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ADMINISTRIVIA

Project #3 is due Sunday March 30th @ 11:59pm

Mid-term exam grades now posted.

— Exam viewing for the next 3 OH, including today.
— The last OH for exam viewing is on March 24.
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UPCOMING DATABASE TALKS

Google (DB Seminar) GO gle
— Monday Oct 21°* @ 4:30pm

— https://cmu.zoom.us/j/ 93441451665

See the full DB Seminar schedule at https://db.cs.cmu.edu/seminar2025/



http://www.google.com/
https://cmu.zoom.us/j/93441451665
https://db.cs.cmu.edu/seminar2025/

QUERY EXECUTION

A query plan is a DAG of operators.

A pipeline is a sequence of operators

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

where tuples continuously flow

between them without intermediate
storage.

A pipeline breaker is an operator
that cannot finish until all its children

emit all their tuples.
— Joins (Build Side), Subqueries, Order By

\
G value>100

\
R S

$ZCMU-DB
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QUERY EXECUTION

. SELECT R.id, S.cdate

A query plan is a DAG of operators. FROM R JOIN S
. . : ON R.id = S.1id

A pipeline is a sequence of operators WHERE S value > 100
where tuples continuously flow
between them without intermediate R | DR
storage. Pzpehne #2 TC R.id, S. cdate

A pipeline breaker is an operator
that cannot finish until all its children

emit all their tuples.
— Joins (Build Side), Subqueries, Order By

$2CMU-DB Ptpelme #1
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ACCESS TIMES

Latency Numbers Every Programmer Should Know

1ns [L1 Cache Ref
4 ns .2 Cache Ref

100 ns DRAM
16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage
1,000,000,000 ns Tape Archives

=CMU-DB Source: Colin Scott
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https://colin-scott.github.io/personal_website/research/interactive_latency.html

TODAY'S AGENDA

Processing Models
Access Methods
Modification Queries
Expression Evaluation

£CMU-DB
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PROCESSING MODEL

A DBMS's processing model defines how the
system executes a query plan and moves data from

one OperatOr to the next.
— Different trade-offs for workloads (OLTP vs. OLAP).

Each processing model is comprised of two types of

execution paths:
— Control Flow: How the DBMS invokes an operator.
— Data Flow: How an operator sends its results.

The output of an operator can be either whole
tuples (NSM) or subsets of columns (DSM).

£CMU-DB
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PROCESSING MODEL

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

£CMU-DB
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PROCESSING MODEL

Approach #1: Iterator Model « Most Common
Approach #2: Materialization Model « Rare

Approach #3: Vectorized / Batch Model « Common



ITERATOR MODEL

Each query plan operator implements a Next()

function.

— On each invocation, the operator returns either a single
tuple or a EOF marker if there are no more tuples.

— The operator implements a loop that calls Next() on its
children to retrieve their tuples and then process them.

Each operator implementation also has Open() and

Close() functions.
— Analogous to constructors/destructors, but for operators.

Also called Volcano or Pipeline Model.

£CMU-DB
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ITERATOR MODEL

Data Flow = SELECT R.1id , S. cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

\
G value>100

\
R S
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ITERATOR MODEL

Control Flow =——p 4. S od
DR for t in child.Next(): SELECT R.1d, S.cdate
emit(projection(t)) Ve FROM R JOIN S
.......... ON R.id = S.id
e B WHERE S.value > 100
buildHashTable(t;) e

for t, in right.Next(): e | T 1

HprobeCta)i emEENE) | e | T TU .14, s.cdate

for t in child.Next():
if evalPred(t): emit(t)

®e, >
for t in R: for t in S: . / Gvalue 100

|7
@0~
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ITERATOR MODEL

.
e,
®e
®e
.
o,
®e
®e
.
o,
®e
®e
.
o,
®e
.

if evalPred(t): emit(t)

Control Flow =——p
Data Flow =% nfoxt() [for t in child.Next():
emit(projection(t))
Next() |for t, in left.Next():
buildHashTable(t,)
for t, in right.Next():
if probe(t,): emit(t,X<t,)
Next() |for t in child.Next():
Next() |for t in R: Next() |for t in s:
emit(t) emit(t)
A

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

“n'_»'

$ZCMU-DB
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ITERATOR MODEL

Data Flow = Tor & A @Rk SELECT R. ld, S.cdate
emit(projection(t)) FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next(): 1
if probe(t,): emit(t,X<t,) n
R.id, S.cdate
for t in child.Next(): th N
if evalPred(t): emit(t) R.1d=S.1d

i lue>1
for t in R: for t in S: / qva ue>100

$ZCMU-DB
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ITERATOR MODEL

Control Flow =——p

Data Flow = o Tor & A @Rk SELECT Rld, S.cdate

emit(projection(t)) FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next(): 1
if probe(t,): emit(t,X<t,) n
R.id, S.cdate
for t in child.Next(): th N
if evalPred(t): emit(t) R leg.de

i >
for t in R: for t in S: / qvalue 100
emit(t) emit(t) R s

$ZCMU-DB
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Control Flow =——p

Data Flow =—p o

for t in R:
emit(t)

$ZCMU-DB

15-445/645 (Spring 2025)

ITERATOR MODEL

for t in child.Next():
emit(proje¢ction(t))

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t,X<t,)

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

\
G value>100
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Control Flow =——p
Data Flow =—p

for t in R:
emit(t)

$ZCMU-DB
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ITERATOR MODEL

for t in child.Next():
emit(proje¢ction(t))

1
2,

for t, in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t,X<t,)

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

\
G value>100

R




ITERATOR MODEL

Control Flow =——p

Data Flow =—p o

for t in child.Next():
emit(proje¢ction(t))

for t, je=left.Next():
dHashTable(t,)

t, in right.Next():

if probe(t,): emit(t,X<t,)

f

for t in child.Next():
if evalPred(t): emit(t)

for t in R:
emit(t)

for t in S:
emit(t)

3

$ZCMU-DB
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SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

\
G value>100
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Control Flow =——p

Data Flow =—p o

Single Tuplel

for t in R:
emit(t)

