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COURSE STATUS

A DBMS’s concurrency control and
recovery components permeate
throughout the design of its entire
architecture.
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Access Methods

Buffer Pool Manager

Disk Manager
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MOTIVATION EXAMPLE #1

Application Logic
Read(A);
Check(A > $25);
Pay($25);

A=A - $25;
Write(A);
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Application Logic
»Read(A);

Check(A > $25);

Pay($25);

A=A - $25;
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—

AN

Bank Balance: $100
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MOTIVATION EXAMPLE #1

Application Logic

Read A) - Read Balance: $100

(A); 3

» Check (A > $25 ) ; Sufficient funds? Q
Bank Balance : $100

Pay($25); @

A=A - $25;
Write(A);




MOTIVATION EXAMPLE #1

Application Logic

Read(A): Read Balance: $100
(A); -
CheCk (A > $2 5 ) ; Sufficient funds? Q

» P ($25) ; Bank Balance: $100

ay ) Pay $25

A=A - $25; 3
Write(A);



MOTIVATION EXAMPLE #1

Application Logic

Read(A): Read Balance: $100
(A); -
CheCk (A > $2 5 ) ; Sufficient funds? Q

P ( $2 5 ) ; Bank Balance: $100
d - Pay $25

' 3 N’
» A=A - 325 ’ New balance: $75

Write(A);
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MOTIVATION EXAMPLE #1

Application Logic

Read A) - Read Balance: $100
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Check(A > $25); Sufficient funds?

; Bank Balance : $100

Pay($25); Pay;$25 @
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MOTIVATION EXAMPLE #1
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MOTIVATION EXAMPLE #1

Application Logic

Read(A): Read Balance: $100
(A); -
CheCk (A > $2 5 ) ; Sufficient funds? Q

Pay($25) ; Bank Balance : $100
ay 5 Pay $25
* 4 =




MOTIVATION EXAMPLE #1

Application Logic

Read(A): Read Balance: $100
(A); -
CheCk (A > $2 5 ) ; Sufficient funds? Q

; Bank Balance : $100
Pay($25); Paﬁzs @
o o) 272



MOTIVATION EXAMPLE #2

Application Logic
Read(A);
Check(A > $25);
Pay($25);

A=A - $25;
Write(A);
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MOTIVATION EXAMPLE #2

Application Logic
»Read(A);

Check(A > $25);

Pay($25);

A=A - $25;

Write(A);
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MOTIVATION EXAMPLE #2

Application Logic
»Read(A);
Check(A > $25);
Pay($25);
A=A - $25;
Write(A);
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MOTIVATION EXAMPLE #2

Application Logic
Read(A);

B Check(A > $25);
Pay($25);
A=A - $25;
Write(A);
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Sufficient funds?

Sufficient funds?
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MOTIVATION EXAMPLE #2

Application Logic
Read(A);
Check(A > $25);

Write(A);
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¥

¥

Sufficient funds?

Sufficient funds?
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¥

Pay $25

Pay $25

Bank Balance: $100
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MOTIVATION EXAMPLE #2

Application Logic
Read(A);
Check(A > $25);
Pay($25);

»A=A— $25;

Write(A);
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¥
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Sufficient funds?
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¥
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MOTIVATION EXAMPLE #2

Application Logic
Read(A);
Check(A > $25);
Pay($25);
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¥

¥

Sufficient funds?

Sufficient funds?
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¥

Pay $25
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¥
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¥

¥
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MOTIVATION EXAMPLE #2

Application Logic
Read(A);
Check(A > $25);
Pay($25);
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Read Balance: $100

Read Balance: $100

¥

¥

Sufficient funds?

Sufficient funds?

¥

¥

Pay $25

Pay $25

¥

2

New balance: $75

New balance: $75

¥

¥

Write Balance: $75

Write Balance: $75

Bank Balance: $75




STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.

— One and only one txn can be running simultaneously in
the DBMS.

Before a txn starts, copy the entire database to a

new file and make all changes to that file.
— If the txn completes successfully, overwrite the original file

with the new one.
— If the txn fails, just remove the dirty copy.
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PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

— Better utilization/throughput
— Increased response times to users.

But we also would like:

— Correctness
— Fairness
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PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
— Temporary Inconsistency (ok, unavoidable)
— Permanent Inconsistency (bad!)

