
Database
Systems

15-445/645 SPRING 2025 PROF. JIGNESH PATEL

Query
Execu*on II

15-445/645 (Spring 2025)

ADMINISTRIVIA

Project #3 is due Sunday March 30th @ 11:59pm
→ Recitation on Fri, Mar 14 from 5:00 – 6:00 pm in GHC 5117.

Mid-term exam grades now posted.
→ Exam viewing for the next 3 OH, including today
→ The last OH for exam viewing is on March 24.
→ Special OH this Thu 9:00 am - 10:30 am, 9103 GHC.
→ Stats: Mean: 75.1, Std-dev: 10.4.
→ Notes: Used partial grading, and full points given on the join question.

2

15-445/645 (Spring 2025)

LAST CLASS

We discussed composing operators
into a plan to execute a query.

We assumed that queries execute with
a single worker (e.g., a thread).

We will now discuss how to execute
queries in parallel using multiple
workers.

3

R S

R.id=S.id

value>100

R.id, S.cdate

⨝
s

p

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

15-445/645 (Spring 2025)

PARALLEL QUERY EXECUTION

The database is spread across multiple resources to
→ Deal with large data sets that don’t fit on a single

machine/node
→ Higher performance
→ Redundancy/Fault-tolerance

Appears as a single logical database instance to the
application, regardless of physical organization.
→ SQL query for a single-resource DBMS should generate

the same result on a parallel or distributed DBMS.

4

15-445/645 (Spring 2025)

PARALLEL VS. DISTRIBUTED

Parallel DBMSs

→ Resources are physically close to each other.
→ Resources communicate over high-speed interconnect.
→ Communication is assumed to be cheap and reliable.

Distributed DBMSs

→ Resources can be far from each other.
→ Resources communicate using slow(er) interconnect.
→ Communication costs and problems cannot be ignored.

5

15-445/645 (Spring 2025)

TODAY’S AGENDA

Process Models
Execution Parallelism
I/O Parallelism
DB Flash Talk: Confluent

6

https://www.confluent.io/

15-445/645 (Spring 2025)

PROCESS MODEL

A DBMS’s process model defines how the system
is architected to support concurrent requests /
queries.

A worker is the DBMS component responsible for
executing tasks on behalf of the client and returning
the results.

7

15-445/645 (Spring 2025)

PROCESS MODEL

Approach #1: Process per DBMS Worker

Approach #2: Thread per DBMS Worker

Approach #3: Embedded DBMS

8

15-445/645 (Spring 2025)

PROCESS MODEL

Approach #1: Process per DBMS Worker

Approach #2: Thread per DBMS Worker

Approach #3: Embedded DBMS

8

Most Common

15-445/645 (Spring 2025)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on the OS dispatcher.
→ Use shared-memory for global data structures.
→ A process crash does not take down the entire system.
→ Examples: IBM DB2, Postgres, Oracle

9

Application Dispatcher Worker Processes

15-445/645 (Spring 2025)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on the OS dispatcher.
→ Use shared-memory for global data structures.
→ A process crash does not take down the entire system.
→ Examples: IBM DB2, Postgres, Oracle

9

Application Dispatcher Worker Processes

Connect

15-445/645 (Spring 2025)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on the OS dispatcher.
→ Use shared-memory for global data structures.
→ A process crash does not take down the entire system.
→ Examples: IBM DB2, Postgres, Oracle

9

Application Dispatcher Worker Processes

Connect

15-445/645 (Spring 2025)

PROCESS PER WORKER

Each worker is a separate OS process.
→ Relies on the OS dispatcher.
→ Use shared-memory for global data structures.
→ A process crash does not take down the entire system.
→ Examples: IBM DB2, Postgres, Oracle

9

Application Dispatcher Worker Processes

SQL Commands

15-445/645 (Spring 2025)

THREAD PER WORKER

Single process with multiple worker threads.
→ DBMS (mostly) manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: MSSQL, MySQL, DB2, Oracle (2014)

 Almost every DBMS created in the last 20 years!

10

Application Dispatcher Worker Threads

https://docs.oracle.com/database/121/CNCPT/process.htm

15-445/645 (Spring 2025)

THREAD PER WORKER

Single process with multiple worker threads.
→ DBMS (mostly) manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: MSSQL, MySQL, DB2, Oracle (2014)

 Almost every DBMS created in the last 20 years!

10

Application Dispatcher Worker Threads

Connect

https://docs.oracle.com/database/121/CNCPT/process.htm

15-445/645 (Spring 2025)

THREAD PER WORKER

Single process with multiple worker threads.
→ DBMS (mostly) manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: MSSQL, MySQL, DB2, Oracle (2014)

 Almost every DBMS created in the last 20 years!

