AVO id eXP en S the time ang says "oh, g longyﬁme Passed without the lock being held at all",

https://webkit.org/blog/6161/locking-in-webkit/

LATCH |

Measuring.

First off, spinlocks can only be used jf You actually knoy you're not being Scheduled while using them. Byt the blog post author seems to be
O I' implementing his own spinlocks in user space with No regard for Whether the lock user might be scheduled or not. And the code used for the
S m al II]- e m Y Claimed "lock not held" timing is complete garbage.

tiO n That's pure garbage. What happens s that
F aSt exe Cu (a) since you're Spinning, you're using CPU time
(b)ata random time, the scheduler wij| schedule you out

. /1 (c) that random time might ne st aftar
Noacantyraliza

me" you

ou

= i Ser Spacea unless y it's still

- t use spinlocks in u thatthe

I repeat. izonx What you're dOIng. And 'be a-Ws;eSiCa“y nil' d to your

alftlt'li?"gd that you know what you are doing is n
likeliho

T YOUVETY'MUch can do them like that, and when you do
nsical values, because What you are Mmeasuring js "| have a lot of busywork,
TS PTOT are PU-bound, and I'm Measuring random points of how long the scheduler kept the Process in place".

And then You write a blog-post biamings others, not understanding that it's your incorrect code that js garbage, and js giving random garbage
es.

Source: Filip Pizlo
$2CMU-DB

15-445/645 (Spring 2025)

https://webkit.org/blog/6161/locking-in-webkit/

LATCH IMPLEMENTATIONS

Test-and-Set Spinlock
Blocking OS Mutex
Reader-Writer Locks

Advanced approaches:

— Adaptive Spinlock (Apple ParkingLot)
— Queue-based Spinlock (MCS Locks)
— Optimistic Lock Coupling (The Germans)

£CMU-DB

15-445/645 (Spring 2025)

https://webkit.org/blog/6161/locking-in-webkit/
https://lwn.net/Articles/590243/
https://sites.computer.org/debull/A19mar/p73.pdf

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH | Locking in WebKit

May 6, 2016 by F lip Pizlo @filpizlo

Back in August 2015 we replaced all spinlocks and OS-pro

WTF::Lock (WTF stands for Web Template Framework).
variables with WTF: :Condition

Test-and-Set Spinlo
Blocking OS Mutex
Reader-Writer Loc

vided mutexes in WebKit with the new

We also replaced all OS-provided condition
. These new primitives have Some cool properties:

Advanced approac
— Adaptive Spinlock
— Queue-based Spinlg
— Optimistic Lock Ca

https://webkit.org/blog/6161/locking-in-webkit/
https://lwn.net/Articles/590243/
https://sites.computer.org/debull/A19mar/p73.pdf

LATCH |

Test-and-Set Spinlo
Blocking OS Mutex
Reader-WTriter Loc

Locking in WebKit

May 6, 2016 by F lip Piz

0 @filpizlo
Back in August 2015 we replaced

WTF::Lock (WTF stands for We
variables with

all spinlocks ang OS-provided Mmutexes in WebKit with the new
b Template Framework). We also replaced al| OS-provided condition

WTF: :Condition . These new primitives have Some cool properties:

- OS mutexes often require 64 byt
there’s rarely an excuse for not h

aving one, or even multiple, fine-grained locks in any object that
has things that need to be synchronized.
2. WTF::Lock is super fast in the case that matters most- 1incans Ltion. Parallel
nroac B— that a mature
Adwanced an WTF: :Lock is 64 times smaller and up to 180
Compared to OS-provided locks like pthread_mutex , "

::Condition is y,
iti i i hread_cond , WTF::Con
i dition variables like pt B k !
i red to OS-provided con e —
P CI:Iomea' g WTF::Lock instead of pthread_mutex means thattWebK
imes smaller. Usin o il
?4t2':neam 5% faster on Speedometer, and 5% faster on our page lo g
etolr , O/0

Lock() when
leads are

ntended and
pe lock will

€ommon kind of

$ZCMU-DB

15-445/645 (Spring 2025)

https://webkit.org/blog/6161/locking-in-webkit/
https://lwn.net/Articles/590243/
https://sites.computer.org/debull/A19mar/p73.pdf

£CMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #1: Test-and-Set Spin Latch (TAS)
— Very efficient (single instruction to latch/unlatch)

— Non-scalable, not cache friendly, not OS friendly.

— Example: std: :atomic<T>

LATCH IMPLEMENTATIONS

Approach #1: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache friendly, not OS friendly.
— Example: std: :atomic<T>

std':atomic<bool>

std: :atomic_flag latch;

while (latch.test_and_set(..)) {
// Retry? Yield? Abort?

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #1: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache friendly, not OS friendly.
— Example: std: :atomic<T>

std':atomic<bool>

std: :atomic_flag latch;

oD oD
while (latch.test_and_set(..)) { g
// Retry? Yield? Abort?

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #1: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache friendly, not OS friendly.
— Example: std: :atomic<T>

std':atomic<bool>

std: :atomic_flag latch;

while (latch.test_and_set(..)) {
// Retry? Yield? Abort?