The DBMS is only concerned about what data is

read/written from/to the database.

— Changes to the “outside world” are beyond the scope of the
DBMS.

We need formal correctness criteria to determine
whether an interleaving is valid.




FORMAL DEFINITIONS

Database: A fixed set of named data objects (e.g., A,
B,C,...).

— We do not need to define what these objects are now.

— We will discuss how to handle inserts/deletes next week.

Transaction: A sequence of read and write
operations (e.g., R(A), W(B),...)
— DBMS’s abstract view of a user program.

— A new txn starts with the BEGIN command.
— The txn stops with either COMMIT or ROLLBACK
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CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability
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All actions in txn happen, or none happen.
“All or nothing...”

If each txn is consistent and the DB starts

consistent, then it ends up consistent.
‘It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commiits, its effects persist.
“Twill survive...”
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TODAY'S AGENDA

Atomicity

Consistency

[solation

Durability

DB Flash Talk: ClickHouse



https://clickhouse.com/

ﬂ ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:
— Commit after completing all its actions.

— Abort (or be aborted by the DBMS) after executing some
actions.

DBMS guarantees that txns are atomic.

— From user's point of view: txn always either executes all its
actions or executes no actions at all.
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ﬂ MECHANISMS FOR ENSURING ATOMICITY
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Approach #1: Logging

— DBMS logs all actions so that it can undo the actions of
aborted transactions.

— Maintain undo records both in memory and on disk.

— Think of this like the black box in airplanes...

Logging is used by almost every DBMS.
— Audit Trail

— Efficiency Reasons




ﬂ MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging

— DBMS makes copies of pages and txns make changes to
those copies. Only when the txn commits is the page made
visible to others.

— Originally from IBM System R.

Few systems do this:
— CouchDB

— Tokyo Cabinet

— LMDB (OpenLDAP)
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ﬂ MECHANISMS FOR ENSURING ATOMICITY

°
Q » Approach #2: Shadow Paging
’ — DBMS makes copies of pages and txns make changes to

Don t ’ those copies. Only when the txn commits is the page made
Do This! visible to others.

— Originally from IBM System R.

Few systems do this:
— CouchDB

— Tokyo Cabinet
— LMDB (OpenLDAP)
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E CONSISTENCY

The database accurately models the real world.

— SQL has methods to specify integrity constraints (e.g., key
definitions, CHECK and ADD CONSTRAINT) and the DBMS
will enforce them.

— Application must define these constraints.

— DBMS ensures that all ICs are true before and after the
transaction ends.
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https://en.wikipedia.org/wiki/Eventual_consistency
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CONSISTENCY

The database accurately models the real world.

— SQL has methods to specify integrity constraints (e.g., key
definitions, CHECK and ADD CONSTRAINT) and the DBMS
will enforce them.

— Application must define these constraints.

— DBMS ensures that all ICs are true before and after the
transaction ends.

A note on Eventual Consistency.
— A committed transaction may see inconsistent results (e.g.,
may not see the updates of an older committed txn).

— Difficult for developers to reason about such semantics.
— The trend is to move away from such models.
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CONSISTENCY

The database accurately models the real world.

— SQL has methods to specify integrity constraints (e.g., key
definitions, CHECK and ADD CONSTRAINT) and the DBMS
will enforce them.

— Application must define these constraints.

— DBMS ensures that all ICs are true before and after the
transaction ends.

A note on Eventual Consistency.
— A committed transaction may see inconsistent results (e.g.,

may not see the updates of an older committed txn).
— Difficult for developers to reason about such semantics.
— The trend is to move away from such models.
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" ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it

were running by itself.
— Easier programming model to reason about.
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" ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it

were running by itself.
— Easier programming model to reason about.

But the DBMS achieves concurrency by interleaving
the actions (reads/writes of DB objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

£CMU-DB
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" MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the
DBMS decides the proper interleaving of operations
from multiple transactions.

Two categories of protocols:

— Pessimistic: Don't let problems arise in the first place.

— Optimistic: Assume conflicts are rare; deal with them
after they happen.

£CMU-DB
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EXAMPLE

Assume at first A and B each have $1000.
T, transfers $100 from A’s account to B’s

T, credits both accounts with 6% interest.

T

T,

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

£CMU-DB
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EXAMPLE

Assume at first A and B each have $1000.

