Carnegie Mellon University Database Systems Sorting & Aggregations

15-445/645 SPRING 2025 **X** PROF. JIGNESH PATEL

ADMINISTRIVIA

Project #2 due Sunday March 2nd @ 11:59pm

- \rightarrow Don't forget to do a GitHub "pull" before starting.
- \rightarrow Recitation on Wednesday Feb. 19 4:00-5:00 pm, GHC 5117.

Homework #3 (indices and filters) due Sunday Feb 23th @11:59pm.

Mid-term Exam on Wednesday Feb 26th

- \rightarrow In-class; in this room.
- \rightarrow Study guide is available <u>online</u>. What to bring to the exam?
 - Your CMU ID (Mandatory).
 - A calculator is recommended (e.g., logarithms).
 - A single letter-size page of handwritten notes. You may use both sides.

ECMU-DB 15-445/645 (Spring 2025)

COURSE STATUS

We are now going to talk about how to execute queries using the DBMS components we have discussed so far.

Next four lectures:

- \rightarrow Operator Algorithms
- \rightarrow Query Processing Models
- \rightarrow Runtime Architectures

Query Planning

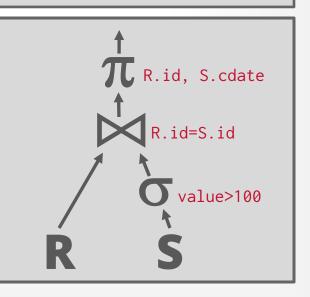
Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

QUERY PLAN


The operators are arranged in a tree.

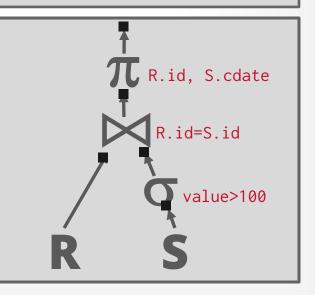
Data flows from the leaves of the tree up towards the root.

→ We will discuss the granularity of the data movement next week.

The output of the root node is the result of the query.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

QUERY PLAN


The operators are arranged in a tree.

Data flows from the leaves of the tree up towards the root.

→ We will discuss the granularity of the data movement next week.

The output of the root node is the result of the query.

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

ECMU-DB 15-445/645 (Spring 2025

DISK-ORIENTED DBMS

Just like it cannot assume that a table fits entirely in memory, a disk-oriented DBMS cannot assume that query results fit in memory.

We will use the buffer pool to implement algorithms that need to spill to disk.

We are also going to prefer algorithms that maximize the amount of sequential I/O.

WHY DO WE NEED TO SORT?

Relational model/SQL is <u>unsorted</u>.

Queries may request that tuples are sorted in a specific way (**ORDER BY**).

But even if a query does not specify an order, we may still want to sort to do other things:

- \rightarrow Trivial to support duplicate elimination (**DISTINCT**).
- \rightarrow Bulk loading sorted tuples into a B+Tree index is faster.
- \rightarrow Aggregations (**GROUP BY**).

IN-MEMORY SORTING

If data fits in memory, then we can use a standard sorting algorithm like Quicksort / TimSort. \rightarrow Many online <u>visualization tools</u>.

If data does not fit in memory, then we need to use a technique that is aware of the cost of reading and writing disk pages ...

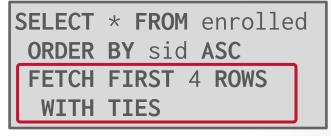
TODAY'S AGENDA

Top-N Heap Sort External Merge Sort Aggregations **DB Flash Talk: <u>Neon</u>**

If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

SELECT * FROM enrolled
ORDER BY sid ASC
FETCH FIRST 4 ROWS
WITH TIES

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.


If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

SELECT	* FROM enrolled
ORDER	BY sid ASC
FETCH	FIRST 4 ROWS
WITH	TIES

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

Original Data								
3	4	6	2	9	1	4	4	1

If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

→ Scan data once, maintain an in-memory sorted priority queue.

15-445/645 (Spring 2025)

SELECT	* FROM enrolled
	BY sid ASC
FETCH	FIRST 4 ROWS
WITH	TIES

8

4

4

Original Data

6

Sorted Heap

3

2

9

If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

→ Scan data once, maintain an in-memory sorted priority queue.

15-445/645 (Spring 2025)

SELECT	* FROM enrolled
	BY sid ASC
FETCH	FIRST 4 ROWS
WITH	TIES

8

4

4

Original Data

6

Sorted Heap

3

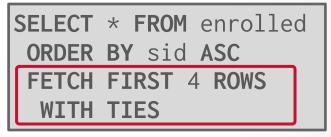
3

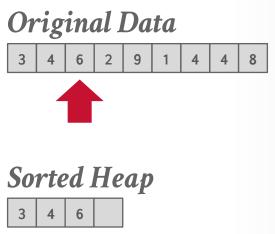
2

9

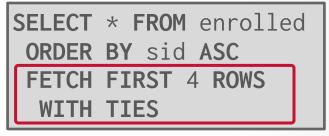
If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

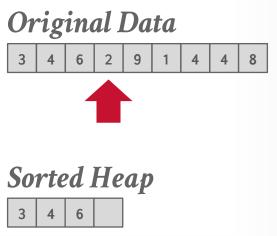
Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.


SELECT	* FROM enrolled
	BY sid ASC
FETCH	FIRST 4 ROWS
WITH	TIES

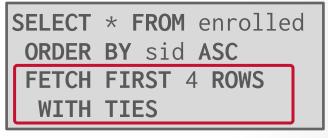


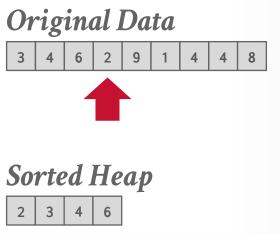
If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.


Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

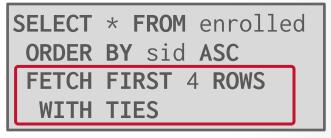


If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

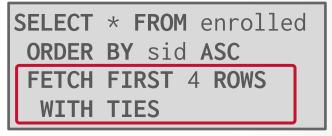

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

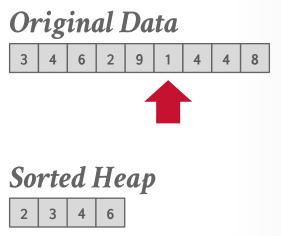


If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

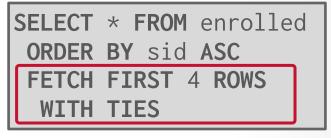

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

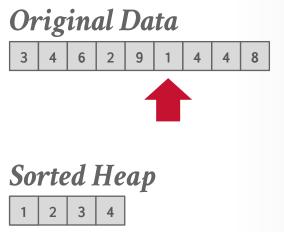
If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.


Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

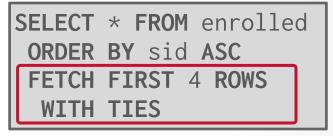


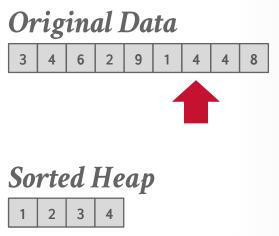
If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.


Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

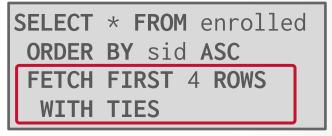


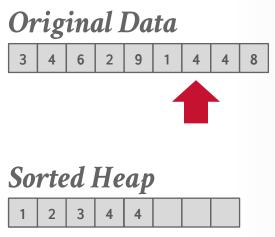
If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.


Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.



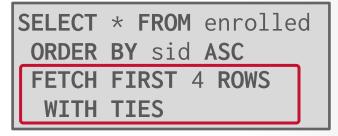
If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.


Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.



If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.



If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

→ Scan data once, maintain an in-memory sorted priority queue.

15-445/645 (Spring 2025)

8

4

4

Original Data

6

Sorted Heap

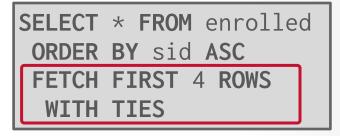
3

2

2

9

4 4


3

If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

→ Scan data once, maintain an in-memory sorted priority queue.

15-445/645 (Spring 2025)

8

4

4

Original Data

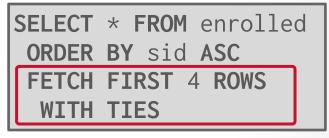
6

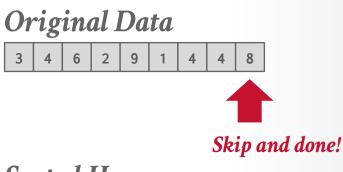
Sorted Heap

3

2

9


4


4

3

If a query contains an **ORDER BY** with a **LIMIT**, then the DBMS only needs to scan the data once to find the top-N elements.

Ideal scenario for <u>heapsort</u> if the top-N elements fit in memory.

EXTERNAL MERGE SORT

Divide-and-conquer algorithm that splits data into separate <u>**runs**</u>, sorts them individually, and then combines them into longer sorted runs.

Phase #1 – Sorting

 \rightarrow Sort chunks of data that fit in memory and then write back the sorted chunks to a file on disk.

Phase #2 – Merging

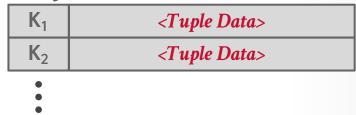
 \rightarrow Combine sorted runs into larger chunks.

A run is a list of key/value pairs.

Key: The attribute(s) to compare to compute the sort order.

Value: Two choices

- \rightarrow Tuple (<u>early materialization</u>).
- \rightarrow Record ID (<u>late materialization</u>).

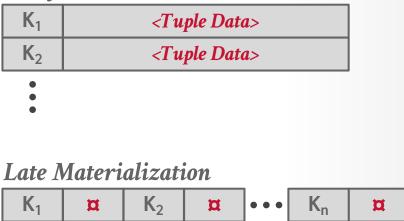

A run is a list of key/value pairs.

Key: The attribute(s) to compare to compute the sort order.

Value: Two choices

- \rightarrow Tuple (<u>early materialization</u>).
- \rightarrow Record ID (<u>late materialization</u>).

Early Materialization

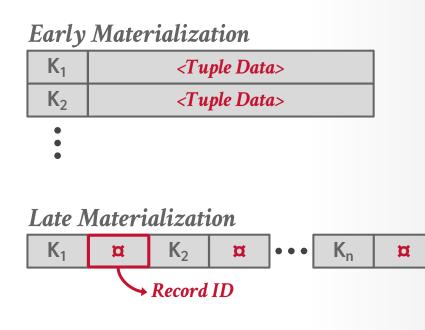

A run is a list of key/value pairs.

Key: The attribute(s) to compare to compute the sort order.

Value: Two choices

- \rightarrow Tuple (<u>early materialization</u>).
- \rightarrow Record ID (<u>late materialization</u>).

Early Materialization



A run is a list of key/value pairs.

Key: The attribute(s) to compare to compute the sort order.

Value: Two choices

- \rightarrow Tuple (<u>early materialization</u>).
- \rightarrow Record ID (<u>late materialization</u>).

2-WAY EXTERNAL MERGE SORT

We will start with a simple example of a 2-way external merge sort.

 \rightarrow "2" is the number of runs that we are going to merge into a new run for each pass.

Data is broken up into N pages.

The DBMS has a finite number of *B* buffer pool pages to hold input and output data.

Pass #0

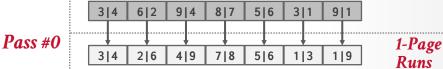
- \rightarrow Read one page of the table into memory
- \rightarrow Sort page into a "run" and write it back to disk
- \rightarrow Repeat until the whole table has been sorted into runs

Pass #1,2,3,...

- \rightarrow Recursively merge pairs of runs into runs twice as long
- \rightarrow Need at least 3 buffer pages (2 for input, 1 for output)

In each pass, the DBMS reads and writes every page in the file.