$ZCMU-DB

15-445/645 (Spring 2025)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

20

__sync_bool_compare_and_swap(&M, 20, 30)

£CMU-DB

15-445/645 (Spring 2025)

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

New

M Address Value

2@ __sync_bool_compare_and_swap(&M, 20, 30)
Compare

£CMU-DB Value

15-445/645 (Spring 2025)

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

20

__sync_bool_compare_and_swap(&M, 20, 30)

£CMU-DB

15-445/645 (Spring 2025)

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— [f values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

20

__sync_bool_compare_and_swap(&M, 20, 30)

$ZCMU-DB

15-445/645 (Spring 2025)

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V’ in M
— Otherwise, operation fails

See C++11 Atomics

30

£CMU-DB

15-445/645 (Spring 2025)

__sync_bool_compare_and_swap(&M, 20, 30) V

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

£CMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use
— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex

std: :mutex m;

milock();

// Do something special. ..
m.unlock();

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)
— Example: std: :mutex —spthread_mutex_t

std: :mutex m;

milock();

// Do something special. ..
m.unlock();

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex —spthread_mutex_t — futex

std: :mutex m;

milock();

// Do something special. ..
m.unlock();

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex —spthread_mutex_t — futex

B OS Latch
std: :mutex m; g Userspace Latch

milock();

// Do something special. ..
m.unlock();

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex —spthread_mutex_t — futex

B OS Latch
std: :mutex m; g Userspace Latch

oo

milock();

// Do something special. ..
m.unlock();

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex —spthread_mutex_t — futex

B OS Latch
std: :mutex m; g Userspace Latch

4 ¥

milock();

// Do something special. ..
m.unlock();

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex —spthread_mutex_t — futex

B OS Latch
std: :mutex m; g Userspace Latch
m.lock(); ﬁ i

// Do something special. ..
m.unlock();

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex —spthread_mutex_t — futex

B OS Latch
std: :mutex m; g Userspace Latch
m.lock(); ﬁ i g

// Do something special. ..
m.unlock();

$ZCMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write
queues to avoid starvation.

— Can be implemented on top of spinlocks.

— Example: std: : shared_mutex

£CMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write
queues to avoid starvation.

— Can be implemented on top of spinlocks.

— Example: std: : shared_mutex — pthread_rwlock_t

£CMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

»pthread_cond_t

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

read
¥-0
X =0

»pthread_cond_t

o o

write

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

o

o

read

-0
X =0

»pthread_cond_t

wrlte

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

o

o
read

-0
X =0

»pthread_cond_t

wrlte

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

o

#—
read

=1
X =0

»pthread_cond_t

wrlte

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

o

£-43—

read

=1
X =0

»pthread_cond_t

wrlte

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

o

£i-43—

read

=2
X =0

»pthread_cond_t

wrlte

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

£i-43—

read

=2
X =0

»pthread_cond_t

o ﬁ—

wrlte

o

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

£i-43—

read

=2
X =0

»pthread_cond_t

o ﬁ—

wrlte

ﬁ

$ZCMU-DB

15-445/645 (Spring 2025)

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

Latch

£-4-6—

read

=2
X =0

»pthread_cond_t

o ﬁ—

wrlte

ﬁ

LATCH IMPLEMENTATIONS

Approach #3: Reader-Writer Latches

— Allows for concurrent readers. Must manage read/write

queues to avoid starvation.

» pthread_mutex_t

— Can be implemented on top of spinlocks.
— Example: std: : shared_mutex — pthread_rwlock_t

g a a Latch

$ZCMU-DB

15-445/645 (Spring 2025)

a3

read

-2
X =1

»pthread_cond_t

o ﬁ—

wrlte

ﬁ

£CMU-DB

15-445/645 (Spring 2025)

HASH TABLE LATCHING

Easy to support concurrent access due to the limited

ways threads access the data structure.
— All threads move in the same direction and only access a

single page/slot at a time.
— Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).

£CMU-DB

15-445/645 (Spring 2025)

HASH TABLE LATCHING

Approach #1: Page/Block Latches

— Each page/block has its own reader-writer latch that
protects its entire contents.

— Threads acquire either a read or write latch before they
access a page/block.

Approach #2: Slot Latches

— Each slot has its own latch.

— Can use a single-mode latch to reduce meta-data and
computational overhead.

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D
hash(D)
\ A|value
C|value
D | value
SCMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D)
hash(D)
\ A|value
C|value
D | value
SCMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D
hash(D) nrt
- A|value
C|value
D | value
SCMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D) T,: Insert E
hash(D) ~ hash(E)
5
A|value
C|value

D | value

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D) T,: Insert E
hash(D) ~ hash(E)
o
Al value /
C|value

D | value

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D E T,: Insert E
hash(D) hash(E)
o
Al value /
C|value

D | value

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value

T; Find D E T,: Insert E

hash(D) hash(E)
Al value /

»| C|value

D | value

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value

T; Find D E T,: Insert E
hash(D) hash(E)
Al value /
C|value

» D|value

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value

T; Find D E T,: Insert E
hash(D) hash(E)
Al value /
C|value

» D|value

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE:

PAGE/BLOCK LATCHES

B|value

It’s safe to release the
latch on Page #1.