W hat are the possible outcomes of running T, and T,?

T

T,

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT
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EXAMPLE

Assume at first A and B each have $1000.
W hat are the possible outcomes of running T, and T,?

Many! But A+B should be:
— $2000%1.06=$2120

There is no guarantee that T, will execute before T,
or vice-versa, if both are submitted together.

But the net effect must be equivalent to these two
transactions running serially in some order.




" EXAMPLE

Legal outcomes:
— A=954,B=1166
— A=960,B=1160

The outcome depends on whether T, executes
before T, or vice versa.

£CMU-DB
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" EXAMPLE

Legal outcomes:
— A=954,B=1166 » A+B=$2120
— A=960,B=1160 » A+B=$2120

The outcome depends on whether T, executes
before T, or vice versa.
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" SERIAL EXECUTION EXAMPLE

Schedule
T, T,
BEGIN
A=A-100
B=B+100
COMMIT
BEGIN
A=A%1.06
B=B*1.06
COMMIT

A=954, B=1166

$ZCMU-DB
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Schedule
T, T,
BEGIN
A=A%1.06
B=B*1.06
COMMIT
BEGIN
A=A-100
B=B+100
COMMIT

A=960, B=1160



SERIAL EXECUTION EXAMPLE

Schedule
T, T,
BEGIN
A=A-100
B=B+100
COMMIT
BEGIN
A=A%1.06
B=B*1.06
COMMIT
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Schedule
T, T,
BEGIN
A=A%1.06
B=B*1.06
COMMIT
BEGIN
A=A-100
B=B+100
COMMIT

A=954, B=1166 [¢

» A=960, B=1160]

A+B=$2120
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INTERLEAVING TRANSACTIONS

We interleave txns to maximize concurrency.
— Slow disk/network 1/0.
— Multi-core CPUs.

When one txn stalls because of a resource (e.g.,
page fault), another txn can continue executing and
make forward progress.




" INTERLEAVING EXAMPLE (GOOD)

Schedule
T, T,
BEGIN
A=A-100
BEGIN
A=A%1.06
B=B+100
COMMIT
B=B*1.06
COMMIT

A=954, B=1166
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Schedule
T, T,
BEGIN
A=A-100
BEGIN
A=A%1.06
B=B+100
COMMIT
B=B*1.06
COMMIT
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A=954, B=1166

INTERLEAVING EXAMPLE (GOOD)

Schedule
T, T,
BEGIN
A=A-100
B=B+100
COMMIT -
A=A%1.06
B=B*1.06
COMMIT

A=960, B=1160




Schedule
T, T,
BEGIN
A=A-100
BEGIN
A=A%1.06

C(B=B+100 D
COMMIT

COMMIT

B=B*1.06

A=954, B=1166
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INTERLEAVING EXAMPLE (GOOD)

Schedule
T, T,
BEGIN
A=A-100
B=B+100
COMMIT -
A=A%1.06
B=B*1.06
COMMIT

A=960, B=1160




" INTERLEAVING EXAMPLE (GOOD)

Schedule
T, T,
BEGIN
A=A-100
BEGIN
A=A%1.06

C(B=B+100 D
COMMIT

COMMIT

B=B*1.06

Schedule
T, T,
BEGIN
A=A-100
B=B+100
COMMIT -
A=A%1.06
B=B*1.06
COMMIT

» A=960, B=1160|

A=954, B=1166 ¢

A+B=$2120
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" INTERLEAVING EXAMPLE (BAD)

Schedule
T, T,

BEGIN

A=A-100
f\fii’;‘ o A=954, B=1166
i | F or

B=B+100 A=960, B=1160

COMMIT

A=954, B=1160

C;CMU -DB



" INTERLEAVING EXAMPLE (BAD)

Schedule
T, T,
BEGIN
A=A-100
ifiﬂ.% A=354, B=1166
o | F or
B=B+100 A=960, B=1160

COMMIT

A=954, B=1160

__Off by 6!
A+B=$2114

C;CMU -DB



" INTERLEAVING EXAMPLE (BAD)

Schedule DBMS View
T, T, T, T,
BEGIN BEGIN
A=A-100 R(A)
BEGIN W(A)
A=A%1.06 BEGIN
B=Bx1.06 R(A)
COMMIT W(A)
B=B+100 R(B)
COMMIT W(B)
COMMIT
_ _ R(B)
A=954, B=1160 W)
COMMIT