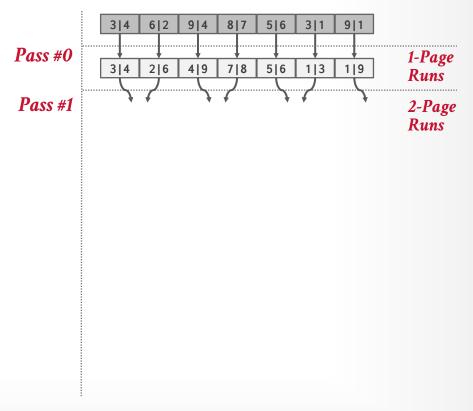
Number of passes = $1 + [\log_2 N]$ Total I/O cost = $2N \cdot (\# \text{ of passes})$

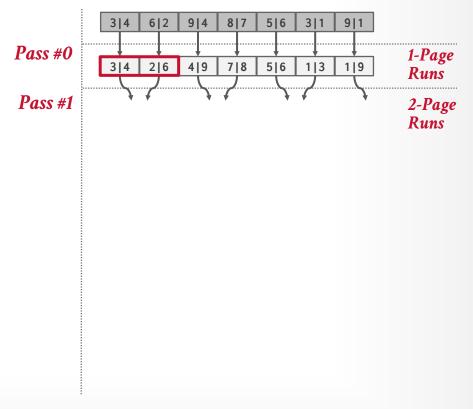


In each pass, the DBMS reads and writes every page in the file.

Number of passes = $1 + [\log_2 N]$ Total I/O cost = $2N \cdot (\# \text{ of passes})$ 3|4 6|2 9|4 8|7 5|6 3|1 9|1

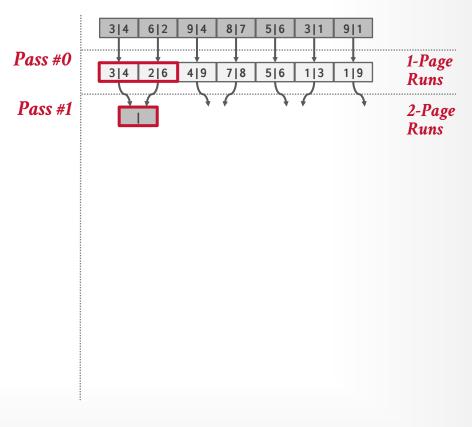
In each pass, the DBMS reads and writes every page in the file.

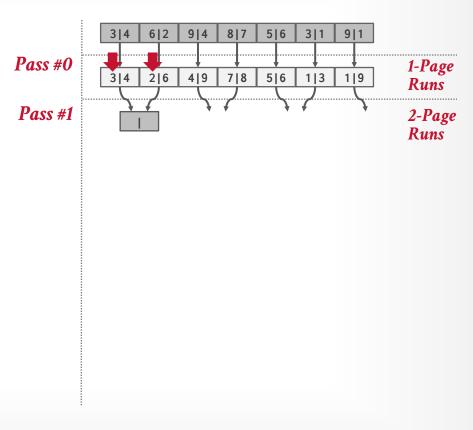

Number of passes $= 1 + [\log_2 N]$ Total I/O cost $= 2N \cdot (\# \text{ of passes})$


15

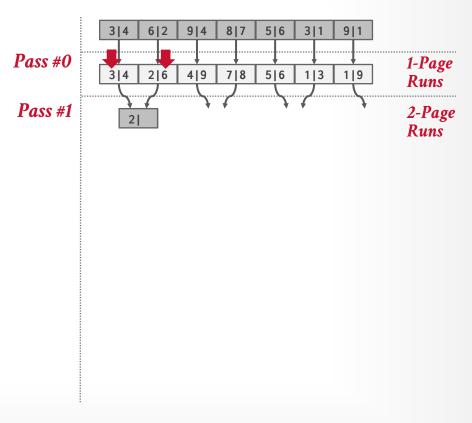
SIMPLIFIED 2-WAY EXTERNAL MERGE SORT

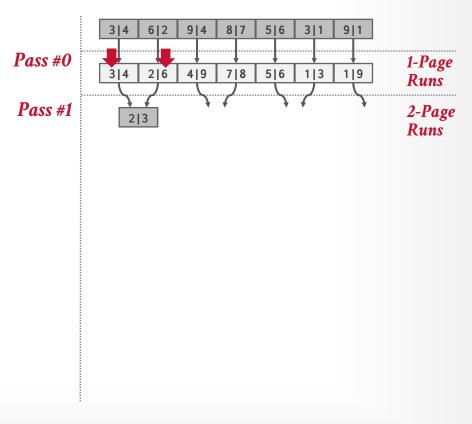
In each pass, the DBMS reads and writes every page in the file.


In each pass, the DBMS reads and writes every page in the file.

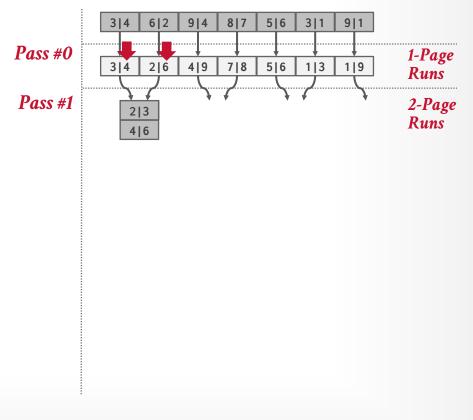

15

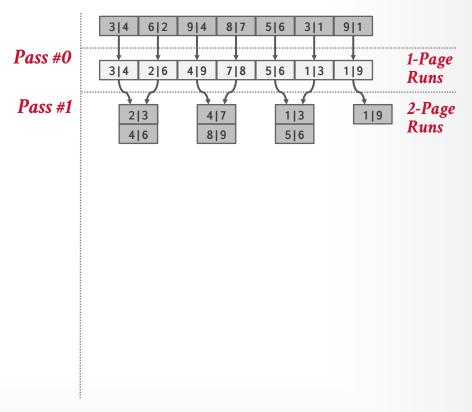
SIMPLIFIED 2-WAY EXTERNAL MERGE SORT


In each pass, the DBMS reads and writes every page in the file.