T; Find D

hash(D)

A|value

C|value

E T,: Insert E

/ hash(E)

D | value

HASH TABLE: PAGE/BLOCK LATCHES

B|value

T; Find D E T,: Insert E

hash(D) hash(E)
Al value /
C|value

» D|value

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value

T; Find D E T,: Insert E

hash(D) hash(E)
A|value /
C|value

D | value

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value

T; Find D
hash(D)

T,: Insert E
hash(E)

A|value

C|value *

D | value

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

D|value « g

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

D|value « g

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

-

D|value « g

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

-

D | value h

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: PAGE/BLOCK LATCHES

B|value
T; Find D T,: Insert E
hash(D) hash(E)
A|value
@a C|value
D | value
E|value I«
SCMU-DB

15-445/645 (Spring 2025)

HASH TABLE: SLOT LATCHES

T; Find D

B|value

hash(D) \

A|value

C|value

D | value

T,: Insert E
hash(E)

HASH TABLE: SLOT LATCHES

B|value
T; Find D T,: Insert E
hash(D) @6 hash(E)
A | value
C|value

D | value

HASH TABLE: SLOT LATCHES

B|value
T; Find D T,: Insert E
hash(D) O hash(E)
B 0A | value
C|value
D | value
£=CMU-DB

HASH TABLE: SLOT LATCHES

B|value
T; Find D T,: Insert E
hash(D) O hash(E)
B BA | value /
C|value
D | value
£=CMU-DB

HASH TABLE: SLOT LATCHES

B|value
T; Find D T,: Insert E
hash(D) O hash(E)
"N Al .
C | value@
D | value
£=CMU-DB

HASH TABLE: SLOT LATCHES

B|value
T; Find D T,: Insert E
hash(D) O hash(E)
='qrp
g C | value@
D | value
SCMU-DB

15-445/645 (Spring 2025)

HASH TABLE: SLOT LATCHES

B|value
T; Find D
hay’ ; £ \safe to release the
latch on A A |
W
C|valu
D | value

T,: Insert E
hash(E)

HASH TABLE: SLOT LATCHES

B|value
T; Find D T,: Insert E
hash(D) hash(E)
Al
g C|valu
D | value
SCMU-DB

15-445/645 (Spring 2025)

HASH TABLE: SLOT LATCHES

B|value

T; Find D T,: Insert E
hash(D) hash(E)
A|value

g »| C|value

e

$2CMU-DB

15-445/645 (Spring 2025)

T; Find D
hash(D)

HASH TABLE: SLOT LATCHES

B|value

n A|value
W QC|value
D Iﬁ

T,: Insert E
hash(E)

HASH TABLE: SLOT LATCHES

B|value
T; Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

T W ot

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: SLOT LATCHES

B|value
T; Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

15-445/645 (Spring 2025)

HASH TABLE: SLOT LATCHES

B|value
T; Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

E%

$2CMU-DB

15-445/645 (Spring 2025)

HASH TABLE: SLOT LATCHES

B|value
T; Find D T,: Insert E
hash(D) hash(E)
A|value
C|value

8015y

E | valueg

£CMU-DB

15-445/645 (Spring 2025)

B+TREE CONCURRENCY CONTROL

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

B+TREE MULTI-THREADED EXAMPLE

20 A

/

10 35 B

6 12 H{ Cks 44| /D

PACIA S TAN

11712[137120|221123|311135[36[138
E F G H I

w
N
| |
(0))]
(o)
—
S

$2CMU-DB

15-445/645 (Spring 2025)

L8
B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/

10 35 B

6 12 H{ Cks 44| /D

41 6|9 H10[11H12[13H20|22H23|31H35|36H 38|41 44])

E F G H I

w

$2CMU-DB

15-445/645 (Spring 2025)

B+TREE MULTI-THREADED EXAMPLE

%] JA 4m T;: Delete 44

/

10 35 B

6 12 H{ Cks 44| /D

41 6|9 H10[11H12[13H20|22H23|31H35|36H 38|41 44])

E F G H I

w

$2CMU-DB

15-445/645 (Spring 2025)

B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/

10 35 B

6 12 H{ Cks 44| /D

41 6|9 H10[11H12[13H20|22H23|31H35|36H 38|41 44]) «

E F G H I

w

$2CMU-DB

15-445/645 (Spring 2025)

L
B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/

10 35 B

6 12 H{ Cks 44| /D

A LA LA AN

11712[137120|221123|311135[36[138
E F G H I

w
N
| |
(0))]
(o)
—
S

$2CMU-DB

15-445/645 (Spring 2025)

i
B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/

10 35 B

6 12 H{ Cks 44| /D

VA VA \r

11712[137120|221123|311135[36[138 «
E F G H I

w
N
| |
(0))]
(o)
—
S

$2CMU-DB

15-445/645 (Spring 2025)

B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/

10 35 B

6 12 H{ Cks 44| /D

VA VA E

11712]137720|221123|311135|36738|4 «
E F G H

w
N
| |
(0))]
(o)
—
S

$2CMU-DB

15-445/645 (Spring 2025)

B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/

10 35 B

6 12 H‘23/ Cks 44| /D

VA VA E

1MA12113M™20(22023|3135|3638|4 «g

E F G H

w
N
| |
(0))]
(o)
—
S

$2CMU-DB

15-445/645 (Spring 2025)

B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/ T,: Find 41

10 35 B

6 12 H‘23/ Cks 44| /D

\/ \, l \, / x j Rebalance!