A+B=%$2114
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" INTERLEAVING EXAMPLE (BAD)

Schedule
T, T,
BEGIN
A=A-100 R —

BEGIN

B=B+100
COMMIT .~"‘=====::

A=Ax1.06
B=B*1.06
COMMIT

A=954, B=1160

A+B=%$2114
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::::::::::IR(B)
W(B)

COMMIT

DBMS View
T, T,
BEGIN
::[ R(A)
W(A)
BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT




" INTERLEAVING EXAMPLE (BAD)

Schedule
T, T,
ifﬁll;l@@ How do we judge whether a
BEGIN schedule is correct?
A=A*1.06
B=B*1.06
COMMIT
B=B+100
COMMIT

A=954, B=1160

A+B=%$2114
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" INTERLEAVING EXAMPLE (BAD)

Schedule
T, T,

BEGIN How do we judge whether a
BEGIN schedule is correct?
A=A*1.06
B=Bx1.06

100 COMMIT [f the schedule is equivalent to

COMMIT some serial execution.

A=954, B=1160

A+B=%$2114
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FORMAL PROPERTIES OF SCHEDULES

Serial Schedule

— A schedule that does not interleave the actions of different
transactions.

Equivalent Schedules

— For any database state, the effect of executing the first

schedule is identical to the effect of executing the second
schedule.




" FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

— A schedule that is equivalent to some serial execution of
the transactions.

— If each transaction preserves consistency, every serializable
schedule preserves consistency.

£CMU-DB
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FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

— A schedule that is equivalent to some serial execution of
the transactions.

— If each transaction preserves consistency, every serializable
schedule preserves consistency.

Serializability is a less intuitive notion of correctness
compared to txn initiation time or commit order,
but it provides the DBMS with more flexibility in

scheduling operations.
— More flexibility means better parallelism.
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CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.

Two operations conflict if:

— They are by different transactions,
— They are on the same object and one of them is a write.




" CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.

Two operations conflict if:

— They are by different transactions,
— They are on the same object and one of them is a write.

Interleaved Execution Anomalies
— Unrepeatable Read (Read-Write)

— Dirty Read (Write-Read)

— Lost Update (Write-Write)
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" CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.

Two operations conflict if:

— They are by different transactions,
— They are on the same object and one of them is a write.

Interleaved Execution Anomalies
— Unrepeatable Read (Read-Write)

— Dirty Read (Write-Read)

— Lost Update (Write-Write)

— Phantom Reads (Scan-Write)

S2CMU-DB — Write-Skew (Read-Write)

15-445/645 (Spring 2025)



" CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.

Two operations conflict if:

— They are by different transactions,
— They are on the same object and one of them is a write.

Interleaved Execution Anomalies
— Unrepeatable Read (Read-Write)

— Dirty Read (Write-Read)

— Lost Update (Write-Write)

— Phantom Reads (Scan-Write)

. D8 — Write-Skew (Read-Write)
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" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

T, T,

BEGIN

R(A)
BEGIN
R(A)
W(A)
COMMIT

R(A)

COMMIT

£CMU-DB
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" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

T, T,
BEGIN
$10 4mmR(A)
BEGIN
R(A)
W(A)
COMMIT
R(A)
COMMIT
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" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

T, T,
BEGIN
$10 -R(A) .

BEGIN
R(A) $10
W(A) $19
COMMIT

R(A)

COMMIT
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" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

T T,
BEGIN
$10 4mmR(A)
BEGIN
R(A) $10
W(A) $19
COMMIT
$19 4mmR(A)
COMMIT
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" READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

T, T,
BEGIN
$10 -R(A)
Q Q BEGIN
R(A) $10
o A g(()M $19
MMIT
$19 4mmR(A)
COMMIT
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" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

T, T,

BEGIN

R(A)

W(A) BEGIN
R(A)
W(A)
COMMIT

ROLLBACK

£CMU-DB
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WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

$10 4mmmR(A)

BEGIN

W(A) BEGIN
R(A)
W(A)
COMMIT

ROLLBACK

£CMU-DB
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" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another

txn that has not committed yet.