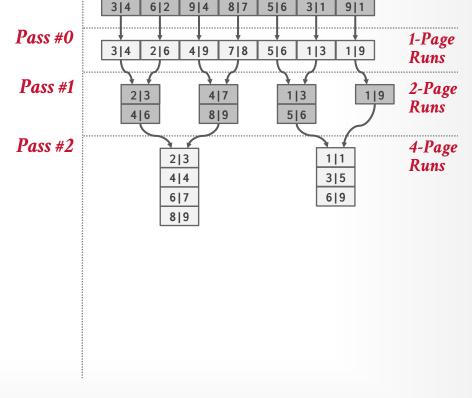

In each pass, the DBMS reads and writes every page in the file.

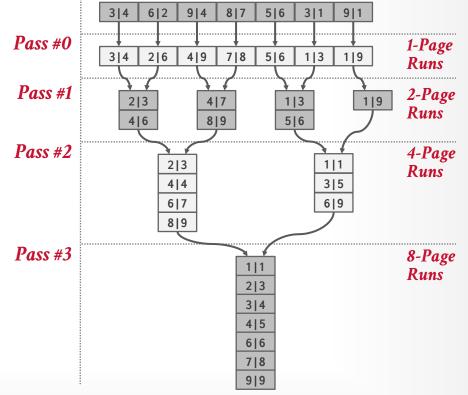
In each pass, the DBMS reads and writes every page in the file.


In each pass, the DBMS reads and writes every page in the file.


15

SIMPLIFIED 2-WAY EXTERNAL MERGE SORT


In each pass, the DBMS reads and writes every page in the file.


In each pass, the DBMS reads and writes every page in the file.

In each pass, the DBMS reads and writes every page in the file.

In each pass, the DBMS reads and writes every page in the file.

This algorithm only requires three buffer pool pages to perform the sorting (B=3).

 \rightarrow Two input pages, one output page

But even if we have more buffer space available (**B**>**3**), it does not effectively utilize them if the worker must block on disk I/O...

GENERAL EXTERNAL MERGE SORT

Pass #0

- \rightarrow Use *B* buffer pages
- \rightarrow Produce [N/B] sorted runs of size B

Pass #1,2,3,...

 \rightarrow Merge *B***-1** runs (i.e., M-way merge)

Number of passes = $1 + \lceil \log_{B-1} \lceil N / B \rceil$ Total I/O Cost = $2N \cdot (\# \text{ of passes})$

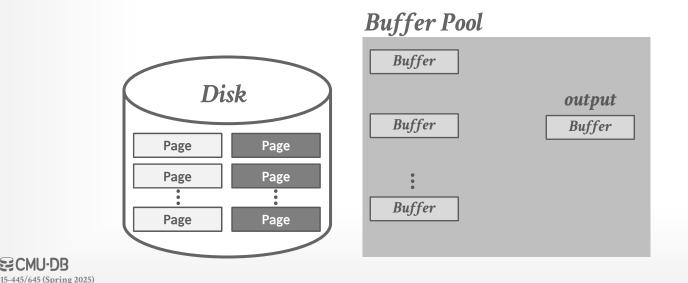
EXAMPLE

Determine how many passes it takes to sort 108 pages with 5 buffer pool pages: *N*=108, *B*=5

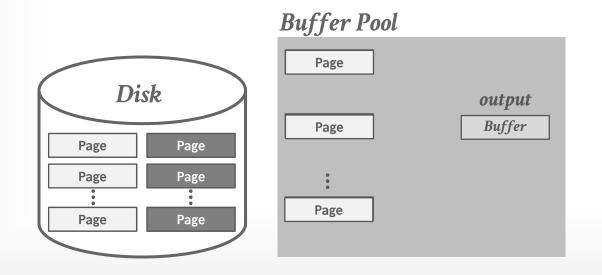
- → **Pass #0:** [N/B] = [108 / 5] = 22 sorted runs of 5 pages each (last run is only 3 pages).
- → **Pass #1:** [N' / B-1] = [22 / 4] = 6 sorted runs of 20 pages each (last run is only 8 pages).
- → **Pass #2:** [N'' / B-1] = [6 / 4] = 2 sorted runs, first one has 80 pages and second one has 28 pages.

 \rightarrow **Pass #3:** Sorted file of 108 pages.

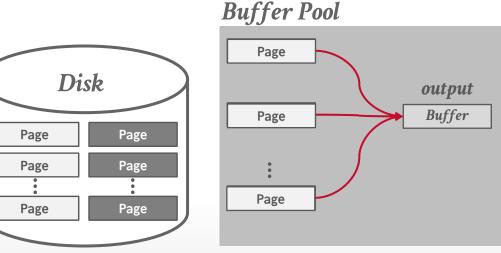
 $1+[\log_{B-1}[N/B]] = 1+[\log_4 22] = 1+[2.229...] = 4 \text{ passes}$


DOUBLE BUFFERING OPTIMIZATION

Prefetch the next run in the background and store it in a second buffer while the system is processing the current run.

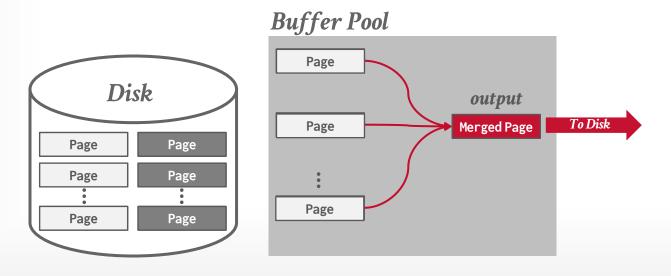

 \rightarrow Reduces the wait time for I/O requests at each step by continuously utilizing the disk.