3

$ZCMU-DB
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ITERATOR MODEL

for t in child.Next():
emit(proje¢ction(t))

for t in child.Next():
if evalPred(t): emit(t)

for t in S:
emit(t)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

R




ITERATOR MODEL

Control Flow =——p

Data Flow =
ata Flow for t in child.Next():
emit(projgction(t))

for t; in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): emit(t,X<t,)

for t in child.Next():
if evalPred(t): emit(t)

for t in R: for t in S:
emit(t) emit(t)

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

\
G value>100

\
R S




ITERATOR MODEL

Control Flow =——p

Data Flow =
ata Flow for t in child.Next():
emit(projgction(t))

for t; in left.Next():

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

buildHashTable(t,)
for t, in right.Next():

for t in child.Next():
if evalPred(t): emit(t)

for t in R: for t in S:
emit(t) emit(t)

\
G value>100

\
R S
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ITERATOR MODEL

Control Flow =——p

Data Flow =
ata Flow for t in child.Next():
emit(projgction(t))

for t; in left.Next():
buildHashTable(t,)
for t, in right.Next():

for t in child.Next():
if evalPre¢d(t):

for t in R: for t in
emit(t) emit(t

$ZCMU-DB
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SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

\
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ITERATOR MODEL

Control Flow =——p

Data Flow =
ata Flow for t in child.Next():
emit(projgction(t))

for t; in left.Next():
buildHashTable(t,)
for t, in right.Next()

for t in child.Next():
if evalPre¢d(t):

for t in R: for t in
emit(t) emit(t

$ZCMU-DB
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SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

\
R S




ITERATOR MODEL

Control Flow =——p

Data Fl
ata Flow —» for t in child.Next():
emit(projgctionft))

for t, in left.Next():
buildHashTable(t,)
for t, in right.Next()

for t in child.Next():
if evalPre¢d(t):

for t in R: for t in
emit(t) emit(t

$ZCMU-DB
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SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

\
R S




Control Flow =——p

ITERATOR MODEL

Data Fl
L o for t in chi\ld.NeXt()i

| for t in R:
emit(t)

$ZCMU-DB
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for t, in right.Next()

for t, in left.Next():
buildHashTable(t,)

for t in child.Next():
if evalPre¢d(t):

for t in
emit(t

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

Pipeline #1



ITERATOR MODEL

Control Flow == SRR , -
Data Flow = Tor b A GRG0 SELECT R. ld, S.cdate
5 emit(pro;j*ctlontt)) FROM R JOIN S
S W W A RAE = S.ne
[for ¢, in left.NextO)) WHERE S.value > 100
: |___buildHashTable(t,) i
jfor t; in right NextQe—ofl | | D

if probe(

.................................. ........ ) | l’l’ne #Z n R.id, S. cdate

| for t in child.Next():
{|if evalPrdd(t):femit(t) |\

| for t in R: || :|for t in
emit(t) emit(t

’,
.....................................................................

$2CMU-DB Ptpelme #1
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ITERATOR MODEL

The Iterator model is used in almost every DBMS.

— Easy to implement / debug.
— Output control works easily with this approach.

Allows for pipelining where the DBMS tries to
process each tuple through as many operators as
possible before retrieving the next tuple.

RAVENDE 2 HyPer A's CouchDB

LY yugabyteDB SQLite .mongoDB ‘mangoDB INGR=S B2 %cassan dra \a
$£CMU-DB ¥ fauna ZSOL Server NISYBASE ®Postgesal  ORACLE  WMysaL. » AUO
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MATERIALIZATION MODEL

Each operator processes its input all at once and

then emits its output all at once.

— The operator "materializes" its output as a single result.

— The DBMS can push down hints (e.g., LIMIT) to avoid
scanning too many tuples.

— Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or

subsets of columns (DSM).
— Originally developed by MonetDB in the 1990s to process
entire columns at a time instead of single tuples.

£CMU-DB
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MATERIALIZATION MODEL

Control Flow =——p ;
Data Flow —> out = [ ] SELECT R.id, S.cdate
for t in child.Output():
out.add(projection(t)) FROM R ‘TOIN S .
return out ON R.id = S.id
WHERE S.value > 100
out = [ 1]
for t, in left.Output():
buildHashTable(t,) 1
for t, in right.Output(): .
if probe(t,): out.add(t >t,) TU r.1d, s.cdate
return out 1
NR.id=S id
out = [ 1]
for t in child.Output(): \
if evalPred(t): out.add(t) O a1ues100
return out ‘
out = [ 1] out = [ 1] R s
for t in R: for t in S:
out.add(t) out.add(t)
£=CMU-DB return out return out

15-445/645 (Spring 2025)



MATERIALIZATION MODEL

Control Flow =——p
Data Flow =—p out = [ ]

o for t in child.Output():

out.add(projection(t))

re

out = [ 1]

for t, in left.Output():
buildHashTable(t,)

for t, in right.Output():
if probe(t,): out.add(t,Xt,)

return out
out = [ ]
for t in child.Output():
if evalPred(t): out.add(t)

return out

out = [ ] out = [ ]

for t in R: for t in S:

out.add(t) out.add(t)

$CMU-DB return out return out

15-445/645 (Spring 2025)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

,‘: R.id, S.cdate

R id=S.id

value>100




MATERIALIZATION MODEL

Control Flow =——p
Data Flow =—p out = [ ]

for t in child.Output():
out.add(projection(t))
re

out = [ ]
for t, in left.Output():
buildHashTable(t,)
[for t, in right.Output():
if probe(t,): out.add(t,Xt,)
return out

out = [ ]
for t in child.Output():

if evalPred(t): out.add(t)
return out

v
out = [ ] out = [ 1]
9 for t in R: for t in S:
out.add(t) out.add(t)
£=CMU-DB return out return out

15-445/645 (Spring 2025)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100




MATERIALIZATION MODEL

Control Flow =——p
Data Flow —p out = [ ]
for t in child.Output():
out.add(projection(t))

re

out = [ ]

for t, in left.Output():
buildHashTable(t,

for t, in right.Outgut():
if probe(t,): outjadd(t,t,)

return out

out = [ 1]
fgr t in child.Output():
if evalPred(t): out.add(t)
All Tuples l return out
v
out = [ ] out = [ 1]
9 for t in R: for t in S:
out.add(t) out.add(t)
£=CMU-DB return out return out