11512131 20|22 23|31 35|36 {3441} «g

E F G H I

w
N
| |
(0))]
(o)
—
S

"CMU -DB

e
B+TREE MULTI-THREADED EXAMPLE

o]]A 4m T;: Delete 44

/ T,: Find 41

10 35 B

6 12 H‘23/ Cks 44| /D

\/ \, l \, / x j Rebalance!

3|4ff6]9H10/11H12|13(H20]22H23[31H35|36H 3841} «g

E F G H I

$2CMU-DB

15-445/645 (Spring 2025)

B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/ T,: Find 41

10 35 B

6 12 H‘23/ Cks 44 D«

\/ \, l \, / x j Rebalance!

3|4ff6]9H10/11H12|13(H20]22H23[31H35|36H 3841} «g

E F G H I

$2CMU-DB

15-445/645 (Spring 2025)

L%
B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/ T,: Find 41

10 35 B

AT —

\/ \, l \, / x j Rebalance!

3|4ff6]9H10/11H12|13(H20]22H23[31H35|36H 3841} «
E F G H I

$2CMU-DB

15-445/645 (Spring 2025)

B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/ T,: Find 41

10 35 B

AT —

j \l l \ / Xl j Rebalance!
1 1 1112113M20(22023|31135(3603 41 «

E F G H I

w
N
(@))]
(o)
—_
S

$2CMU-DB

15-445/645 (Spring 2025)

3
B+TREE MULTI-THREADED EXAMPLE

ol 1A T;: Delete 44

/ T,: Find 41

10 35 B

AT —

40619010(11012({13M20(22R23(31035 36'3&1

E F G H I

w

$2CMU-DB

15-445/645 (Spring 2025)

B+TREE MULTI-THREADED EXAMPLE

/

10

20

12

A

T;: Delete 44
T,: Find 41

35

“

w
N
| |
(o)}
O

117

13

221

23

311

$2CMU-DB

15-445/645 (Spring 2025)

100

LATCH CRABBING/COUPLING

Protocol to allow multiple threads to access/modify

B+Tree at the same time.

— Get latch for parent
— Get latch for child
— Release latch for parent if “safe”

A safe node is one that will not split or merge

when updated.

— Not full (on insertion)
— More than half-full (on deletion)

£CMU-DB

15-445/645 (Spring 2025)

101

LATCH CRABBING/COUPLING

Find: Start at root and traverse down the tree:
— Acquire R latch on child,

— Then unlatch parent.

— Repeat until we reach the leaf node.

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is latched,

check if it is safe:

— If child is safe, release all latches on ancestors.

— Optimization: When at an inner node that is “safe,” release
all latches on ancestors.

£CMU-DB

15-445/645 (Spring 2025)

102

EXAMPLE #1 — FIND 38

o 1A T;: Find 38
1/ 35 B
6 12 H{ Cks 44 ||D
A YR Vg W A5 W
3|406|9H10|11712[13[20 35/36[138|41 44

117 13 2223|311 138

£CMU-DB

15-445/645 (Spring 2025)

103

EXAMPLE #1 — FIND 38

2@ A « T,: Find 38

10 35 B
6 12 H{ Cks 44 ||D
3|406|9H10|11712[13[20 3536 4}14

117 13 2223|311 138

£CMU-DB

15-445/645 (Spring 2025)

104

EXAMPLE #1 — FIND 38

2@ A T,: Find 38

1/ - 35 B«

6 12 H{ Cks 44| /D

1 1 1MA12113M20(22023|31735|36038 4&4

E F G H I

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

105

EXAMPLE #1 — FIND 38

2@ A T,: Find 38

1/ . 35 B«

It is now safe to release
the latch on A.
6 T2 73 C ||38]|44|D

w
N
(@))]
(o)
—_
S

1 1 1MA12113M20(22023|31735|36038 4%4

E F G H I

£CMU-DB

15-445/645 (Spring 2025)