$10
$12
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T, T,

BEGIN

R(A)

W(A) BEGIN
R(A)
W(A)
COMMIT

ROLLBACK




" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another

txn that has not committed yet.

$10
$12
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T, T,

BEGIN

R(A)

W(A) BEGIN
R(A)
W(A)
COMMIT

ROLLBACK

- $12




" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another

txn that has not committed yet.

$10
$12
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T, T,

BEGIN

R(A)

W(A) BEGIN
R(A) $12
W(A) $14
COMMIT

ROLLBACK




" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another

txn that has not committed yet.

$10
$12
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" WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another

txn that has not committed yet.

$10
$12
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ROLLBACK)

BEGIN
R(A)
W(A)
COMMIT

$12
$14




WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted
data from another uncommitted txn.

T, T,

BEGIN

W(A)
BEGIN
W(A)
W(B)
COMMIT

w(B)

COMMIT
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" WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted

data from another uncommitted txn.

T, T,
BEGIN
$10 mEEp W(A)
BEGIN
W(A) $19
W(B) Bob
COMMIT
Alice mmp W(B)
COMMIT
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" WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted
data from another uncommitted txn.

COMMIT
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" FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what

it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels of serializability:
— Conflict Serializability
— View Serializability
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Given these conflicts, we now can understand what

it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels o ializalails
—> Conflict Serializability<— Most DBI‘% tryto
— View Serializability support ts.
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" FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what

it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels o ializalails
—> Conflict Serializability<— Most DBI‘% tryto
— View Serializability support ts.

_/l
No DBMS can do this.
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" CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
— They involve the same actions of the same transactions.
— Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:

— S is conflict equivalent to some serial schedule.

— Intuition: You can transform S into a serial schedule by
swapping consecutive non-conflicting operations of
different transactions.
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" DEPENDENCY GRAPHS

One node per txn.
Edge from T; to Tj if:

— An operation 0; of T; conflicts with an
operation 0; of T; and

— 0; appears earlier in the schedule than 0;.

Dependency Graph

Also known as a precedence graph.
A schedule is conflict serializable iff its
dependency graph is acyclic.
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EXAMPLE #1

Schedule
T, T,

BEGIN BEGIN

R(A)

W(A)
R(A)
W(A)
R(B)
W(B)
COMMIT

R(B)

W(B)

COMMIT
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T, T,
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R(A)
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“ ROA)
W(A)
R(B)
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COMMIT
R(B)
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COMMIT
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Schedule
T, T,
BEGIN BEGIN
R(A)
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“ ROA)
W(A)
R(B)
W(B)
COMMIT
R(B)
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" EXAMPLE #1

Schedule
T, T,
BEGIN BEGIN
R(A)
W(A)
“R(A)
W(A)
R(B)
W(B)
/ COMMIT
R(B)
W(B)
COMMIT
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" EXAMPLE #1

Schedule Dependency Graph
T T, A
BEGIN BEGIN

e (7., (T,
R

R(A)
L R WOAS
R(B) B
oMWY "B

COMMIT
R(B)/
W(B)

COMMIT
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EXAMPLE #1
Schedule Dependency Graph
T, T, A
BEGIN BEGIN
R(A)
WA gl G G
o m® [V
X :
R(B)
oMY . V(B) (M

R(B)

Pl
W(B)

COMMIT

COMMIT

e cycle in the graph reveals the )

problem.
The output of T;depends on T ,,

$ZCMU-DB
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kand vice-versa.

J
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Schedule
T, T, T3
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT

EXAMPLE #2 — THREE TRANSACTIONS

Dependency Graph

()

()

()



" EXAMPLE #2 — THREE TRANSACTIONS

Schedule Dependency Graph

Y D ©
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)

BEGIN | COMMIT

R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT
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" EXAMPLE #2 — THREE TRANSACTIONS

Schedule Dependency Graph

Q) ®
BEGIN
R(A)
W(A) BEGIN A
R(A)
o (1)

BEGIN | COMMIT

R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT
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" EXAMPLE #2 — THREE TRANSACTIONS

Schedule Dependency Graph

D ) O
BEGIN
REA) A
W(A BEGIN
)\R(A) e
W(A)

BEGIN | COMMIT

R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT
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" EXAMPLE #2 — THREE TRANSACTIONS

Schedule Dependency Graph

Q) ®
BEGIN
R(A)
W(A) BEGIN A
\R(A)
o (1)