15-445/645 (Spring 2025)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100




Control Flow =——p
Data Flow =—p

MATERIALIZATION MODEL

out = [ ]

for t in child.Output():
out.add(projection(t))
re

out = [ ]
for t, in left.Output():
buildHashTable(t,)
for t, in right.Output():
if probe(t,): out.add(t,t,)
return out ~——.__~\‘
out = [ ]
for t in child.Output():
if evalPred(t): out.add(
return out
v
out = [ 1] out = [ 1]
9 for t in R: for t in S:
out.add(t) out.add(t)
£=CMU-DB return out return out

15-445/645 (Spring 2025)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

(4]




Control Flow =——p
Data Flow =—p

out = [
for t in child.Output():

out.add(projection(t))
re

out = [ ]
for
buildHashTable(t,)

aeﬁ

MATERIALIZATION MODEL

]

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

t, in left.Output():

, in right.Output():
if probe(t,): out.add(t,t,)

return out

—

out = [ 1]
for t in child.Output():
if evalPred(t): out.add(

O

v
out = [ ] out = [ 1]
e for t in R: for t in S:
out.add(t) out.add(t)
£=CMU-DB return out return out

15-445/645 (Spring 2025)



Control Flow =——p
Data Flow =—p

for t in child.Output():
out.add(projectfon(t))
re

out = [ 1]
for t, in left.Ou

\ 4
out = [ ]
e for t in R:
out.add(t)
=CMU-DB return out

15-445/645 (Spring 2025)

for t, in right

return ou

MATERIALIZATION MODEL

out = [ ]

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

buildHashTable

if probe(t,

O

out = [ ]
for t in S:

out.add(
return out



Control Flow =——p
Data Flow =—p

for t in child.Output():
out.add(projectfon(t))
re

out = [ 1]
for t, in left.Ou

\ 4
out = [ ]
e for t in R:
out.add(t)
=CMU-DB return out

15-445/645 (Spring 2025)

for t, in right

return ou

MATERIALIZATION MODEL

out = [ ]

buildHashTable

if probe(t,

out = [
for t in S:

out.add(
return out

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

]




MATERIALIZATION MODEL

Control Flow =—p
Data Flow —p out = [ ]
for t in child.Output():
out.add(projectfon(t))
re
out = [ ]

for t, in left.Ou

buildHashTable
for t, in right
if probe(t,
return ou

out.add(t,>

out = [ ]
for t in S:
if evalPredgt): out.add(t)
return out
v .
out = [ ] Operator Fusion
for t in R:
out.add(t)
=CMU-DB return out

15-445/645 (Spring 2025)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100




MATERIALIZATION MODEL

Better for OLTP workloads because queries only

access a small number of tuples at a time.
— Lower execution / coordination overhead.
— Fewer function calls.

Not ideal for OLAP queries with large intermediate
results because DBMS must allocate buffers.

mo@ =l CrateDB M%NDB

[z)-Store VOLTDB

v

VanillaDB

$ZCMU-DB
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VECTORIZATION MODEL

Like the Iterator Model where each operator
implements a Next() function, but...

Each operator emits a batch of tuples instead of a

single tuple.

— The operator's internal loop processes multiple tuples at a
time.

— The size of the batch can vary based on hardware or query

properties.
— Each batch will contain one or more columns each their

own null bitmaps.

£CMU-DB
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VECTORIZATION MODEL

Control Flow == -
Data Flow —» out = [ 1] SELECT R. ld, S.cdate
for t in child.Next():
out.add(projection(t)) FROM R ‘TOIN S .
if |out|>n: emit(out) ON R.id = S.1id
WHERE S.value > 100
out = [ ]
for t, in left.Next():
buildHashTable(t,) 1
for t, in right.Next(): .
7 frelnaCe, e G eI [ TU r.1d, s.cdate
if |out|>n: emit(out) t
D id-s.id
out = [ ]
for t in child.Next(): \
if evalPred(t): out.add(t) O a1ues100

if |out|>n: emit(out)

X
out = [ ] out = [ 1 R s

for t in R: for t in S:
out.add(t) out.add(t)
$2CMU-DB if |out|>n: emit(out) if |out|>n: emit(out)

15-445/645 (Spring 2025)




VECTORIZATION MODEL

Control Flow =——p
Data Flow =—p

out = [ 1]

for t in child.Next():
out.add(projection(t))
n: emit(out)

out = [ 1]

or t; in left.Next():
buildHashTable(t,)

for t, in right.Next():
if probe(t,): out.add(t,Xt,)
if |out|>n: emit(out)

out = [ 1]

for t in child.Next():
if evalPred(t): out.add(t)
if |out|>n: emit(out)

out = [ ] out = [ ]
for t in R: for t in S:
out.add(t) out.add(t)

$2CMU-DB if |out|>n: emit(out) if |out|>n: emit(out)

15-445/645 (Spring 2025)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100




VECTORIZATION MODEL

Control Flow =——p
Data Flow =—p

out = [ 1]

for t in child.Next():
out.add(projection(t))
n: emit(out)

out = [ 1]

or t; in left.Next():
buildHashTableft,)

for t, in right.Next():
if probe(t,): dqut.add(t,Xt,)
if |out|>n: emit(out)

oyt = [ 1]

fer t in child.Next():

if evalPred(t): out.add(t)
if |out|>n: emit(out)

out = [ ] TupleBatchl out = [ ]
for t in R: for t in S:
out.add(t) out.add(t)

$2CMU-DB if |out|>n: emit(out) if |out|>n: emit(out)

15-445/645 (Spring 2025)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100




Control Flow =——p
Data Flow =—p

out = [ ]
for t in R:

out.add(
$2CMU-DB if |out|

15-445/645 (Spring 2025)

VECTORIZATION MODEL

out = [ 1]

for t in child.Next():
out.add(projection(t))
n: emit(out)

out = [ 1]
or t; in left.Next():
buildHashTableft,)

for t, in right.Next():
if probe(t,): qut.add(t,Xt,)
if |out|>n: emjit(out)

Tuple Batch l
for t in S:

t) out.add(t)
if |out|>n: emit(out)

>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.1id
WHERE S.value > 100
1




Control Flow =——p
Data Flow =—p

out = [ ]
for t in R:

out.add(
$2CMU-DB if |out|

15-445/645 (Spring 2025)