106

EXAMPLE #1 — FIND 38

20 A TIZ Flnd 38

1/ - 35 B«

6 12 H{ Cks 44| /D

1 1 1MA12113M20(22023|31735|36038 4&4

E F G H I

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

107

EXAMPLE #1 — FIND 38

20 A TIZ Flnd 38

/

10 35 B

6 12 H{ B33 || 44 ||D «

1 1 1MA12113M20(22023|31735|36038 4>f4

E F G H I

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

108

EXAMPLE #1 — FIND 38

20 A TIZ Flnd 38

/

10 35 B

6 12 H{ Cks 44| /D

AR BN R
1 1 1MTR12113M™20(22023|31035|36 4&

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

109

EXAMPLE #1 — FIND 38

20 A TIZ Flnd 38

/

10 35 B

6 12 H{ Cks 44| /D

AR BN R
1 1 1MTR12113M™20(22023|31035|36 k

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

110

EXAMPLE #1 — FIND 38

20 A TIZ Flnd 38

/

10 35 B

6 12 H{ Cks 44| /D

1 1 1MTA12113M™20(22023|31135|36Q38 k

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

111

EXAMPLE #2 — DELETE 38

117 13 2223|311 138

o 1A T;: Delete 38
1/ 35 B
6 12 H{ Cks 44 ||D
A YR Vg W A0 W
3|14176|9n10[111112[13[20 35/36[138|41 44

£CMU-DB

15-445/645 (Spring 2025)

112

EXAMPLE #2 — DELETE 38

%2@ A 4@ T;: Delete 38

117 13 2223|311 138

10 35 B
6 12 H{ Cks 44 ||D
3|406|9H10|11712[13[20 3536 4}14

"CMU -DB

113

EXAMPLE #2 — DELETE 38

%ze A T;: Delete 38

1/ - 35 B«

6 12 H‘23/ Cks 44| /D

1 1 1MA12113M20(22023|31735|36038 4%4

E F G H I

w
N
(@))]
(o)
—_
S

"CMU -DB

114

EXAMPLE #2 — DELETE 38

%ze A T;: Delete 38

1/ - 35 B«

(W e may need to coalesce B, so
we cant release the latch on A.
6 12 23 C |[38]||44]||D

1 1101110121131™201221723(31135(36[138 4%4

E F G H I

w
N
(o)}
O

£CMU-DB

15-445/645 (Spring 2025)

115

EXAMPLE #2 — DELETE 38

%ze A T;: Delete 38
/ W

10 35 B

6 12 H‘23/ i|; %38 44| /D «

1 1 1MA12113M20(22023|31735|36038 4%4

E F G H I

w
N
(@))]
(o)
—_
S

"CMU -DB

116

EXAMPLE #2 — DELETE 38

%ze A T;: Delete 38
/ W

10 35 B

6 12 23 38144 ||D «

\/ \l l We know that D will not)
merge with C, so it is safe to
i ! 41 H 44

w
N
(@))]
(o)
—_
S

11 release latches on A and B. |38
E F G H I

£CMU-DB

15-445/645 (Spring 2025)

117

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

/

10 35 B

6 12 23 38144 ||D «

\/ \l l We know that D will not)
merge with C, so it is safe to
i ! 41 H 44

w
N
(@))]
(o)
—_
S

11 release latches on A and B. |38
E F G H I

£CMU-DB

15-445/645 (Spring 2025)

118

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

/

10 35 B

6 12 H{ Cks 44| /D

AR BN w
1 1 1MTR12113M™20(22023|31035|36 4&

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

119

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

/

10 35 B

6 12 H{ Cks 44| /D

AR BN w
1 1 1MTR12113M™20(22023|31035|36 k

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

120

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

/

10 35 B

6 12 H{ Cks 44| /D

AR BN w
1 1 1MTR12113M™20(22023|31035|36 k

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

121

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38
10 35 B
6 12 H{ Cks 44| /D

117 13 2223|311

W e
N

o &
(o)

o [€—
Sl
|

N

()

o €~
w)

(@))

"CMU -DB

122

EXAMPLE #3 — INSERT 45

- A T,: Insert 45
1/ 35 B
6 12 H{ Cks 44 ||D
A YR Vg W A0 W
3|14176|9n10[111112[13[20 35/361138|41144

117 13 2223|311 138

£CMU-DB

15-445/645 (Spring 2025)

123

EXAMPLE #3 — INSERT 45

%ze A T;: Insert 45

1/ - 35 B«

6 12 H‘23/ Cks 44| /D

1 1 1MA12113M20(22023|31735|36038 4%4

E F G H I

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

124

EXAMPLE #3 — INSERT 45

%ze A T;: Insert 45

1/ - 35 B«

We know that if D needs to
split, B has room so it is safe
6 to release the latch on A. C |l38!l44||D
3(406|19010|1112({13120|22R23|31135|36038 4%4

E F G H I

£CMU-DB

15-445/645 (Spring 2025)

125

EXAMPLE #3 — INSERT 45

- A T;: Insert 45

G

10 35 B

6 12 H‘23/ i|; %38 44| /D «

1 1 1MA12113M20(22023|31735|36038 4%4

E F G H I

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

126

EXAMPLE #3 — INSERT 45

- A T;: Insert 45
/ W
10 35 B
6 12 23 38|44 ||D

[V N S

11012(13M120(22023(31135|361038(41
{Node I will not split, so we [

w
N
| |
(0))]
(o)
—
S

can release B+D.
$CMU-DB

15-445/645 (Spring 2025)

127

EXAMPLE #3 — INSERT 45

- A T;: Insert 45

/

10 35 B

6 12 23 C ||38]44|/D

[V N S

11012(13M120(22023(31135|361038(41
{Node I will not split, so we [

w
N
| |
(0))]
(o)
—
S

can release B+D.
$CMU-DB

15-445/645 (Spring 2025)

128

EXAMPLE #3 — INSERT 45

- A T,: Insert 45
/
10 35 B
6 12 23 C |[38]|44||D
AR AR A
314069110111 12[13M20({22123|31135|36738][41

£CMU-DB

15-445/645 (Spring 2025)

{Node I will not split, so we

can release B+D.