BEGIN | COMMIT

R(B)
W(B)
R(B) | COMMIT
W(B)
COMMIT
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" EXAMPLE #2 — THREE TRANSACTIONS

Schedule Dependency Graph

Q) ®
BEGIN
R(A)
W(A) BEGIN A
R(A)
o (1)

BEGIN | COMMIT
R(B)
& (B)
R(BY™ | COMMIT
W(B)
COMMIT
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" EXAMPLE #2 — THREE TRANSACTIONS

Schedule Dependency Graph
T, T, T,
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B)
W(B)
R(B )/ COMMIT
W(B)
COMMIT
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" EXAMPLE #2 — THREE TRANSACTIONS

Schedule Dependency Graph
T T, T;
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B)
W(B)
R(B)‘(/'COMMIT
W(B)
COMMIT
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" EXAMPLE #2 — THREE TRANSACTIONS

Schedule Dependency Graph
T T, T3
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B) . . . .
W(B) Is this equivalent to a serial execution?
R(B)‘(/'COMMIT
W(B)
COMMIT
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" EXAMPLE #2 — THREE TRANSACTIONS

Schedule Dependency Graph
T T, T3
BEGIN
R(A)
W(A) BEGIN
R(A)
W(A)
BEGIN | COMMIT
R(B) . . . .
W(B) Is this equivalent to a serial execution?
R(B ‘(/'COMMIT
e Yes (T,, T,, Ts)
COMMIT — Notice that T; should go after T,,

although it starts before it!
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" EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
T T,
BEGIN BEGIN
R(A)
A= A-10
W(A)
R(A)
sum = A
R(B)
sum += B
ECHO sum
R(B) COMMIT
B = B+10
W(B)
COMMIT
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EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule
T, T,
BEGIN BEGIN
A= A-10)
R(A)
sum = A
R(B)
sum += B
ECHO sum
R(B) COMMIT
B = B+10
W(B)
COMMIT
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" EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph

T T,
BEGIN BEGIN

R(A)
A = A-10
W(A)
< sum = A )

sum += B
ECHO sum
R(B) COMMIT
B = B+10
W(B)
COMMIT
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" EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
T T,
BEGIN BEGIN
R(A)
A= A-10
W(A)
R(A)
sum = A
R(B)
( ECHO sum)
R(B)
B = B+10
W(B)
COMMIT

$ZCMU-DB

15-445/645 (Spring 2025 )



" EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
T T,
BEGIN BEGIN
R(A)
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sum += B
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" EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
T T,
BEGIN BEGIN
R(A)
A= A-10
W(A)
0
sum = A
R(B)
sum += B
ECHO sum
R(B) COMMIT
B = B+10
W(B)
COMMIT

$ZCMU-DB

15-445/645 (Spring 2025 )



" EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule
T, T,
BEGIN BEGIN
R(A)
A = A-10
W(A)
0
sum = A
R(B)
sum += B
ECHO sum
R(B) COMMIT
B = B+10
W(B)
COMMIT
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" EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph
T T, A
BEGIN BEGIN
R(A)
A= A-10
W(A)
0
sum = A
R(B)
sum += B
ECHO sum
R(B) COMMIT
B = gfio
W(B)
COMMIT
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" EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph

T, T, A
BEGIN BEGIN
R(A)
A = A-10
W(A)
0
‘.> 4" sum = A
sum += B
’ ‘ ECHO sum
10

R(B) COMMIT
B:
W(B)
COMMIT
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" EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule Dependency Graph

T T, A
BEGIN BEGIN
RCA)
A= A-10
W(A)
0
\ & sum = A B
R(B) . . .
sum += B [s it possible to modify only the
4 4 ECHO sum
10

R(B) COMMIT application logic so that schedule

EV(; ) produces a “correct” result but is

COMMIT still not conflict serializable?
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" EXAMPLE #3 — INCONSISTENT ANALYSIS

Schedule
T, T,
BEGIN BEGIN
R(A)
A = A-10
W(A)
R(A)
if(A=0): cnt++
R(B) L
if(B=0): cnt++
ECHO cnt
R(B) COMMIT
B = B+10
W(B)
COMMIT
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Dependency Graph
A

(7, (T,
B

[s it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?
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VIEW SERIALIZABILITY

Alternative (broader) notion of serializability.