VECTORIZATION MODEL

out = [ 1]

for t in child.Next():
out.add(projection(t))
n: emit(out)

out = [ 1]
or t; in left.Next():
buildHashTableft,)

for t, in right.Next():
if probe(t,): qut.add(t,Xt,)
if |out|>n: emjit(out)

Tuple Batch l
for t in S:

t) out.add(t)
if |out|>n: emit(out)

>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S

ON R.id = S.1id
WHERE S.value > 100
1




Control Flow =——p
Data Flow =—p

for t, in right.

out = [ ]
for t in R:

$ZCMU-DB
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out.add(t)
if |out|>n: emit(out)

VECTORIZATION MODEL

out = [ 1]

for t in child.Next():
out.add(projection(t))
n: emit(out)

out = [ ]

or t; in left.Next():
buildHashTableft,)

if probe(t,):

fer t in child.Next e

if evalPred(t)% out.ydd(t)
1 ~cemi\ (out
Tuple Batch l
for t in S:
out.add(t)

if |out|>n: emit(out)

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100




VECTORIZATION MODEL

I[deal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute

operators over batches of tuples.

— Operators perform work in tight for-loops over arrays,
which compilers know how to optimize / vectorize.

— No data or control dependencies.

— Hot instruction cache.

C\‘QuestDB
i, Google T :
presto . Big Query  Yellowbrick ¢’ 9 pant O singlestore VERTICA \AEl):Aé:ﬁ'—E'— ‘6-
#&8lserver  vectorwise  TjAlloyDB U ClickHouse @@ DuckDB & Velox ety  ocoxoe

DATA. ;
$2CMU-DB e iyl CORACLE é"o:'ssnowfloke -Ragggfl?:? < databricks FUSDﬁzN %X‘(@_SEE gtrino

15-445/645 (Spring 2025)




VECTORIZATION MODEL

I[deal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute

operators over batches of tuples.

— Operators perform work in tight for-loops over arrays,
which compilers know how to optimize / vectorize.

— No data or control dependencies.

— Hot instruction cache.

C\‘QuestDB
i, Google T :
presto . Big Query  Yellowbrick ¢’ 9 pant O singlestore VERTICA \AEl):Aé:ﬁ'—E'— ‘6-
#&8lserver  vectorwise  TjAlloyDB U ClickHouse @@ DuckDB & Velox ety  ocoxoe

DATA. ;
$2CMU-DB e iyl CORACLE é"o:'ssnowfloke -Ragggfl?:? < databricks FUSDﬁzN %X‘(@_SEE gtrino

15-445/645 (Spring 2025)




OBSERVATION

In the previous examples, the DBMS starts

executing a query by invoking Next () at the root of
the query plan and pulling data up from leaf

operators.

This is the how most DBMSs implement their
execution engine.

£CMU-DB
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)

— Start with the root and "pull" data up from its children.
— Tuples are always passed between operators using function
calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push) _sad HyPer

— Start with leaf nodes and "push" data to their parents.

— Can "fuse" operators together within a for-loop to Q DuckDB
minimize intermediate result staging. 5'0"<Showfloke
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PUSH-BASED ITERATOR MODEL

Data Flow = SELECT R.1id , S. cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

\
G value>100

\
R S
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Control Flow =——p
Data Flow =—p
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PUSH-BASED ITERATOR MODEL

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Pipeline #2

Pipeline #1



PUSH-BASED ITERATOR MODEL

Data Flow = SELECT Rld, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

o for t, in R: ... %
b .1dH hT bl t E O D -~
s : Pipeline #2 TCroia, s. cdate
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PUSH-BASED ITERATOR MODEL

Data Flow = SELECT R.1id , S. cdate
FROM R JOIN S
ON R.1id = S.1id
WHERE S.value > 100

o for t, in R: ... %
b .1dH hT b]_ t E O D -~
Th1 ashTable(t,) 5..§.Plpellne #2 n R.id, S. cdate

efor t, in S:
if evalPred(t): PRE

if probeHashTable(t,):
emit(projection(t,;Xt,))

Operator Fusion

$2CMU-DB 5-----------P1pelme #1

15-445/645 (Spring 2025)



PUSH-BASED ITERATOR MODEL

Data Flow = SELECT R.1id , S. cdate

FROM R JOIN S
Scheduler ON R.id = S.id

WHERE S.value > 100

o for t; in R: t
buildHashTable(t,) R [N —————

Pipeline #Z T k.o, s. cdate’
9 for t, in S:
if evalPred(t):

if probeHashTable(t,):
emit(projection(t,;Xt,))
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull)

— Easy to control output via LIMIT.

— Parent operator blocks until its child returns with a tuple.

— Additional overhead because operators' Next () functions
are implemented as virtual functions.

— Branching costs on each Next () invocation.

Approach #2: Bottom-to-Top (Push)

— Allows for tighter control of caches/registers in pipelines.
— May not have exact control of intermediate result sizes.
— Difficult to implement some operators (Sort-Merge Join).
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PLAN PROCESSING DIRECTION

Approach #1: Top-to-Bottom (Pull) « Most Common

— Easy to control output via LIMIT.

— Parent operator blocks until its child returns with a tuple.

— Additional overhead because operators' Next () functions
are implemented as virtual functions.

— Branching costs on each Next () invocation.

Approach #2: Bottom-to-Top (Push) « Rare

— Allows for tighter control of caches/registers in pipelines.
— May not have exact control of intermediate result sizes.
— Difficult to implement some operators (Sort-Merge Join).




ACCESS METHODS

SELECT R.id, S.cdate

An access method is the way that the FROM R JOIN S
DBMS accesses the data stored in a ON R.id = S.id
table. WHERE S.value > 100
— Not defined in relational algebra. ;

n R.id, S.cdate
Three basic approaches: t
— Sequential Scan. M R.1id=S.id
— Index Scan (many variants). X
— Multi-Index Scan. / G value>100

\
R S
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ACCESS METHODS

SELECT R.id, S.cdate

An access method is the way that the EROM R JOIN S
DBMS accesses the data stored in a ON R.id = S.id
table. WHERE S.value > 100

— Not defined in relational algebra.

Three basic approaches:
— Sequential Scan.

— Index Scan (many variants).
— Multi-Index Scan.
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SEQUENTIAL SCAN

For each page in the table:
— Retrieve it from the buffer pool.