51


Prefetch next run in the background and store in a second buffer while processing the current run. \rightarrow Overlap CPU and I/O operations

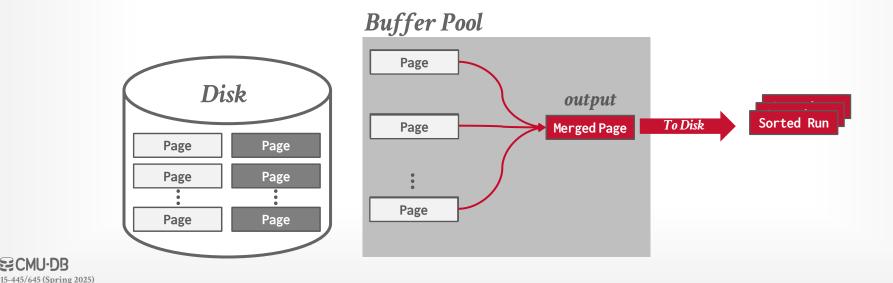
Prefetch next run in the background and store in a second buffer while processing the current run. \rightarrow Overlap CPU and I/O operations

Prefetch next run in the background and store in a second buffer while processing the current run. \rightarrow Overlap CPU and I/O operations

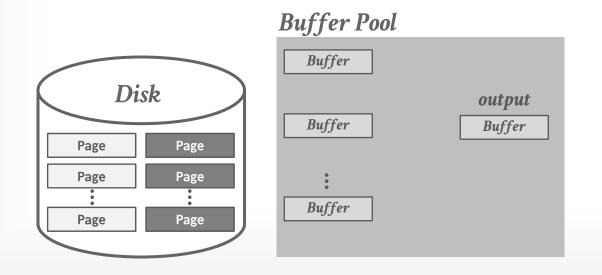


54

Prefetch next run in the background and store in a second buffer while processing the current run. \rightarrow Overlap CPU and I/O operations

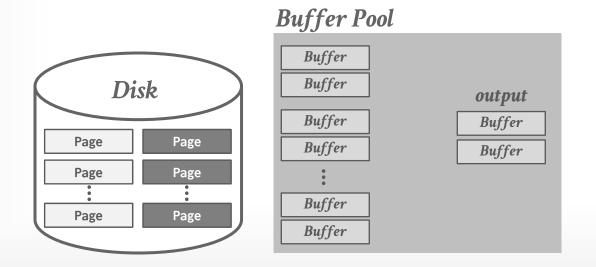

 \rightarrow Reduces effective buffers available by half

15-445/645 (Spring 2025)

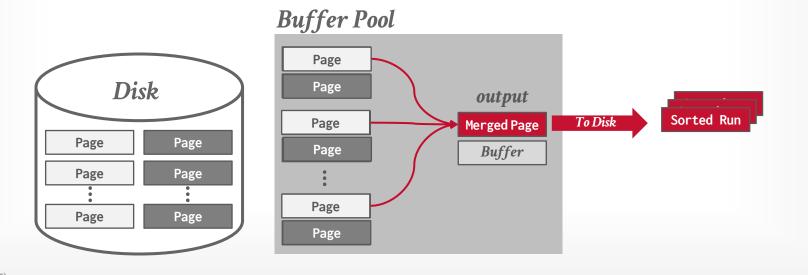


55

Prefetch next run in the background and store in a second buffer while processing the current run. \rightarrow Overlap CPU and I/O operations

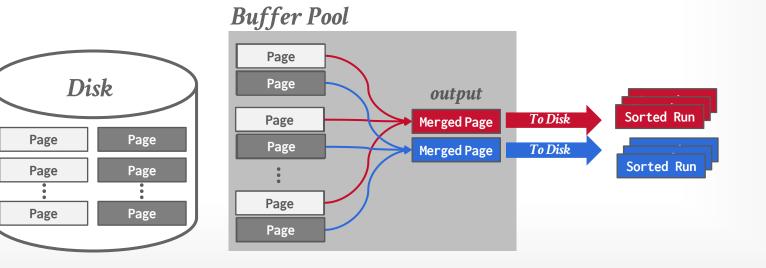

Prefetch next run in the background and store in a second buffer while processing the current run. \rightarrow Overlap CPU and I/O operations

Prefetch next run in the background and store in a second buffer while processing the current run. \rightarrow Overlap CPU and I/O operations


 \rightarrow Reduces effective buffers available by half

EFCMU-DB 15-445/645 (Spring 2025)

Prefetch next run in the background and store in a second buffer while processing the current run. \rightarrow Overlap CPU and I/O operations


 \rightarrow Reduces effective buffers available by half

ECMU-DB 15-445/645 (Spring 2025)

Prefetch next run in the background and store in a second buffer while processing the current run. \rightarrow Overlap CPU and I/O operations

 \rightarrow Reduces effective buffers available by half

5-445/645 (Spring 2025)

COMPARISON OPTIMIZATIONS

Approach #1: Code Specialization

 \rightarrow Instead of providing a comparison function as a pointer to sorting algorithm, create a hardcoded version of sort that is specific to a key type.

Approach #2: Suffix Truncation

 \rightarrow First compare a binary prefix of long VARCHAR keys instead of slower string comparison. Fallback to slower version if prefixes are equal.

USING B+TREES FOR SORTING

If the table that must be sorted already has a B+Tree index on the sort attribute(s), then we can use that to accelerate sorting.

 \rightarrow Some DBMSs support prefix key scans for sorting.

Retrieve tuples in desired sort order by simply traversing the leaf pages of the tree.

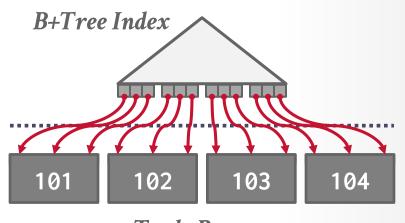
- Cases to consider:
- \rightarrow Clustered B+Tree
- \rightarrow Unclustered B+Tree

ECMU-DB 15-445/645 (Spring 2025)

CASE #1 – CLUSTERED B+TREE

Traverse to the left-most leaf page, and then retrieve tuples from all leaf pages.

This is always better than external sorting because there is no computational cost, and all disk access is sequential.

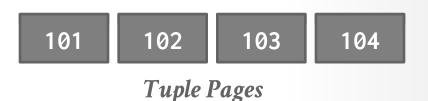


CASE #1 – CLUSTERED B+TREE

Traverse to the left-most leaf page, and then retrieve tuples from all leaf pages.

This is always better than external sorting because there is no computational cost, and all disk access is sequential.