129

EXAMPLE #3 — INSERT 45

- A T;: Insert 45

/

10 35 B

6 12 H{ Cks 44| /D

11512131 20|22 23|311{35|36 38|41 f 44{45)

w
N
| |
(0))]
(o)
—
S

£CMU-DB

15-445/645 (Spring 2025)

130

EXAMPLE #4 — INSERT 25

- A T;: Insert 25

/

10 35 B

6 12 H{ Cks 44| /D

PACIA L ST AN

11712[137120|221123|311135[36[138
E F G H I

w
N
| |
(0))]
(o)
—
S

£CMU-DB

15-445/645 (Spring 2025)

131

EXAMPLE #4 — INSERT 25

%2@ A T;: Insert 25

1/ - 35 B«

6 12 H‘23/ Cks 44| /D

PACIA L ST AN

w
N
| |
(0))]
(o)
—
S

11712[137120|221123|311135[36[138
E F G H I

£CMU-DB

15-445/645 (Spring 2025)

132

EXAMPLE #4 — INSERT 25

- A T;: Insert 25

1/ - 35 B«

6 12 H{ Cks 44| /D

PACIA L ST AN

w
N
| |
(0))]
(o)
—
S

11712[137120|221123|311135[36[138
E F G H I

£CMU-DB

15-445/645 (Spring 2025)

133

EXAMPLE #4 — INSERT 25

- A T;: Insert 25

G

10 35 B

w
N
| |
(0))]
(o)
—
S

1MA12113M20(22023|31735|36038

£CMU-DB

15-445/645 (Spring 2025)

134

EXAMPLE #4 — INSERT 25

- A T;: Insert 25

/

10 35 B

w
N
| |
(0))]
(o)
—
S

1MA12113M20(22023|31735|36038

£CMU-DB

15-445/645 (Spring 2025)

135

EXAMPLE #4 — INSERT 25

- A T;: Insert 25

/

10

D

4}4

E G H |

w
N
| |
(o)}
O

£CMU-DB

15-445/645 (Spring 2025)

136

EXAMPLE #4 — INSERT 25

- A T;: Insert 25

/

10 35 B

6 12 3 C ||38]44|/D

) 35|36 38 4}14

A406100701110712 13—20
[We need to split F, so we need to = FI G H [

hold the latch on its parent node.

w

£CMU-DB

15-445/645 (Spring 2025)

137

EXAMPLE #4 — INSERT 25

- A T;: Insert 25

/

10 35 B

117 13 138

“"\
N
o &€
(o)
> [€—
e
N
|
N
®:
N
N
N
A
o)
U'I&
w)
(@))
N
—
i—h/
N

£CMU-DB

15-445/645 (Spring 2025)

138

EXAMPLE #4 — INSERT 25

- A T;: Insert 25

/

10 35 B

W\
N
o €&
(o)
o [€—
Sl
|
N
®:
N
N

111 13 25 35(36138(4144

£CMU-DB

15-445/645 (Spring 2025)

139

EXAMPLE #4 — INSERT 25

- A T;: Insert 25
/
10
6 12
J \ |
3 4'\613 9-1@11-\1‘213 44

£CMU-DB

15-445/645 (Spring 2025)

140

EXAMPLE #4 — INSERT 25

- A T;: Insert 25

/

10 35 B

11R12(1320|22 88|25 31 N35(36 384144

w
N
| |
(0))]
(o)
—
S

£CMU-DB

15-445/645 (Spring 2025)

141

OBSERVATION

What was the first step that all the update examples

$ZCMU-DB

15-445/645 (Spring 2025)

did on the B+ Tree?

s

Delete 38

“%

.

~

~

Insert 45

“%

.

~

~

Insert 25

%

.

142

OBSERVATION

What was the first step that all the update examples

$ZCMU-DB

15-445/645 (Spring 2025)

did on the B+ Tree?

.

s

Delete 38

“%

A

~

J

.

~

Insert 45

“%

A

J

Insert 25

%

.

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

BETTER LATCHING ALGORITHM

Most modifications to a B+ Tree will
not require a split or merge.

Instead of assuming there will be a
split/merge, optimistically traverse
the tree using read latches.

[f a worker guesses wrong, repeat
traversal with pessimistic algorithm.