— [terate over each tuple and check whether
to include it.

The DBMS maintains an internal
cursor that tracks the last page / slot it
examined.

£CMU-DB
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for page in table.pages:
for t in page.tuples:
if evalPred(t):
// Do Something!
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SEQUENTIAL SCAN: OPTIMIZATIONS

Data Encoding / Compression

Prefetching / Scan Sharing / Buffer Bypass
Task Parallelization / Multi-threading
Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization:

Code Specialization / Compilation
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DATA SKIPPING

Approach #1: Approximate Queries (Lossy)

— Execute queries on a sampled subset of the entire table to
produce approximate results.
— Examples: BlinkDB, Redshift, ComputeDB, XDB, Oracle,

Snowflake, Google BigQuery, DataBricks

Approach #2: Zone Maps (Lossless)
— Pre-compute columnar aggregations per page that allow
the DBMS to check whether queries need to access it.

— Trade-off between page size vs. filter efficacy.
— Examples: Oracle, Vertica, SingleStore, Netezza,
Snowflake, Google BigQuery



http://blinkdb.org/
https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://tibco-computedb.readthedocs.io/
https://initialdlab.github.io/XDB/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.snowflake.com/en/user-guide/querying-approximate-frequent-values.html
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://docs.databricks.com/sql/language-manual/functions/approx_count_distinct.html
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/

ZONE MAPS

Pre-computed aggregates for the attribute values in
a page. DBMS checks the zone map first to decide
whether it wants to access the page.

Original Data

val
100

200

300

400

400

£CMU-DB

15-445/645 (Spring 2025)




ZONE MAPS

Pre-computed aggregates for the attribute values in
a page. DBMS checks the zone map first to decide

whether it wants to access the page.

Original Data

val
100

200

300

400

400
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»

Zone Map

type val
MIN 100
MAX 400
AVG 280
SUM 1400
COUNT 5




ZONE MAPS

Pre-computed aggregates for the attribute values in
a page. DBMS checks the zone map first to decide
whether it wants to access the page.

Original Data Zone Map
val type val
SELECT * FROM table 100 MIN 100
WHERE val > 600 200 » MAX 400
300 AVG 280
400 SUM 1400
400 COUNT 5
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ZONE MAPS

Pre-computed aggregates for the attribute values in
a page. DBMS checks the zone map first to decide
whether it wants to access the page.

Original Data Zone Map
val type val
SELECT * FROM table 100 MIN 100
WHERE val > 600 200 » MAX 400
300 AVG 280
400 SUM 1400
400 COUNT 5
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ZONE MAPS

Pre-computed aggregates for the attribute values in
a page. DBMS checks the zone map first to decide
whether it wants to access the page.

Original Data Zone Map
val type val
SELECT * FROM table 100 MIN 100
WHERE val > 600 200 » MAX 400
300 AVG 280
%y Parquet 400 sum | 1400
i 400 COUNT 5
orc
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ZONE M

for
-computed aggregates
Ei)eage. DPBMS checks the zon

whether it wants to access th

Original Data

val

100
200
300
400
400

SELECT * FROM table
WHERE val > 600

%y Parquet

Apache

orc
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A Light Weight Index Structure for Data Warehousing
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Lehrstuhl fijr Ppraktische Informatik 111, Universitii Mannheim, Germany

Abstract

Small Materializeq

Aggregates (SMAs  for

short) are considered a highly flexible and ver-
satile alternative for Materialized datg cubes.

up query Processing. We present the
idea and present an application of S,
the TPC.p benchmark,

general
MAs to

We show that ex-

ploiting SMAs for TPC-D Query 1 results in
a speed up of two orders of magnitude, Then,
we investigate the Pproblem of query process-
ing in the presence of SMAs, Last, we briefly
discuss some further tuning possibiligies for
MAs,

1 Introduction

Among the predominant demands put on

ie., the highly efficient evaluation of complex analyt-

tures. Severa] index structures haye been applied to
data warehouse management systems (for an overyiey,
see [2, 17]). Among them are traditional index struc-
tures 1, 3, 6), bitmaps [15], and R-tree-like structures
[9].

_—
Permission to copy withouy Jee all or part of 4,

is material is

9ranted provided that the copies are not made or distributed Jor
direct commercial advantage, the VLDB Copyright notice and

the title of the Ppublication ang its date appear,

and notice is

476

Since most of the queries against data warehouses
incorporate 8rouping and aggregation, it seems to be
a good idea to Materialize according views. The most
Popular of these approaches is the Materialized data
cube where for a set of dimensions, for all their Ppossi-
ble grouping combinations, the Aaggregates of interest
are materialized, Then, query DProcessing against a
data cube bojls down to a very efficient. lookup. Since
the complete data cube is very space consuming [5, 18],
strategies have been developed for Mmaterializing only
those parts of 5 data cube that pay off most iy query
Processing [10]. Another approach-based o [14]-is to
hierarchically organize the ageregates [12]. By still
the storage consumption can be very high, even for a
simple grouping possibility, if the number of dimey.
sions and /or thoir cardinality grows, On the user side,
the data cube operator has heen Proposed to allow for
casier query formulation [8]. But since we deal with
Pperformance here, we wil] throughout the rest of the
Paper use the term data cube to refer to a materialized
data cube used to speed up query processing,

Besides high storage consumption, the biggest dis-
advantage of the data cube js jtg inflexibility, Each
data cube implies a fixed number of queries that can
be answered with it. As soon as for example an ad-
ditional selection condition occurs in the query, the
data cube might not be applicable any more. Further-
more, for queries not foreseen by the data cube de-
signer, the data cube is useless. This argument applies
also to alternative structures like the one presented
in [12]. This inﬁexibility—togethcr with the extrordj.
nary space consumption—maybe the reason why, to
the knowledge of the author, data cubeg have never

cient support of complex queries against, high volumes
of data as exemplified by the TPC-D benchmark,

The main problem encountered is that, some queries
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INDEX SCAN

The DBMS picks an index to find the tuples that the
query needs.

Which index to use depends on:

— What attributes the index contains

— What attributes the query references

— The attribute's value domains

— Predicate composition

— Whether the index has unique or non-unique keys
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INDEX SCAN

The DBMS picks an index to find the tuples that the
query needs.