Schedules S; and S, are view equivalent if:

— If T, reads initial value of A in S, then T, also reads initial
value of Ain S,.

— If T, reads value of A written by T, in S,, then T, also reads
value of A written by T, in S,.

— If T, writes final value of A in S,, then T, also writes final
value of Ain S,.




" VIEW SERIALIZABILITY

Schedule
T, T, T3
BEGIN
R(A) | BEGIN
W(A)

BEGIN

W(A)
W(A)

COMMIT | COMMIT | COMMIT
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" VIEW SERIALIZABILITY

Schedule
T, T, T3
BEGIN
R(A)~al BEGIN
\wm
BEGIN
W(A)
W(A)

COMMIT | COMMIT | COMMIT
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" VIEW SERIALIZABILITY

Schedule

BEGIN

W(A)
COMMIT | COMMIT | COMMIT
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Dependency Graph
A
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" VIEW SERIALIZABILITY

Schedule
T, T, T3
BEGIN
R(A)~al BEGIN
W(A)

BEGIN

W(A)
W(A)

COMMIT | COMMIT | COMMIT
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Dependency Graph




" VIEW SERIALIZABILITY

Schedule Dependency Graph

BEGIN

W(A)
W(A) A
COMMIT | COMMIT | COMMIT G
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" VIEW SERIALIZABILITY

Schedule Dependency Graph

BEGIN

W(A)
W(A) A
COMMIT | COMMIT | COMMIT G
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VIEW SERIALIZABILITY

Schedule
T, T, T3
BEGIN
R(A) | BEGIN
W(A)
BEGIN
W(A)
W(A)
COMMIT | COMMIT | COMMIT

VIEW

Schedule
T, T, T;
BEGIN
R(A)
W(A)
COMMIT
BEGIN
W(A)
COMMIT
BEGIN
W(A)
COMMIT
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VIEW SERIALIZABILITY
Schedule Schedule
T, T, T; T, T, T3
BEGIN BEGIN
R(A) BEGIN R(A)
W(A) W(A)
BEGIN VIEW| ' commIT
W(A) — BEGIN
COMMIT | COMMIT T COMMIT
BEGIN
QA
COMMIT
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VIEW SERIALIZABILITY
Schedule Schedule
T, T, T; T, T, T3
BEGIN BEGIN
R(A) BEGIN R(A)
W(A) W(A)
COMMIT
W(A) BEGIN
C W(A)
COMMIT | COMMIT COMMIT
BEGIN
Allows all conflict wvn)
serializable schedules + COMMIT
k’blind writes” )
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SERIALIZABILITY

View Serializability allows for (slightly) more

schedules than Conflict Serializability does.
— But it is difficult to enforce efficiently.

Neither definition allows all schedules that you

would consider “serializable.”

— This is because they don’t understand the meanings of the
operations or the data (recall example #3)

— In practice, Conflict Serializability is what systems support
because it can be enforced efficiently.




" UNIVERSE OF SCHEDULES
All Schedules
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" UNIVERSE OF SCHEDULES
All Schedules

Conflict Serializable

[ Serial ]
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" UNIVERSE OF SCHEDULES
All Schedules

View Serializable

Conflict Serializable

| Serial |
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TRANSACTION DURABILITY

All the changes of committed transactions should be

persistent.
— No torn updates.
— No changes from failed transactions.

The DBMS can use either logging or shadow paging
to ensure that all changes are durable.




CORRECTNESS CRITERIA: ACID

Atomicity

Consistency

Isolation

Durability
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All actions in txn happen, or none happen.
“All or nothing...”

If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commiits, its effects persist.
“Twill survive...”
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[f a txn commiits, its effects persist.
“Twill survive...”
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consistent, then it ends up consistent.
“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commiits, its effects persist.
“Twill survive...”
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Atomicity
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“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commiits, its effects persist.
“Twill survive...”
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All actions in txn happen, or none happen.
“All or nothing...”

If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

[f a txn commiits, its effects persist.
“Twill survive...”




CONCLUSION

Concurrency control and recovery are
among the most important functions

provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock
requests and schedules actions of different txns.

— Ensures that resulting execution is equivalent
to executing the txns one after the other in
some order.

