
Database
Systems

15-445/645 SPRING 2025 PROF. JIGNESH PATEL

Concurrency
Control Theory

15-445/645 (Spring 2025)

ADMINISTRIVIA

Project #3 is due Sunday March 30th @ 11:59pm
→ Recitation: slides, recording.

2

https://docs.google.com/presentation/d/1zpWFz5qnXA28bRrPxnjScxRv5Xfpq6XsrTGoMrO0980/edit?usp=sharing
https://drive.google.com/file/d/1Tp_VTZ7pTtkAFHhRkWiwhJZx9D5kxqIX/view?usp=sharing

15-445/645 (Spring 2025)

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

COURSE STATUS

A DBMS’s concurrency control and
recovery components permeate
throughout the design of its entire
architecture.

3

15-445/645 (Spring 2025)

Concurrency Control

Recovery

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

COURSE STATUS

A DBMS’s concurrency control and
recovery components permeate
throughout the design of its entire
architecture.

3

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #1
4

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #1
4

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #1
4

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Read Balance: $100

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #1
4

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Sufficient funds?

Read Balance: $100

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #1
4

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Sufficient funds?

Read Balance: $100

Pay $25

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #1
4

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Sufficient funds?

New balance: $75

Read Balance: $100

Pay $25

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #1
4

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Sufficient funds?

New balance: $75

Read Balance: $100

Pay $25

Write Balance: $75

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #1
4

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Sufficient funds?

New balance: $75

Bank Balance : $75

Read Balance: $100

Pay $25

Write Balance: $75

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #1
4

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Sufficient funds?

Read Balance: $100

Pay $25

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #1
4

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Sufficient funds?

Read Balance: $100

Pay $25

???

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #2
5

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #2
5

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #2
5

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Read Balance: $100 Read Balance: $100

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #2
5

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #2
5

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #2
5

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100

New balance: $75 New balance: $75

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #2
5

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100Bank Balance : $75

New balance: $75 New balance: $75

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

Write Balance: $75 Write Balance: $75

15-445/645 (Spring 2025)

Application Logic

MOTIVATION EXAMPLE #2
5

Read(A);
Check(A > $25);
Pay($25);
A = A – $25;
Write(A);

Bank Balance : $100Bank Balance : $75

New balance: $75 New balance: $75

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

Write Balance: $75 Write Balance: $75

15-445/645 (Spring 2025)

STRAWMAN SYSTEM

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.
→ One and only one txn can be running simultaneously in

the DBMS.

Before a txn starts, copy the entire database to a
new file and make all changes to that file.
→ If the txn completes successfully, overwrite the original file

with the new one.
→ If the txn fails, just remove the dirty copy.

6

15-445/645 (Spring 2025)

PROBLEM STATEMENT

A (potentially) better approach is to allow
concurrent execution of independent transactions.

Why do we want that?

→ Better utilization/throughput
→ Increased response times to users.

But we also would like:

→ Correctness
→ Fairness

7

15-445/645 (Spring 2025)

PROBLEM STATEMENT

Arbitrary interleaving of operations can lead to:
→ Temporary Inconsistency (ok, unavoidable)
→ Permanent Inconsistency (bad!)

The DBMS is only concerned about what data is
read/written from/to the database.
→ Changes to the “outside world” are beyond the scope of the

DBMS.

We need formal correctness criteria to determine
whether an interleaving is valid.

8

15-445/645 (Spring 2025)

FORMAL DEFINITIONS

Database: A fixed set of named data objects (e.g., A,
B, C, …).
→ We do not need to define what these objects are now.
→ We will discuss how to handle inserts/deletes next week.

Transaction: A sequence of read and write
operations (e.g., R(A), W(B), …)
→ DBMS’s abstract view of a user program.
→ A new txn starts with the BEGIN command.
→ The txn stops with either COMMIT or ROLLBACK

9

15-445/645 (Spring 2025)

CORRECTNESS CRITERIA: ACID
10

Atomicity
All actions in txn happen, or none happen.
“All or nothing…”

Consistency
If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation
Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

15-445/645 (Spring 2025)

TODAY'S AGENDA

Atomicity
Consistency
Isolation
Durability
DB Flash Talk: ClickHouse

11

https://clickhouse.com/

15-445/645 (Spring 2025)

ATOMICITY OF TRANSACTIONS

Two possible outcomes of executing a txn:
→ Commit after completing all its actions.
→ Abort (or be aborted by the DBMS) after executing some

actions.

DBMS guarantees that txns are atomic.
→ From user's point of view: txn always either executes all its

actions or executes no actions at all.

12A

15-445/645 (Spring 2025)

MECHANISMS FOR ENSURING ATOMICITY

Approach #1: Logging

→ DBMS logs all actions so that it can undo the actions of
aborted transactions.

→ Maintain undo records both in memory and on disk.
→ Think of this like the black box in airplanes…

Logging is used by almost every DBMS.
→ Audit Trail
→ Efficiency Reasons

13A

15-445/645 (Spring 2025)

MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging

→ DBMS makes copies of pages and txns make changes to
those copies. Only when the txn commits is the page made
visible to others.

→ Originally from IBM System R.

Few systems do this:
→ CouchDB
→ Tokyo Cabinet
→ LMDB (OpenLDAP)

14A

15-445/645 (Spring 2025)

MECHANISMS FOR ENSURING ATOMICITY

Approach #2: Shadow Paging

→ DBMS makes copies of pages and txns make changes to
those copies. Only when the txn commits is the page made
visible to others.