Tuple Pages


CASE #2 – UNCLUSTERED B+TREE

Chase each pointer to the page that contains the data.

This is almost always a bad idea except for Top-N queries where N is small enough relative to total number of tuples in table.

 \rightarrow In general, one I/O per data record.



CASE #2 – UNCLUSTERED B+TREE

Chase each pointer to the page that contains the data.

This is almost always a bad idea except for Top-N queries where N is small enough relative to total number of tuples in table.

 \rightarrow In general, one I/O per data record.

Tuple Pages

AGGREGATIONS

Collapse values for a single attribute from multiple tuples into a single scalar value.

The DBMS needs a way to quickly find tuples with the same distinguishing attributes for grouping.

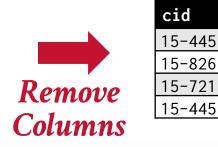
- Two implementation choices:
- \rightarrow Sorting
- \rightarrow Hashing

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

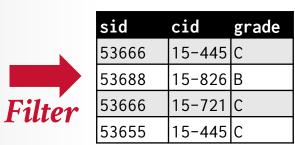
SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

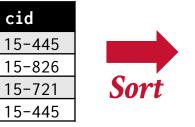
sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

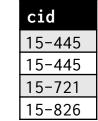

	sid	cid	grade
	53666	15-445	С
	53688	15-826	В
Filter	53666	15-721	С
	53655	15-445	С

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

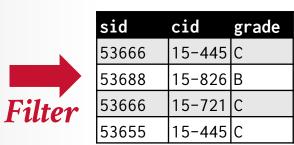
sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

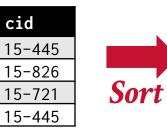

	sid	cid	grade
	53666	15-445	С
	53688	15-826	В
Filter	53666	15-721	С
1 11111	53655	15-445	С

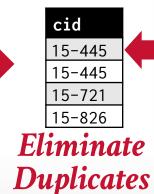



SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

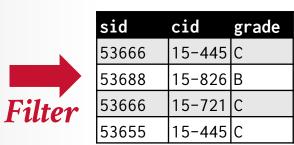
sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

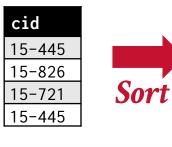


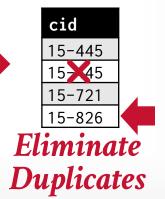

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid


enrolled (sid, cid, grade)

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С




ECMU-DB 15-445/645 (Spring 2025)


SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')
ORDER BY cid

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

ALTERNATIVES TO SORTING

What if we do <u>not</u> need the data to be ordered?

- \rightarrow Forming groups in **GROUP BY** (no ordering)
- → Removing duplicates in **DISTINCT** (no ordering)

ALTERNATIVES TO SORTING

What if we do <u>not</u> need the data to be ordered?

- \rightarrow Forming groups in **GROUP BY** (no ordering)
- \rightarrow Removing duplicates in **DISTINCT** (no ordering)

Hashing is a better alternative in this scenario. \rightarrow Only need to remove duplicates, no need for ordering. \rightarrow Can be computationally cheaper than sorting.

HASHING AGGREGATE

Populate an ephemeral hash table as the DBMS scans the table. For each record, check whether there is already an entry in the hash table: \rightarrow **DISTINCT**: Discard duplicate

→ **GROUP BY**: Perform aggregate computation

If everything fits in memory, then this is easy.

If the DBMS must spill data to disk, then we need to be smarter...

EXTERNAL HASHING AGGREGATE

Divide-and-conquer approach to computing an aggregation when data does not fit in memory.

Phase #1 – Partition

- \rightarrow Split tuples into buckets based on hash key
- \rightarrow Write them out to disk when they get full

Phase #2 – ReHash

 \rightarrow Build in-memory hash table for each partition and compute the aggregation

Use a hash function h_1 to split tuples into **partitions** on disk.

- \rightarrow A partition is one or more pages that contain the set of keys with the same hash value.
- \rightarrow Partitions are "spilled" to disk via output buffers.

Assume that we have **B** buffers.

We will use *B-1* buffers for the partitions and **1** buffer for the input data.

SELECT DISTINCT cid FROM enrolled WHERE grade IN ('B','C')

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

SELECT DISTINCT cid FROM enrolled WHERE grade IN ('B','C')

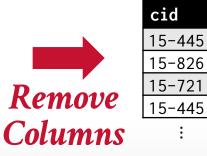
enrolled (sid, cid, grade)

sid	cid	grade
53666	15-445	С
53688	15-721	А
53688	15-826	В
53666	15-721	С
53655	15-445	С

	sid	cid	grade
	53666	15-445	С
	53688	15-826	В
Filter	53666	15-721	С
1 11101	53655	15-445	С

:

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

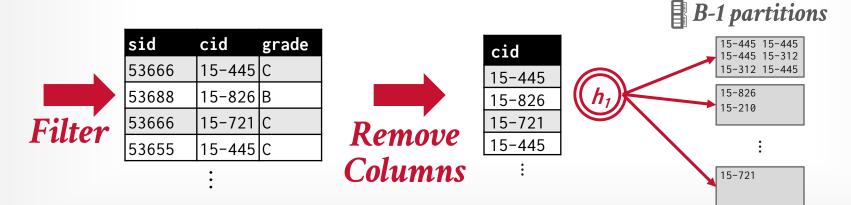

enrolled (sid, cid, grade)

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

	sid	cid	grade
	53666	15-445	С
	53688	15-826	В
Filter	53666	15-721	С
1 11101	53655	15-445	С

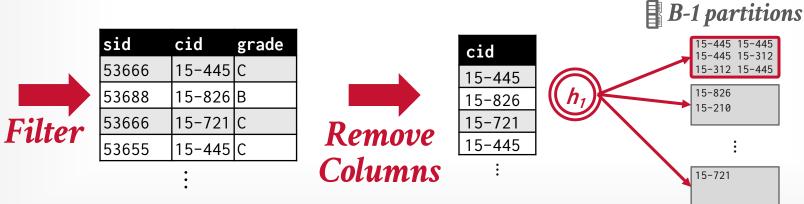
15-445/645 (Spring 2025)