Lecture 415

Which index to use depends on:

— What attributes the index contains
— What attributes the query references

— The attribute's value domains

— Predicate composition
— Whether the index has unique or non-unique keys




INDEX SCAN
S h h ole tabl SELECT * FROM students
uppose that we have a single table WHERE age < 30
with 100 tuples and two indexes: AND dept = 'CS'
— Index #1: age AND country = 'US'

— Index #2: dept
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INDEX SCAN

h h ol bl SELECT * FROM students
Supposet at we have a single table WHERE age < 30

with 100 tuples and two indexes: AND dept = 'CS'

— Index #1: age AND country = 'US'
— Index #2: dept

Scenario #1
There are 99 people
under the age of 30 but
only 2 people in the CS
department.
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INDEX SCAN
Suppose that we have a single table S‘I;:_]EEE ZgZRgM3gtUdents
with 100 tuples and two indexes: AND dept = 'CS'
— Index #1: age AND country = 'US'
— Index #2: dept
Scenario #1 Scenario #2

There are 99 people There are 99 people in

under the age of 30 but the CS department but

only 2 people in the CS only 2 people under the

department. age of 30.
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MULTI-INDEX SCAN

[f there are multiple indexes available for a query,
the DBMS does not have to pick only one:

— Compute sets of Record IDs using each matching index.

— Combine these sets based on the query’s predicates (union
vs. intersect).

— Retrieve the records and apply any remaining predicates.

Examples:
— DB2 Multi-Index Scan

— PostgreSQL Bitmap Scan
— MySQL Index Merge

£CMU-DB
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https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html

MULTI-INDEX SCAN
Gi he follow: SELECT * FROM students
iven the ollowing query on a WHERE age < 30
database with an index #1 on age and AND dept = 'CS'
an index #2 on dept: AND country = 'US'

— We can retrieve the Record IDs satisfying
age<30 using index #1.

— Then retrieve the Record IDs satisfying
dept="CS' using index #2.

— Take their intersection.

— Retrieve records and check
country="US".
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MULTI-INDEX SCAN

Set ; : be d SELECT * FROM students
et 1.ntersect%on can be done WHERE age < 30
efficiently with bitmaps or hash AND dept = 'CS'
tables. AND country = 'US'
age<30 dept='CS'
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MULTI-INDEX SCAN

Set ; : be d SELECT * FROM students
et 1.ntersect%on can be done WHERE age < 30
efficiently with bitmaps or hash AND dept = 'CS'
tables. AND country = 'US'
age<30 dept="CS'

record ids
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MULTI-INDEX SCAN

Set ; ) be d SELECT * FROM students
et Intersection can be done WHERE age < 30

efficiently with bitmaps or hash AND dept = 'CS'
tables. AND country = 'US'

AN AN

age<30 dept='CS'

record ids record ids
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MULTI-INDEX SCAN

Set ; ) be d SELECT * FROM students
et Intersection can be done WHERE age < 30

efficiently with bitmaps or hash AND dept = 'CS'
tables. AND country = 'US'

AN AN

age<30 dept='CS'

record ids record ids

fetch records country="'US'
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MODIFICATION QUERIES

Operators that modify the database (INSERT,
UPDATE, DELETE) are responsible for modifying the

target table and its indexes.
— Constraint checks can either happen immediately inside of
operator or deferred until later in query/transaction.

The output of these operators can either be Record
Ids or tuple data (i.e., RETURNING).
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MODIFICATION QUERIES

UPDATE/DELETE:

— Child operators pass Record IDs for target tuples.
— Must keep track of previously seen tuples.

INSERT:

— Choice #1: Materialize tuples inside of the operator.
— Choice #2: Operator inserts any tuple passed in from child
operators.
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UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100)
insertIntoIndex(idx_salary, t.salary, t)

CREATE INDEX idx_salary
ON people (salary);

for t in Index,.,pe:
if t.salary < 1100:
emit(t)

$ZCMU-DB
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UPDATE people

SET salary = salary + 100
WHERE salary < 1100




UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100)

insertIntoIndex(idx_salary, t.salary, t)

CREATE INDEX idx_salary
ON people (salary);

for t in Index,.,pe:
if t.salary < 1100:
emit(t)
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UPDATE people

SET salary = salary + 100
WHERE salary < 1100




Control Flow =——p
Data Flow =—p

UPDATE QUERY PROBLEM

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100)

insertIntoIndex(idx_salary, t.salary, t)

CREATE INDEX idx_salary
ON people (salary);

UPDATE people

SET salary = salary + 100
WHERE salary < 1100

for t in Index,.,pe:

if t.salary < 1100:
emit(t)
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Index(people.salary)




Control Flow =——p
Data Flow =—p

UPDATE QUERY PROBLEM

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100)

insertIntoIndex(idx_salary, t.salary, t)

CREATE INDEX idx_salary
ON people (salary);

UPDATE people

SET salary = salary + 100
WHERE salary < 1100

for t in Index,.,pe:

if t.salary < 1100:
emit(t)
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Index(people.salary)

*




UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100)

insertIntoIndex(idx_salary, t.salary, t)

CREATE INDEX idx_salary
ON people (salary);

for t in Index,.,pe:
if t.salary < 1100:
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UPDATE people

SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

*

(999, Andy)




UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

for t in child.Next(): (999, Andy)
removeFromIndex(idx_salaN, t.salary, t)
updateTuple(t.salary = t.sNary + 100)

insertIntoIndex(idx_salary, Y.salary, t)

CREATE INDEX idx_salary
ON people (salary);

/

for t in Index,.,pe:
if t.salary < 119#%
emit(t)
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UPDATE people

SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

*
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UPDATE people

SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

*




UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

for t in child.Next(): (999, Andy)
removeFromIndex(idx_salary, t.salary, t)=
updateTuple(t.salary = t.salary + 100)

CREATE INDEX idx_salary
ON people (salary);

insertIntoIndex(idx_salary, t.salary, t)

for t in Index,.,pe:
if t.salary < 1100:
emit(t)
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UPDATE people

SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

*




UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

CREATE INDEX idx_salary
ON people (salary);

for t in child.Next(): (1099, Andy)
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100)

