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ADMINISTRIVIA

Project #3 is due Sunday March 30th @ 11:59pm
→ Recitation on Fri, Mar 14 from 5:00 – 6:00 pm in GHC 5117.

Mid-term exam grades now posted. 
→ Exam viewing for the next 3 OH, including today
→ The last OH for exam viewing is on March 24.
→ Special OH this Thu 9:00 am - 10:30 am, 9103 GHC.
→ Stats: Mean: 75.1, Std-dev: 10.4.
→ Notes: Used partial grading, and full points given on the join question.
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LAST CLASS

We discussed composing operators 
into a plan to execute a query.

We assumed that queries execute with 
a single worker (e.g., a thread).

We will now discuss how to execute 
queries in parallel using multiple 
workers.
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PARALLEL QUERY EXECUTION

The database is spread across multiple resources to 
→ Deal with large data sets that don’t fit on a single 

machine/node
→ Higher performance
→ Redundancy/Fault-tolerance

Appears as a single logical database instance to the 
application, regardless of physical organization.
→ SQL query for a single-resource DBMS should generate 

the same result on a parallel or distributed DBMS.
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PARALLEL VS. DISTRIBUTED

Parallel DBMSs

→ Resources are physically close to each other.
→ Resources communicate over high-speed interconnect.
→ Communication is assumed to be cheap and reliable.

Distributed DBMSs

→ Resources can be far from each other.
→ Resources communicate using slow(er) interconnect.
→ Communication costs and problems cannot be ignored.
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TODAY’S AGENDA

Process Models
Execution Parallelism
I/O Parallelism
DB Flash Talk: Confluent
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https://www.confluent.io/
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PROCESS MODEL

A DBMS’s process model defines how the system 
is architected to support concurrent requests / 
queries.

A worker is the DBMS component responsible for 
executing tasks on behalf of the client and returning 
the results.
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PROCESS MODEL

Approach #1: Process per DBMS Worker

Approach #2: Thread per DBMS Worker

Approach #3: Embedded DBMS
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PROCESS MODEL

Approach #1: Process per DBMS Worker

Approach #2: Thread per DBMS Worker

Approach #3: Embedded DBMS
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PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on the OS dispatcher.
→ Use shared-memory for global data structures.
→ A process crash does not take down the entire system.
→ Examples: IBM DB2, Postgres, Oracle
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THREAD PER WORKER

Single process with multiple worker threads.
→ DBMS (mostly) manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: MSSQL, MySQL, DB2, Oracle (2014)

         Almost every DBMS created in the last 20 years!
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EMBEDDED DBMS

DBMS runs inside the same address space as the 
application. Application is (primarily) responsible 
for threads and scheduling.
The application may support outside connections.
→ Examples: BerkeleyDB, SQLite, RocksDB, LevelDB
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SCHEDULING

For each query plan, the DBMS decides where, 
when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS nearly always knows more than the OS.
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PROCESS MODELS

Advantages of a multi-threaded architecture:
→ Less overhead per context switch.
→ Do not have to manage shared memory.

The thread per worker model does not mean that 
the DBMS supports intra-query parallelism.

DBMS from the last 15 years use native OS threads 
unless they are Redis or Postgres forks.
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PARALLEL EXECUTION

The DBMS executes multiple tasks simultaneously 
to improve hardware utilization.
→ Active tasks do not need to belong to the same query.
→ High-level approaches do not vary on whether the DBMS 

is multi-threaded, multi-process, or multi-node.

Approach #1: Inter-Query Parallelism

Approach #2: Intra-Query Parallelism

14



15-445/645 (Spring 2025)

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple 
queries to execute simultaneously.
→ Most DBMSs use a simple first-come, first-served policy.

If queries are read-only, then this requires almost 
no explicit coordination between the queries.
→ Buffer pool can handle most of the sharing if necessary. 

If multiple queries are updating the database at the 
same time, then this is tricky to do correctly…
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INTRA-QUERY PARALLELISM

Improve the performance of a single query by 
executing its operators in parallel.
→ Think of the organization of operators in terms of a 

producer/consumer paradigm.

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.
There are parallel versions of every operator.
→ Can either have multiple threads access centralized data 

structures or use partitioning to divide work up.
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PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each 
level of buckets for R and S after partitioning.
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INTRA-QUERY PARALLELISM

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy
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INTRA-QUERY PARALLELISM

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy
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INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)

→ Operators are decomposed into independent instances that 
perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the 
query plan to coalesce/split results from multiple 
children/parent operators.
→ Postgres calls this “gather”
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EXCHANGE OPERATOR

Exchange Type #1 – Gather

→ Combine the results from multiple workers 
into a single output stream.

Exchange Type #2 – Distribute

→ Split a single input stream into multiple 
output streams.

Exchange Type #3 – Repartition

→ Shuffle multiple input streams across 
multiple output streams.

→ Some DBMSs always perform this step after 
every pipeline (e.g., Dremel/BigQuery).

21

Gather

Operator Operator Operator

Repartition

Operator Operator Operator

Operator Operator

Operator Operator Operator

Distribute

Source: Craig Freedman 

https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/


15-445/645 (Spring 2025)

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)

→ Operations are overlapped to pipeline data from one stage 
to the next without materialization.

→ Workers execute multiple operators from different 
segments of a query plan at the same time.

→ Still need exchange operators to combine intermediate 
results from segments.

Also called pipelined parallelism.
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INTER-OPERATOR PARALLELISM
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INTER-OPERATOR PARALLELISM
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BUSHY PARALLELISM

Approach #3: Bushy Parallelism

→ Hybrid of intra- and inter-operator parallelism where 
workers execute multiple operators from different 
segments of a query plan at the same time.

→ Still need exchange operators to combine intermediate 
results from segments.
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OBSERVATION

Using additional processes/threads to execute 
queries in parallel won’t help if the disk is always the 
main bottleneck.

It can sometimes make the DBMS’s performance 
worse if a worker is accessing different segments of 
the disk at the same time.
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I/O PARALLELISM

Split the DBMS across multiple storage devices to 
improve disk bandwidth latency.

Many different options that have trade-offs:
→ Multiple Disks per Database
→ One Database per Disk
→ One Relation per Disk
→ Split Relation across Multiple Disks

Some DBMSs support this natively. Others require 
admin to configure outside of DBMS.
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MULTI-DISK PARALLELISM

Store data across multiple disks to 
improve performance + durability.

Hardware-based: I/O controller 
makes multiple physical devices 
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

Software-based: DBMS manages 
erasure codes at the file/object level.
→ Faster and more flexible.
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DATABASE PARTITIONING

Some DBMSs allow you to specify the disk location 
of each individual database.
→ The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the 
DBMS stores each database in a separate directory.
→ The DBMS recovery log file might still be shared if 

transactions can update multiple databases.
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PARTITIONING

Split a single logical table into disjoint physical 
segments that are stored/managed separately.

Partitioning should (ideally) be transparent to the 
application.
→ The application should only access logical tables and not 

have to worry about how things are physically stored.

We will cover this further when we talk about 

distributed databases.
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CONCLUSION

Parallel execution is important, which is why 
(almost) every major DBMS supports it.

However, it is hard to get right.
→ Coordination Overhead
→ Scheduling
→ Concurrency Issues
→ Resource Contention
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NEXT CLASS

Query Optimization
→ Logical vs Physical Plans
→ Search Space of Plans
→ Cost Estimation of Plans
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