10

Application Dispatcher Worker Threads

Connect

https://docs.oracle.com/database/121/CNCPT/process.htm

15-445/645 (Spring 2025)

THREAD PER WORKER

Single process with multiple worker threads.
→ DBMS (mostly) manages its own scheduling.
→ May or may not use a dispatcher thread.
→ Thread crash (may) kill the entire system.
→ Examples: MSSQL, MySQL, DB2, Oracle (2014)

 Almost every DBMS created in the last 20 years!

10

Application Dispatcher Worker Threads

SQL Commands

https://docs.oracle.com/database/121/CNCPT/process.htm

15-445/645 (Spring 2025)

EMBEDDED DBMS

DBMS runs inside the same address space as the
application. Application is (primarily) responsible
for threads and scheduling.
The application may support outside connections.
→ Examples: BerkeleyDB, SQLite, RocksDB, LevelDB

11

Application

15-445/645 (Spring 2025)

EMBEDDED DBMS

DBMS runs inside the same address space as the
application. Application is (primarily) responsible
for threads and scheduling.
The application may support outside connections.
→ Examples: BerkeleyDB, SQLite, RocksDB, LevelDB

11

Application

15-445/645 (Spring 2025)

EMBEDDED DBMS

DBMS runs inside the same address space as the
application. Application is (primarily) responsible
for threads and scheduling.
The application may support outside connections.
→ Examples: BerkeleyDB, SQLite, RocksDB, LevelDB

11

Application

15-445/645 (Spring 2025)

SCHEDULING

For each query plan, the DBMS decides where,
when, and how to execute it.
→ How many tasks should it use?
→ How many CPU cores should it use?
→ What CPU core should the tasks execute on?
→ Where should a task store its output?

The DBMS nearly always knows more than the OS.

12

15-445/645 (Spring 2025)

PROCESS MODELS

Advantages of a multi-threaded architecture:
→ Less overhead per context switch.
→ Do not have to manage shared memory.

The thread per worker model does not mean that
the DBMS supports intra-query parallelism.

DBMS from the last 15 years use native OS threads
unless they are Redis or Postgres forks.

13

15-445/645 (Spring 2025)

PARALLEL EXECUTION

The DBMS executes multiple tasks simultaneously
to improve hardware utilization.
→ Active tasks do not need to belong to the same query.
→ High-level approaches do not vary on whether the DBMS

is multi-threaded, multi-process, or multi-node.

Approach #1: Inter-Query Parallelism

Approach #2: Intra-Query Parallelism

14

15-445/645 (Spring 2025)

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple
queries to execute simultaneously.
→ Most DBMSs use a simple first-come, first-served policy.

If queries are read-only, then this requires almost
no explicit coordination between the queries.
→ Buffer pool can handle most of the sharing if necessary.

If multiple queries are updating the database at the
same time, then this is tricky to do correctly…

15

15-445/645 (Spring 2025)

INTER-QUERY PARALLELISM

Improve overall performance by allowing multiple
queries to execute simultaneously.
→ Most DBMSs use a simple first-come, first-served policy.

If queries are read-only, then this requires almost
no explicit coordination between the queries.
→ Buffer pool can handle most of the sharing if necessary.

If multiple queries are updating the database at the
same time, then this is tricky to do correctly…

15

Lecture #16

15-445/645 (Spring 2025)

INTRA-QUERY PARALLELISM

Improve the performance of a single query by
executing its operators in parallel.
→ Think of the organization of operators in terms of a

producer/consumer paradigm.

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

These techniques are not mutually exclusive.
There are parallel versions of every operator.
→ Can either have multiple threads access centralized data

structures or use partitioning to divide work up.

16

15-445/645 (Spring 2025)

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

17

h1
⋮

HTR

h1
⋮

HTS
0
1
2

max

R(id,name) S(id,value,cdate)

15-445/645 (Spring 2025)

PARALLEL GRACE HASH JOIN

Use a separate worker to perform the join for each
level of buckets for R and S after partitioning.

17

h1
⋮

HTR

h1
⋮

HTS
0
1
2

max

R(id,name) S(id,value,cdate)
1

2

3

n

15-445/645 (Spring 2025)

INTRA-QUERY PARALLELISM

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy

18

15-445/645 (Spring 2025)

INTRA-QUERY PARALLELISM

Approach #1: Intra-Operator (Horizontal)

Approach #2: Inter-Operator (Vertical)

Approach #3: Bushy

18

Most Common

Higher-end Systems

Less Common

15-445/645 (Spring 2025)

INTRA-OPERATOR PARALLELISM

Approach #1: Intra-Operator (Horizontal)

→ Operators are decomposed into independent instances that
perform the same function on different subsets of data.