Just like “NoSQL” there was a “who needs

transactions” phase. That has passed.
— SQL and transactions are good and necessary!
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Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,

David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externall; i distributed ions. This
Paper describes how Spanner is structured, its feature set,

Spanner is a scalable, globally-distributed database de-
signed, built, and deployed at Google. At the high-
est level of abstraction, it i database that shards data
across many sets of Paxos tate machines in data-
comers spread all over the world. Replication is used for
global availability and geographic locality; clients auto-

jeney over higher availability, as long as they can survive
1 or 2 datacenter failures

Spanner’s main focus j

Wwide-area replication, (Similar claims have been made
by other authors

Applications can use Spanner for high availability,
even in the face of wide-area natural disasters, by repli-
cating their data within OF even across continents. Qur
initial customer was F1 [35], a rewrite of Google’s ad-
vertising backend. FI uses five replicas spread across
the United States. Most other applications will probably
replicate their data across 3 (0 5 datacenters in one ge-
ographic region, but with relatively independent failure
modes. That is, most applications will choose lower la-

Published in the Proceedings of 0SDI 2012

As a globally-distit

database, Spanner provides
several interesting features. First, he replication con-
figurations for data can be dynamically controlled at a
fine grain by applications. Applications can specify con-
straints to control which datacenters contain which data,

how far data is from its users (to control read latency),
how far replicas are from each other (to control write Ja-
tency), and how many replicas are maintained (to con-
trol durability, availability, and read performance). Data
can also be dynamically and transparently moved be-
tween datacenters by the system to balance resource us-
age across datacenters. Second, Spanner has two features
that are difficult toimplement in a distributed database: it
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' nctions
among the most important fu

Abstract tency over higher availability, as long as they can survive

1 or 2 datacenter failures
o Spanner is Google's scalable, mult-version, globally- B ) ‘
r V]_ d e E 7 :] ° distributed. and synchronously-eplicated database. It is Spanner’s main focus is managing cross-datacenter

the first system to distribute data at global scale and sup- - replicated data, but we have 2150 spent a great deal of
e ernally-consistent distributed transactions. This  time in designing and smplementing important database
. paper describes how Spanner s structured its feature set features on top of our dlslributed»syslcms infrastructure.
. o 118 el iocts ha
th the rationale underlying various design decisions, and 5 Even though oy brojects happily use Bigiable [9), we
ntro IS a l l ovel time API that exposes clock uncertainty, This Apy  have also nsisently received complaints from users
rre I l C CO and its implementation are critical to supporting exger.  that Bigtable e b difficult to use for some kinds of ap-
pal consistency and a varity of powerful features: poy.  Plications: thes 11 have comples, evolving schemas,
. : k uniocC blocking reads i the past, lock-free read-only wansee. o hose Ul want strong consistency in the presence of
m inserts loc
auto atlic by other authors (37).) Many applications o Google
—> y S ecm have chosen to use Megastore {5] because of its soa.

.

t ° n SO f dlffe rent 1 Introduction relational data mode and support for synchronous repli-

d hedu eS aC 10 ite its relatively poor write throughput. Ag

e ue StS an S C €. Spanner has evolved from a Bigtable.like
r q . 2 iey-value store into a temporal multi-version
e lt ala is stored in schematized semi-relational

e e leV is versioned, and each version is automatj.

@mped with its commit time; old versions of

ect (o configurable garbage-collection pol.
pplications can read data at old timestamps.

icati with per-
1s better to have application programmers deal p e

ally-distributed database, Spanner provides
esting features, First, the replication con-
r data can be dynamically controlled at a

i bot- .
formance problems due to overuse of transactions as

1 the laCk PW many replicas are maintained (to con.
tlenecks arise, rather than always coding around

lynamically and transparently moved be-
ters by the system to balance resource us-
t fcenters. Second, Spanner has two features

of transactions. S S L

S OOSTTZ0TZ 1
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CONCLUSION

Concurrency control and recovery are
among the most important functions

provided by a DBMS.

Concurrency control is automatic

— System automatically inserts lock/unlock
requests and schedules actions of different txns.

— Ensures that resulting execution is equivalent
to executing the txns one after the other in
some order.

Just like “NoSQL” there was a “who needs

transactions” phase. That has passed.
— SQL and Transactions are good and necessary!
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Two-Phase Locking
[solation Levels
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