£CMU-DB

15-445/645 (Spring 2025)

Acta Informatica 9, 1-21 (1977)

Concurrency of Operations on B-Trees

R. Bayer* and M. Schkolnick
IBM Research Laboratory, San José, CA 95193, USA

Summary. Concurrent operations on B-trees pose the problem of insuring
that each operation can be carried out without interfering with other opera-
tions being performed simultancously by other users. This problem can
become critical if these structures are being used to support access paths,
like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.
Thus, there is a need for locking protocols that can assure integrity for each
access while at the same time providing a maximum possible degree of con-
currency. Another feature required from these protocols is that they be
deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned to specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

The solution presented here uses simple locking protocols. Thus, we
conclude that B-trees can be used in a multi-user envi

1. Introduction

In this paper, we examine the problem of concurrent access to indexes which
are maintained as B-trees. This type of organization was introduced by Bayer
and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-
bility of their use in this type of situation [1, 6], and [11].

An accessing schema which achicves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance to the profile of the current set of users. Another property of the
* Permanent address: Institut fiir Informatik der Technischen Universitit Miinchen, Arcisstr. 21,
D-8000 Miinchen 2, Germany (Fed. Rep)

144

BETTER LATCHING ALGORITHM

Search: Same as before.

Insert/Delete:

— Set latches as if for search, get to leaf, and set W latch on
leaf.

— If leaf is not safe, release all latches, and restart thread using
previous insert/delete protocol with write latches.

This approach optimistically assumes that only leaf
node will be modified; if not, R latches set on the
first pass to leaf are wasteful.

£CMU-DB

15-445/645 (Spring 2025)

145

EXAMPLE #2 — DELETE 38

117 13 2223|311 138

o 1A T;: Delete 38
1/ 35 B
6 12 H{ Cks 44 ||D
A YR Vg W A0 W
3|14176|9n10[111112[13[20 35/36[138|41 44

£CMU-DB

15-445/645 (Spring 2025)

146

EXAMPLE #2 — DELETE 38

2@ A « T,: Delete 38

117 13 2223|311 138

10 35 B
6 12 H{ Cks 44 ||D
3|406|9H10|11712[13[20 3536 4}14

£CMU-DB

15-445/645 (Spring 2025)

147

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

1/ - 35 B«

6 12 H{ Cks 44| /D

1 1 1MA12113M20(22023|31735|36038 4&4

E F G H I

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

148

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

/

10 35 B

6 12 H{ B35 || 44 ||D «

1 1 1MA12113M20(22023|31735|36038 4&4

E F G H I

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

149

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

/

10 35 B

117 13

W e~
N

o €
(o)

o [€—
e
N

|

N

()

N

N

N

(@9]

w)

—

o)

o1 -
> =
N

— /

£CMU-DB

15-445/645 (Spring 2025)

150

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

/

10 35 B

6 12 H{ Cks 44| /D

AR BN w
1 1 1MTR12113M™20(22023|31035|36 4&

w
N
(@))]
(o)
—_
S

£CMU-DB

15-445/645 (Spring 2025)

151

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

/

10 35 B

6 12 23 C ||38]44|/D

AR BN w
40619010(11012({1320(22R23(31135|36 k

Node H will not coalesce, I
so were safe!

w

£CMU-DB

15-445/645 (Spring 2025)

152

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

/

10 35 B

6 12 23 C ||38]44|/D

AR BN w
40619010(11012({1320(22R23(31135|36 k

Node H will not coalesce, I
so were safe!

w

£CMU-DB

15-445/645 (Spring 2025)

153

EXAMPLE #2 — DELETE 38

ol 1A T;: Delete 38

/

10 35 B

6 12 H{ Cks 44| /D

LA L LN

1MTR12113M™20(22023|31035|36

Node H will not coalesce, I
so were safe!

w
N
| |
(0))]
(o)
—
S

£CMU-DB

15-445/645 (Spring 2025)

154

EXAMPLE #4 — INSERT 25

- A T,: Insert 25
1/ 35 B
6 12 H{ Cks 44 ||D
A YR Vg W A0 W
3|4H6]|9H10[11112]{1320 35|3638|41[44

117 13 2223|311 138

£CMU-DB

15-445/645 (Spring 2025)

155

EXAMPLE #4 — INSERT 25

- A T;: Insert 25

/

10 35 B

| 1l | 1l | |

We need to split F, so we ol o

have to restart and re- F G H I
execute like before.

w <\
N
=
(@))
| |
=
i—u/
N

£CMU-DB

15-445/645 (Spring 2025)

OBSERVATION

The threads in all the examples so far have acquired

latches in a "top-down" manner.

— A thread can only acquire a latch from a node that is below
its current node.

— If the desired latch is unavailable, the thread must wait
until it becomes available.

But what if threads want to move from one leaf
node to another leaf node?

£CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #1

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #1

T,: Find Keys < 4

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #1

T;: Find Keys < 4
13 A «

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #1

T,: Find Keys < 4

SO

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #1

T,: Find Keys < 4

3 If “Do not release latch on C }

/ until thread has latch on B
1 || 2 |; i 3 || 4

B «C

"CMU -DB

LEAF NODE SCAN EXAMPLE #1

T,: Find Keys < 4

3 If “Do not release latch on C }

until thread has latch on B
}ﬂ HIERD i 3 || 4

B «C

C;CMU -DB

LEAF NODE SCAN EXAMPLE #1

oW

B C

T,: Find Keys < 4

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
T,: Find Keys > 1

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
» : A « T,: Find Keys > 1

VAN

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #2
T,: Find Keys < 4
: A « T,: Find Keys > 1

Y

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
T,: Find Keys > 1

e

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
T,: Find Keys > 1

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
T,: Find Keys > 1

3 A
h12:§|34
B» C

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
: Find Keys > 1
Both T; and T, now hold | Both T; and T, now hold b/
this read latch. this read latch.