UPDATE people

insertIntoIndex(idx_salary, t.salary, t) =

for t in Index,.,pe:
if t.salary < 1100:
emit(t)
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SET salary = salary + 100
\ WHERE salary < 1100

\\\“*Index(people.salary)

*



UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

CREATE INDEX idx_salary
ON people (salary);

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100)

UPDATE people

insertIntoIndex(idx_salary, t.salary, t) =

for t in Index,.,pe:
if t.salary < 1100:
emit(t)
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SET salary = salary + 100
\ WHERE salary < 1100

\\\“*Index(people.salary)

*



UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

for t in child.Next():
removeFromIndex(idx_salary, t.salary, t)
updateTuple(t.salary = t.salary + 100)

insertIntoIndex(idx_salary, t.salary, t)

CREATE INDEX idx_salary
ON people (salary);

for t in Index,.,pe:
if t.salary < 1100:
emit(t)
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UPDATE people

SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

*




UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

for t in child.Next():
removeFromIndex(idx_salaN, t.salary, t)
updateTuple(t.salary = t.sNary + 100)
insertIntoIndex(idx_salary, Y.salary, t)

CREATE INDEX idx_salary
ON people (salary);

for t in Index,.,pe:
if t.salary < 119#%
emit(t)
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UPDATE people

SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

*

(1099, Andy)




UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

for t in child.Next(): (1099, Andy)
removeFromIndex(idx_salaN, t.salary, t)
updateTuple(t.salary = t.sNary + 100)

insertIntoIndex(idx_salary, Y.salary, t)

CREATE INDEX idx_salary
ON people (salary);

/

for t in Index,.,pe:
if t.salary < 119#%
emit(t)
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UPDATE people

SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

*




UPDATE QUERY PROBLEM

Control Flow =——p
Data Flow =—p

for t in child.Next(): (1199, Andy)
removeFromIndex(idx_salalN, t.salary, t)
updateTuple(t.salary = t.sNary + 100)

insertIntoIndex(idx_salary, Y.salary, t)

for t in IndeX,.qpe:
if t.salary < 119#%
emit(t)

4
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)Q &

\

CREATE INDEX idx_salary
ON people (salary);

UPDATE people

SET salary = salary + 100
WHERE salary < 1100

Index(people.salary)

HEEEEE

*
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HALLOWEEN PROBLEM

Anomaly where an update operation changes the
physical location of a tuple, which causes a scan

operator to visit the tuple multiple times.
— Can occur on clustered tables or index scans.

First discovered by IBM researchers while working
on System R on Halloween day in 1976.

Solution: Track modified record ids per query.



https://en.wikipedia.org/wiki/Halloween_Problem

EXPRESSION EVALUATION

The DBMS represents a WHERE clause
as an expression tree.

The nodes in the tree represent

different expression types:

— Comparisons (=, <, >, 1=)

— Conjunction (AND), Disjunction (OR)
— Arithmetic Operators (+, =, *, /, %)
— Constant Values

— Tuple Attribute References

— Functions

£CMU-DB
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SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100;




EXPRESSION EVALUATION

The DBMS represents a WHERE clause
as an expression tree.

The nodes in the tree represent

different expression types:
— Comparisons (=, <, >, 1=)
— Conjunction (AND), Disjunction (OR)

SELECT R.id, S.cdate
FROM R JOIN S
‘ ON R.id = S.id ‘

WHERE S.value > 100;

AND

— Arithmetic Operators (+, =, *, /, %)

S 2N

— Constant Values
— Tuple Attribute References /
— Functions Attribute(R. id)

Attribute(S.id) Attribute(value) Constant(100)

£CMU-DB
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EXPRESSION EVALUATION

PREPARE xxx AS
SELECT * FROM S
WHERE S.val = $1 +9

EXECUTE xxx(991)
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EXPRESSION EVALUATION

PREPARE xxx AS
SELECT * FROM S
WHERE |S.val = $1 +9

EXECUTE xxx(991)

$ZCMU-DB

15-445/645 (Spring 2025)



107

EXPRESSION EVALUATION

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE |S.val = $1 +9
EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)

—

Attribute(S.val)

Parameter($1) Constant(9)
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EXPRESSION EVALUATION

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE |S.val = $1 +9
EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)

»
— =

Attribute(S.val)

Parameter($1) Constant(9)
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EXPRESSION EVALUATION

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE |S.val = $1 +9
EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)

— =

» Attribute(S.val) +

S

Parameter($1) Constant(9)
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EXPRESSION EVALUATION

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE |S.val = $1 +9
EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)

— =

» Attribute(S.val) +

S

Parameter($1) Constant(9)
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EXPRESSION EVALUATION

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE |S.val = $1 +9
EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)

— =

» Attribute(S.val) +

1000 / ‘\

Parameter($1) Constant(9)
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EXPRESSION EVALUATION

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE |S.val = $1 +9
EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)

—

Attribute(S.val) +

1000 / \

Parameter($1) « Constant(9)
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EXPRESSION EVALUATION

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE |S.val = $1 +9
EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)

—

Attribute(S.val) +

1000 / \

Parameter($1) « Constant(9)
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EXPRESSION EVALUATION

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE |S.val = $1 +9
EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)

—

Attribute(S.val) +

1000 / \

Parameter($1) « Constant(9)
991
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EXPRESSION EVALUATION

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE |S.val = $1 +9
EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)

—

Attribute(S.val) +

1000 / \

Parameter($1) « Constant(9)
991
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EXPRESSION EVALUATION

PREPARE
SELECT
WHERE

EXECUTE

XXX AS .
* FROM S Execution Context
S . Val — $1 T 9 Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)
xxXx(991)
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—

Attribute(S.val)

1000 /

Parameter($1)
991

\

Constant(9) «

9
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EXPRESSION EVALUATION

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE |S.val = $1 +9
EXECUTE xxx(991)

Current Tuple Query Parameters Table Schema
(123, 1000) (int:991) S»(int:id, int:val)

— =

Attribute(S.val) + «
1000 / 1@@0\
Parameter($1) Constant(9)
991 9
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EXPRESSION EVALUATION

PREPARE

WHERE

XXX AS

SELECT * FROM S

S.val =

Execution Context

$1 +9

Current Tuple

(123, 1000)

EXECUTE xxx(991)

Query Parameters Table Schema
(int:991) S»(int:id, int:val)
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-

’,—————’/ true \*-\\

Attribute(S.val)

1000 / 1@@0\

Parameter($1)

991

Constant(9)
9
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EXPRESSION EVALUATION

SELECT * WHERE s.val = 1;

Evaluating predicates by traversing a
tree is terrible for the CPU. =

— The DBMS traverses the tree and for each / \\

node that it visits, it must figure out what T S vE D) ST
the operator needs to do.
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EXPRESSION EVALUATION

SELECT * WHERE s.val = 1;

Evaluating predicates by traversing a
tree is terrible for the CPU. =

— The DBMS traverses the tree and for each / \\

node that it visits, it must figure out what T S vE D) ST
the operator needs to do.