The DBMS inserts an exchange operator into the
query plan to coalesce/split results from multiple
children/parent operators.
→ Postgres calls this “gather”

19

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A B

⨝
s

p

s

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A B

⨝
s

p

s

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

A B

⨝
s

p

s

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3
1 2 3 A B

⨝
s

p

s

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3
1 2 3 A B

⨝
s

p

s

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3
1 2 3 A B

⨝
s

p

s
s s s

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3
1 2 3 A B

⨝
s

p

s
s s s

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3
1 2 3 A B

⨝
s

p

s
s s s
p p p

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

Build HT Build HT Build HT

1 2 3 A B

⨝
s

p

s
s s s
p p p

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s
p p p

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s
p p p

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

⨝

p p p

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

⨝

p p p

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

⨝

p p p

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

⨝

p p p p p p

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange

15-445/645 (Spring 2025)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

INTRA-OPERATOR PARALLELISM
20

A2A1 A3

Build HT Build HT Build HT

1 2 3

Exchange

A B

⨝
s

p

s
s s s

B1 B2 B3
1 2 3

s s s

Probe HT Probe HT Probe HT

⨝

p p p p p p

Exchange

15-445/645 (Spring 2025)

EXCHANGE OPERATOR

Exchange Type #1 – Gather

→ Combine the results from multiple workers
into a single output stream.

Exchange Type #2 – Distribute

→ Split a single input stream into multiple
output streams.

Exchange Type #3 – Repartition

→ Shuffle multiple input streams across
multiple output streams.

→ Some DBMSs always perform this step after
every pipeline (e.g., Dremel/BigQuery).

21

Gather

Operator Operator Operator

Repartition

Operator Operator Operator

Operator Operator

Operator Operator Operator

Distribute

Source: Craig Freedman

https://blogs.msdn.microsoft.com/craigfr/2006/10/25/the-parallelism-operator-aka-exchange/

15-445/645 (Spring 2025)

INTER-OPERATOR PARALLELISM

Approach #2: Inter-Operator (Vertical)

→ Operations are overlapped to pipeline data from one stage
to the next without materialization.

→ Workers execute multiple operators from different
segments of a query plan at the same time.

→ Still need exchange operators to combine intermediate
results from segments.

Also called pipelined parallelism.

22

15-445/645 (Spring 2025)

INTER-OPERATOR PARALLELISM
23

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

A B

⨝
s

p

s

15-445/645 (Spring 2025)

INTER-OPERATOR PARALLELISM
23

1 ⨝ for r1 ∊ outer:
 for r2 ∊ inner:
 emit(r1⨝r2)

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

A B

⨝
s

p

s

15-445/645 (Spring 2025)

INTER-OPERATOR PARALLELISM
23

1 ⨝ for r1 ∊ outer:
 for r2 ∊ inner:
 emit(r1⨝r2)

2 p for r ∊ incoming:
 emit(p(r))

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

A B

⨝
s

p

s

15-445/645 (Spring 2025)

INTER-OPERATOR PARALLELISM
23

1 ⨝ for r1 ∊ outer:
 for r2 ∊ inner:
 emit(r1⨝r2)

2 p for r ∊ incoming:
 emit(p(r))

SELECT A.id, B.value
 FROM A JOIN B
 ON A.id = B.id
 WHERE A.value < 99
 AND B.value > 100

A B

⨝
s

p

s

15-445/645 (Spring 2025)

BUSHY PARALLELISM

Approach #3: Bushy Parallelism

→ Hybrid of intra- and inter-operator parallelism where
workers execute multiple operators from different
segments of a query plan at the same time.

→ Still need exchange operators to combine intermediate
results from segments.

24

15-445/645 (Spring 2025)

SELECT *
 FROM A
 JOIN B
 JOIN C
 JOIN D

BUSHY PARALLELISM
25

A B
⨝

C D
⨝

⨝

15-445/645 (Spring 2025)

SELECT *
 FROM A
 JOIN B
 JOIN C
 JOIN D

BUSHY PARALLELISM
25

A B
⨝

C D
⨝

⨝

A
⨝
B

⨝
C D

⨝
Exchange Exchange

Exchange

⨝

15-445/645 (Spring 2025)

SELECT *
 FROM A
 JOIN B
 JOIN C
 JOIN D

BUSHY PARALLELISM
25

A B
⨝

C D
⨝

⨝

A
⨝
B

⨝
C D

⨝
Exchange Exchange

Exchange

⨝
3 4

1 2

15-445/645 (Spring 2025)

OBSERVATION

Using additional processes/threads to execute
queries in parallel won’t help if the disk is always the
main bottleneck.