4

-
<

B» '«C

£CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
: Find Keys > 1
Both T; and T, now hold | Both T; and T, now hold b/
this read latch. this read latch.

e

£CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #2

T,: Find Keys < 4
[Only T, holds] [Only T, holds] T,: Find Keys > 1

this read latch. | this read latch.
@ﬂﬁ/z s ERIERIE

B C

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
T,: Find Keys > 1

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
» : A « T,: Find Keys > 1

VAN

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #3

o T,: Delete 4
T,: Find Keys > 1
3 A «

Y

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
: A T,: Find Keys > 1
;}ﬂ 1 2 [%3 (De
B C

$2CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4

T— T,: Find Keys > 1
3 [T, cannot acquire]

the read latch on C
;11 2 I §3 (De

B» C

"CMU -DB

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4

T— T,: Find Keys > 1
3 [T, cannot acquire]

the read latch on C
;1 1 11 2 3 -

B C

TZ does not know
what T, is doing...

£CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4

T— T,: Find Keys > 1
3 [T, cannot acquire]

TZ Choices? the read latch on C
1][2 s (D 4

B C

TZ does not know
what T, is doing...

£CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4

T— T,: Find Keys > 1
3 [T, cannot acquire]

TZ Choices? the read latch on C
g Wait
1 1] 2 3 [(+) 4

B C

TZ does not know
what T, is doing...

£CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4

—n T,: Find Keys > 1

5 3 [T, cannot acquire
TZ Choices? the read latch on C]

g Wait
@ Kill Ourself 1] 2 3 «

B C

TZ does not know
what T, is doing...

£CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4

—n T,: Find Keys > 1

5 3 [T, cannot acquire
TZ Choices? the read latch on C]

g Wait
@ Kill Ourself 1] 2 3 «

R4 Kill Other Thread B c
[T, does not know]
what T, is doing...

£CMU-DB

15-445/645 (Spring 2025)

LEAF NODE SCAN EXAMPLE #3

T;: Delete 4
—n T,: Find Keys > 1

3 [T, cannot acquire]

TZ Choices? the read latch on C
@ Kill Ourself h 1 3 «
B C
L 4

T, does not know
what T, is doing...

LEAF NODE SCANS

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed

latch acquisitions.
— Usually transparent to end-user / application.

£CMU-DB

15-445/645 (Spring 2025)

CONCLUSION

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data structures.

£CMU-DB

15-445/645 (Spring 2025)

NEXT CLASS

We are finally going to discuss how to execute some
queries...

£CMU-DB

15-445/645 (Spring 2025)

PROJECT #2

You will build a thread-safe B+tree

backed by your buffer pool manager. +
— Page Layout

— Insert/Delete/Find Operations
— [terator
— Latch Crabbing

(“

We define the API for you. You need
to provide the method W ARNING:

implementations. This is more difficult than Project #1.
Start immediately!

https://15445.courses.cs.cmu.edu/spring2025/project2

$ZCMU-DB

15-445/645 (Spring 2025)

https://15445.courses.cs.cmu.edu/spring2025/project2

£CMU-DB

15-445/645 (Spring 2025)

TASKS

Task #1: Page Layouts

— How each node will store its key/values in a page.
— You only need to support unique keys.

Task #2: Operations

— Support point queries (single key).

— Support inserts with node splitting.

— Support removal of keys with sibling stealing + merging.
— Does not need to be thread-safe.

£CMU-DB

15-445/645 (Spring 2025)

TASKS

Task #3: Index Iterator

— Create a STL iterator for range scans on leaf nodes.
— You only need to support ascending scans.

Task #4: Concurrent Index

— Introduce latch crabbing/coupling protocol to support safe
concurrent operations.

— Make sure you have splits / merges working correctly
before proceeding with this task.

DEVELOPMENT HINTS

Follow the textbook semantics and algorithm:s.

Set the page size to be small (e.g., 512B) when you
first start so that you can see more splits/merges.

Make sure that you protect the internal B+Tree
root_page_id member.

£CMU-DB

15-445/645 (Spring 2025)

EXTRA CREDIT

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class will

receive extra credit for this assignment.
— #1: 50% bonus points

— #2-10: 25% bonus points

— #11-20: 10% bonus points

You must pass all the test cases to qualify!

£CMU-DB

15-445/645 (Spring 2025)

PLAGIARISM WARNING ’@’

The homework and projects must be your own
original work. They are not group assignments.

You may not copy source code from other people or
the web.

Plagiarism is not tolerated. You will get lit up.
— Please ask me if you are unsure.

See CMU's Policy on Academic Integrity for
additional information.

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