:


SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

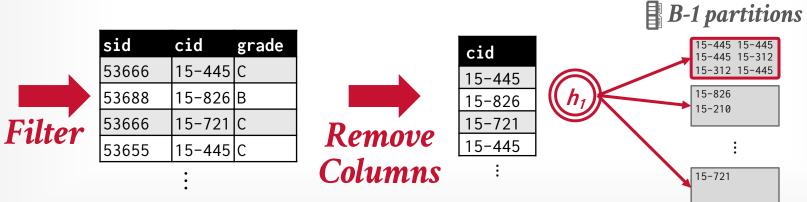
ECMU-DB 15-445/645 (Spring 2025)

enrolled (sid, cid, grade)


81

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

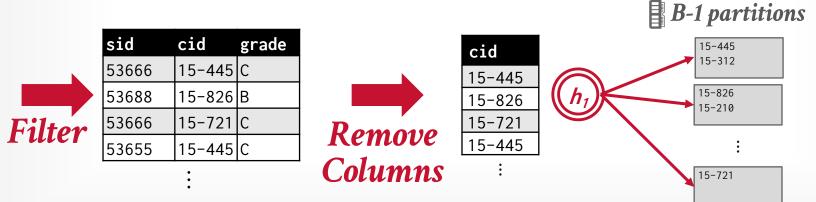
SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')


sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

enrolled (sid, cid, grade)

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С



SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

enrolled (sid, cid, grade)

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

For each partition on disk:

- \rightarrow Read it into memory and build an in-memory hash table based on a second hash function h_2 .
- \rightarrow Then go through each bucket of this hash table to bring together matching tuples.

This assumes that each partition fits in memory.

SELECT DISTINCT cid
FROM enrolled
WHERE grade IN ('B','C')

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

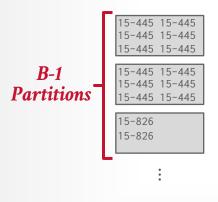
SELECT DISTINCT cid **FROM** enrolled WHERE grade IN ('B', 'C')

enrolled (sid, cid, grade)

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

Phase #1 Buckets

15		15-445 15-445 15-445
15	5-445	15-445 15-445 15-445
	5-826 5-826	

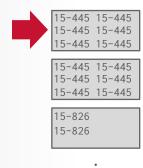

15-445/645 (Spring 2025)

SELECT DISTINCT cid **FROM** enrolled WHERE grade IN ('B', 'C')

enrolled (sid, cid, grade)

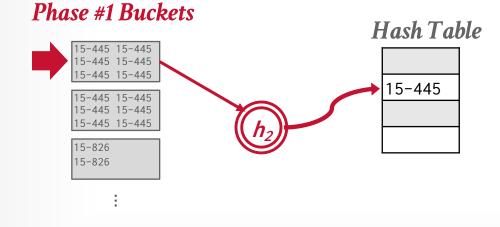
sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

Phase #1 Buckets


15-445/645 (Spring 2025)

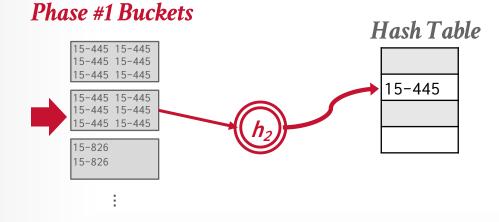
SELECT DISTINCT cid **FROM** enrolled WHERE grade IN ('B', 'C')

enrolled (sid, cid, grade)

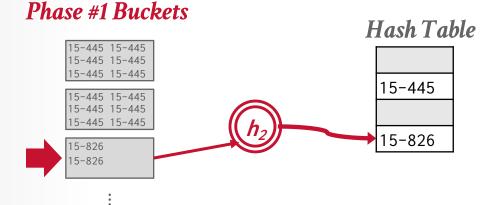

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

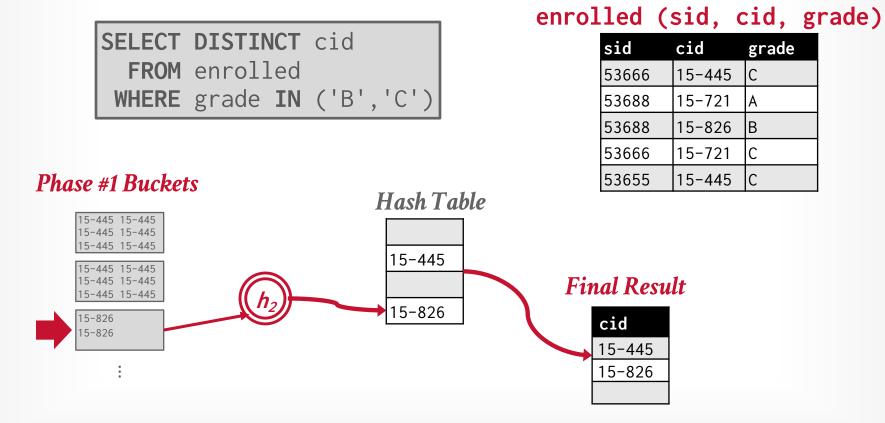
Phase #1 Buckets

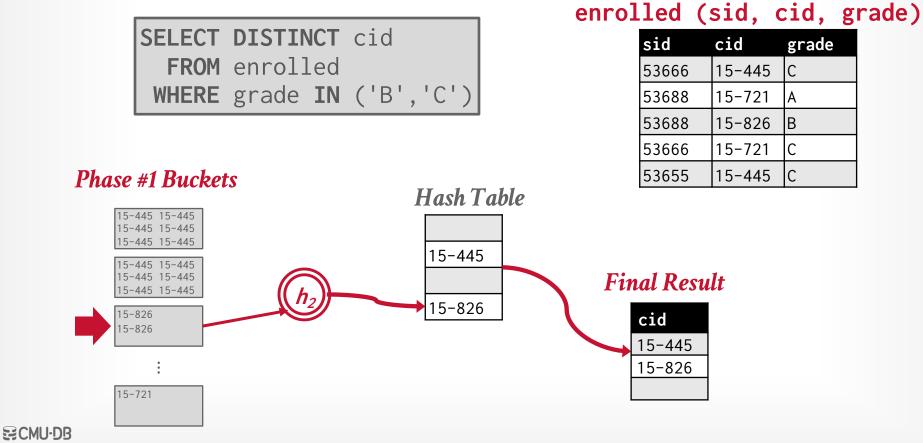
SELECT DISTINCT cid **FROM** enrolled WHERE grade IN ('B', 'C')


sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

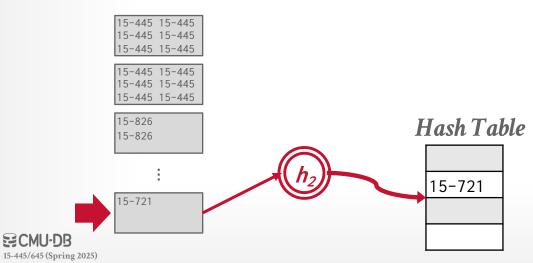
SELECT DISTINCT cid **FROM** enrolled WHERE grade IN ('B', 'C')


sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

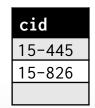



SELECT DISTINCT cid **FROM** enrolled WHERE grade IN ('B', 'C')

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С


15-445/645 (Spring 2025)

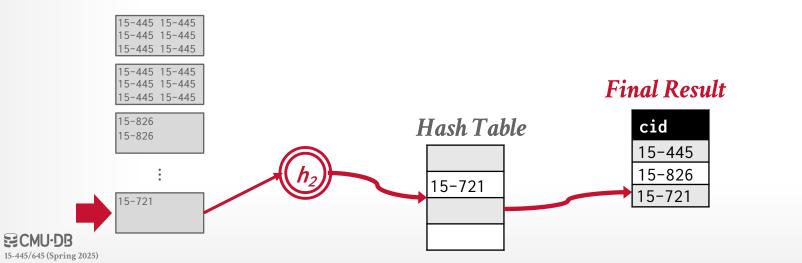
SELECT DISTINCT cid **FROM** enrolled WHERE grade IN ('B', 'C')


enrolled (sid, cid, grade)

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

Phase #1 Buckets

Final Result

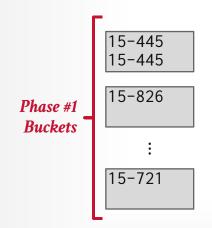


SELECT DISTINCT cid **FROM** enrolled WHERE grade IN ('B', 'C')

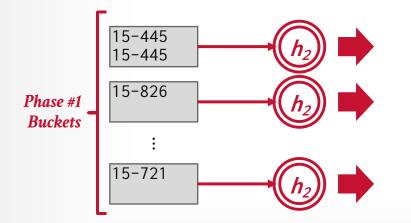
enrolled (sid, cid, grade)

sid	cid	grade
53666	15-445	С
53688	15-721	A
53688	15-826	В
53666	15-721	С
53655	15-445	С

Phase #1 Buckets

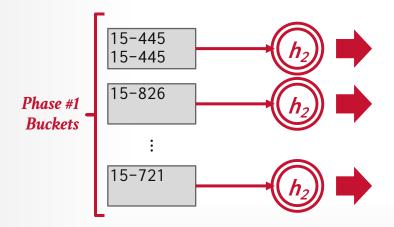


During the rehash phase, store pairs of the form (GroupKey>RunningVal)

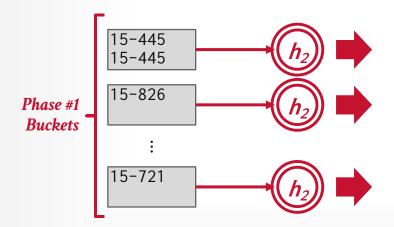

When we want to insert a new tuple into the hash table as we compute the aggregate:

- → If we find a matching **GroupKey**, just update the **RunningVal** appropriately
- → Else insert a new GroupKey→RunningVal

```
SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
  WHERE s.sid = e.sid
  GROUP BY cid
```




```
SELECT cid, AVG(s.gpa)
  FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
  GROUP BY cid
```



SELECT cid, **AVG**(s.gpa) FROM student AS s, enrolled AS e WHERE s.sid = e.sid GROUP BY cid

Hash Table

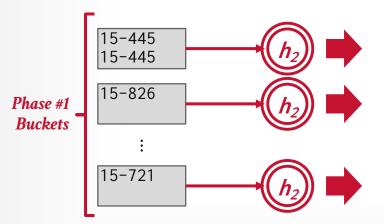
key	value
15-445	(2, 7.32)
15-826	(1, 3.33)
15-721	(1, 2.89)

SELECT cid, **AVG**(s.gpa) FROM student AS s, enrolled AS e WHERE s.sid = e.sid GROUP BY cid

key	value
15-445	(2, 7.32)
15-826	(1, 3.33)
15-721	(1, 2.89)

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

Running Totals


AVG(col) → (COUNT, SUM)

MIN(col) → (MIN)

 $MAX(col) \rightarrow (MAX)$

SUM(col) → (SUM)

COUNT(col) → (COUNT)

Hash Table

key	value
15-445	(2, 7.32)
15-826	(1, 3.33)
15-721	(1, 2.89)

SELECT cid, AVG(s.gpa)
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
GROUP BY cid

Running Totals

AVG(col) → (COUNT, SUM)

MIN(col) → (MIN)

MAX(col) → (MAX)
SUM(col) → (SUM)

COUNT(col) → (COUNT)

key	value
15-445	(2, 7.32)
15-826	(1, 3.33)
15-721	(1, 2.89)

Final Result

cid	AVG(gpa)
15-445	3.66
15-826	3.33
15-721	2.89

CONCLUSION

Choice of sorting vs. hashing is subtle and depends on optimizations done in each case.

We already discussed the optimizations for sorting: \rightarrow Chunk I/O into large blocks to amortize costs \rightarrow Double-buffering to overlap CPU and I/O

NEXT CLASS

Nested Loop Join Sort-Merge Join Hash Join