It can sometimes make the DBMS’s performance
worse if a worker is accessing different segments of
the disk at the same time.

26

15-445/645 (Spring 2025)

I/O PARALLELISM

Split the DBMS across multiple storage devices to
improve disk bandwidth latency.

Many different options that have trade-offs:
→ Multiple Disks per Database
→ One Database per Disk
→ One Relation per Disk
→ Split Relation across Multiple Disks

Some DBMSs support this natively. Others require
admin to configure outside of DBMS.

27

15-445/645 (Spring 2025)

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

Software-based: DBMS manages
erasure codes at the file/object level.
→ Faster and more flexible.

28

15-445/645 (Spring 2025)

File of 6 pages (logical view):

page
1

page
2

page
3

page
4

page
5

page
6

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

Software-based: DBMS manages
erasure codes at the file/object level.
→ Faster and more flexible.

28

15-445/645 (Spring 2025)

File of 6 pages (logical view):

page
1

page
2

page
3

page
4

page
5

page
6

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

Software-based: DBMS manages
erasure codes at the file/object level.
→ Faster and more flexible.

28

Physical layout of pages across disks

15-445/645 (Spring 2025)

File of 6 pages (logical view):

page
1

page
2

page
3

page
4

page
5

page
6

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

Software-based: DBMS manages
erasure codes at the file/object level.
→ Faster and more flexible.

28

Physical layout of pages across disks

page
4

page
1

page
5

page
2

page
6

page
3

Striping (RAID 0)

15-445/645 (Spring 2025)

File of 6 pages (logical view):

page
1

page
2

page
3

page
4

page
5

page
6

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

Software-based: DBMS manages
erasure codes at the file/object level.
→ Faster and more flexible.

28

Physical layout of pages across disks

15-445/645 (Spring 2025)

File of 6 pages (logical view):

page
1

page
2

page
3

page
4

page
5

page
6

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

Software-based: DBMS manages
erasure codes at the file/object level.
→ Faster and more flexible.

28

Physical layout of pages across disks

page
2

page
1

page
2

page
1

page
2

page
1

Mirroring (RAID 1)

15-445/645 (Spring 2025)

File of 6 pages (logical view):

page
1

page
2

page
3

page
4

page
5

page
6

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

Software-based: DBMS manages
erasure codes at the file/object level.
→ Faster and more flexible.

28

Physical layout of pages across disks

page
2

page
1

page
2

page
1

page
2

page
1

Mirroring (RAID 1)

15-445/645 (Spring 2025)

File of 6 pages (logical view):

page
1

page
2

page
3

page
4

page
5

page
6

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

Software-based: DBMS manages
erasure codes at the file/object level.
→ Faster and more flexible.

28

Physical layout of pages across disks

page
2

page
1

page
2

page
1

page
2

page
1

Mirroring (RAID 1)

15-445/645 (Spring 2025)

MULTI-DISK PARALLELISM

Store data across multiple disks to
improve performance + durability.

Hardware-based: I/O controller
makes multiple physical devices
appear as single logical device.
→ Transparent to DBMS (e.g., RAID).

Software-based: DBMS manages
erasure codes at the file/object level.
→ Faster and more flexible.

28

Performance

Capacity
Durability

15-445/645 (Spring 2025)

DATABASE PARTITIONING

Some DBMSs allow you to specify the disk location
of each individual database.
→ The buffer pool manager maps a page to a disk location.

This is also easy to do at the filesystem level if the
DBMS stores each database in a separate directory.
→ The DBMS recovery log file might still be shared if

transactions can update multiple databases.

29

15-445/645 (Spring 2025)

PARTITIONING

Split a single logical table into disjoint physical
segments that are stored/managed separately.

Partitioning should (ideally) be transparent to the
application.
→ The application should only access logical tables and not

have to worry about how things are physically stored.

We will cover this further when we talk about

distributed databases.

30

15-445/645 (Spring 2025)

CONCLUSION

Parallel execution is important, which is why
(almost) every major DBMS supports it.

However, it is hard to get right.
→ Coordination Overhead
→ Scheduling
→ Concurrency Issues
→ Resource Contention

31

15-445/645 (Spring 2025)

NEXT CLASS

Query Optimization
→ Logical vs Physical Plans
→ Search Space of Plans
→ Cost Estimation of Plans

32