A better approach is to evaluate the
expression directly.

An even better approach is to
vectorize it evaluate a batch of tuples

at the same time...
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EXPRESSION EVALUATION

SELECT * WHERE s.val = 1;

Evaluating predicates by traversing a
tree is terrible for the CPU. =

— The DBMS traverses the tree and for each / \\

node that it visits, it must figure out what N G Constant(1)
the operator needs to do. ‘
A better approach is to evaluate the bool check(val) {
expression directly. return (val == 1);
}

An even better approach is to
vectorize it evaluate a batch of tuples

at the same time...
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EXPRESSION EVALUATION

SELECT * WHERE s.val =

Evaluating predicates by traversing a
tree is terrible for the CPU. =

— The DBMS traverses the tree and for each / \\

node that it visits, it must figure out what N G Constant(1)

the operator needs to do. ‘
A better approach is to evaluate the bool check(val) {
expression directly. return (val == 1);

: 3

An even better approach is to
vectorize it evaluate a batch of tuples gcc; Clang, LLVM, .
at the same time... Q I
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EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:

— Identify redundant / unnecessary
operations that are wasteful.

— Compute a sub-expression on a constant
value once and reuse result per tuple.
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WHERE UPPER(col1) = UPPER('wutang');

UPPER() UPPER()
Attribute(col1l) Constant('wutang')




EXPRESSION EVALUATION: OPTIMIZATIONS

WHERE UPPER(col1) = UPPER('wutang');

Constant Folding:

— Identify redundant / unnecessary
operations that are wasteful.

— Compute a sub-expression on a constant
value once and reuse result per tuple.
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UPPER() | : UPPER() :
Attribute(coll) Constant('wutang') | :




EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:

— Identify redundant / unnecessary
operations that are wasteful.

— Compute a sub-expression on a constant
value once and reuse result per tuple.
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WHERE UPPER(col1) = UPPER('wutang');

UPPER() Constant('WUTANG')
Attribute(coll)




EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:

— Identify redundant / unnecessary
operations that are wasteful.

— Compute a sub-expression on a constant
value once and reuse result per tuple.

Common Sub-Expr. Elimination:

— Identify repeated sub-expressions that can
be shared across expression tree.

— Compute once and then reuse result.
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WHERE UPPER(col1) = UPPER('wutang');

UPPER() Constant('WUTANG')
Attribute(coll)




EXPRESSION EVALUATION: OPTIMIZATIONS

WHERE UPPER(col1) = UPPER('wutang');

Constant Folding:

— Identify redundant / unnecessary
operations that are wasteful.

— Compute a sub-expression on a constant
value once and reuse result per tuple.

UPPER() Constant('WUTANG')
Attribute(coll)

Common Sub-Expr. Elimination:

WHERE STRPOS('x', coll) < 2
OR STRPOS('x', coll) > 8

— Identify repeated sub-expressions that can
be shared across expression tree.
— Compute once and then reuse result.

OR

op(<) op(>)
STRPOS() Constant(2) STRPOS() Constant(8)

Constant('x"')

Attribute(coll)

Constant('x"')

Attribute(coll)
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EXPRESSION EVALUATION: OPTIMIZATIONS

WHERE UPPER(col1) = UPPER('wutang');

Constant Folding:

— Identify redundant / unnecessary
operations that are wasteful.

— Compute a sub-expression on a constant
value once and reuse result per tuple.

UPPER() Constant('WUTANG')
Attribute(coll)

Common Sub-Expr. Elimination:

WHERE STRPOS('x', coll) < 2
OR STRPOS('x', coll) > 8

— Identify repeated sub-expressions that can
be shared across expression tree.
— Compute once and then reuse result.

OR

STRPOS()

Constant(2)

o B

\.. ........ .:

........ T

STRPOS()

% ......... :

E Constant('x"')

Attribute(coll) :E

Constant('x"')

Attribute(coll) | ¢
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EXPRESSION EVALUATION: OPTIMIZATIONS

WHERE UPPER(col1) = UPPER('wutang');

Constant Folding:

— Identify redundant / unnecessary
operations that are wasteful.

— Compute a sub-expression on a constant
value once and reuse result per tuple.

UPPER() Constant('WUTANG')
Attribute(coll)

Common Sub-Expr. Elimination:

WHERE STRPOS('x', coll) < 2
OR STRPOS('x', coll) > 8

— Identify repeated sub-expressions that can
be shared across expression tree.
— Compute once and then reuse result.

OR

STRPOS()

Constant(2)

v

NN

Constant('x"')

Attribute(coll)
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Op(>)

~

Constant(8)




EXPRESSION EVALUATION: OPTIMIZATIONS

Constant Folding:

— Identify redundant / unnecessary
operations that are wasteful.

— Compute a sub-expression on a constant
value once and reuse result per tuple.

Common Sub-Expr. Elimination:

WHERE UPPER(col1) = UPPER('wutang');

UPPER() Constant('WUTANG')
Attribute(coll)

WHERE STRPOS('x', coll) < 2
OR STRPOS('x', coll) > 8

— Identify repeated sub-expressions that can

be shared across expression tree.
— Compute once and then reuse result.

0p(>) |

OR

STRPOS()

Constant(2) Constant(8)

v

NN

Constant('x"')

Attribute(coll)
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CONCLUSION

The same query plan can be executed in multiple
different ways.

(Most) DBMSs will want to use index scans as much
as possible.

Expression trees are flexible but slow.
JIT compilation can (sometimes) speed them up.




NEXT CLASS

Parallel Query Execution
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