→ Originally from IBM System R.

Few systems do this:
→ CouchDB
→ Tokyo Cabinet
→ LMDB (OpenLDAP)

14A

Don't

Do This!

15-445/645 (Spring 2025)

CONSISTENCY

The database accurately models the real world.
→ SQL has methods to specify integrity constraints (e.g., key

definitions, CHECK and ADD CONSTRAINT) and the DBMS
will enforce them.

→ Application must define these constraints.
→ DBMS ensures that all ICs are true before and after the

transaction ends.

A note on Eventual Consistency.
→ A committed transaction may see inconsistent results (e.g.,

may not see the updates of an older committed txn).
→ Difficult for developers to reason about such semantics.
→ The trend is to move away from such models.

15C

https://en.wikipedia.org/wiki/Eventual_consistency

15-445/645 (Spring 2025)

CONSISTENCY

The database accurately models the real world.
→ SQL has methods to specify integrity constraints (e.g., key

definitions, CHECK and ADD CONSTRAINT) and the DBMS
will enforce them.

→ Application must define these constraints.
→ DBMS ensures that all ICs are true before and after the

transaction ends.

A note on Eventual Consistency.
→ A committed transaction may see inconsistent results (e.g.,

may not see the updates of an older committed txn).
→ Difficult for developers to reason about such semantics.
→ The trend is to move away from such models.

15C

https://en.wikipedia.org/wiki/Eventual_consistency

15-445/645 (Spring 2025)

CONSISTENCY

The database accurately models the real world.
→ SQL has methods to specify integrity constraints (e.g., key

definitions, CHECK and ADD CONSTRAINT) and the DBMS
will enforce them.

→ Application must define these constraints.
→ DBMS ensures that all ICs are true before and after the

transaction ends.

A note on Eventual Consistency.
→ A committed transaction may see inconsistent results (e.g.,

may not see the updates of an older committed txn).
→ Difficult for developers to reason about such semantics.
→ The trend is to move away from such models.

15C

Lecture #23

https://en.wikipedia.org/wiki/Eventual_consistency

15-445/645 (Spring 2025)

ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it
were running by itself.
→ Easier programming model to reason about.

But the DBMS achieves concurrency by interleaving
the actions (reads/writes of DB objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

16I

15-445/645 (Spring 2025)

ISOLATION OF TRANSACTIONS

Users submit txns, and each txn executes as if it
were running by itself.
→ Easier programming model to reason about.

But the DBMS achieves concurrency by interleaving
the actions (reads/writes of DB objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

16I

15-445/645 (Spring 2025)

MECHANISMS FOR ENSURING ISOLATION

A concurrency control protocol is how the
DBMS decides the proper interleaving of operations
from multiple transactions.

Two categories of protocols:
→ Pessimistic: Don’t let problems arise in the first place.
→ Optimistic: Assume conflicts are rare; deal with them

after they happen.

17I

15-445/645 (Spring 2025)

EXAMPLE

Assume at first A and B each have $1000.
T1 transfers $100 from A’s account to B’s
T2 credits both accounts with 6% interest.

18

BEGIN
A=A-100
B=B+100
COMMIT

T1
BEGIN
A=A*1.06
B=B*1.06
COMMIT

T2

I

15-445/645 (Spring 2025)

EXAMPLE

Assume at first A and B each have $1000.
What are the possible outcomes of running T1 and T2?

19

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T1 T2

I

15-445/645 (Spring 2025)

EXAMPLE

Assume at first A and B each have $1000.
What are the possible outcomes of running T1 and T2?
Many! But A+B should be:
→ $2000*1.06=$2120

There is no guarantee that T1 will execute before T2
or vice-versa, if both are submitted together.

But the net effect must be equivalent to these two
transactions running serially in some order.

20I

15-445/645 (Spring 2025)

EXAMPLE

Legal outcomes:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes
before T2 or vice versa.

21I

15-445/645 (Spring 2025)

EXAMPLE

Legal outcomes:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes
before T2 or vice versa.

21

→ A+B=$2120
→ A+B=$2120

I

15-445/645 (Spring 2025)

ScheduleSchedule

SERIAL EXECUTION EXAMPLE
22

≡

A=954, B=1166 A=960, B=1160

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

I

T
IM

E

15-445/645 (Spring 2025)

ScheduleSchedule

SERIAL EXECUTION EXAMPLE
22

≡

A=954, B=1166 A=960, B=1160

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

A+B=$2120

I

T
IM

E

15-445/645 (Spring 2025)

INTERLEAVING TRANSACTIONS

We interleave txns to maximize concurrency.
→ Slow disk/network I/O.
→ Multi-core CPUs.

When one txn stalls because of a resource (e.g.,
page fault), another txn can continue executing and
make forward progress.

23I

15-445/645 (Spring 2025)

INTERLEAVING EXAMPLE (GOOD)
24

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

I

T
IM

E

15-445/645 (Spring 2025)

INTERLEAVING EXAMPLE (GOOD)
24

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡
BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E

15-445/645 (Spring 2025)

INTERLEAVING EXAMPLE (GOOD)
24

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡
BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E

15-445/645 (Spring 2025)

INTERLEAVING EXAMPLE (GOOD)
24

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡
BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E

A+B=$2120

15-445/645 (Spring 2025)

INTERLEAVING EXAMPLE (BAD)
25

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

T1 T2

A=954, B=1160

I

T
IM

E

15-445/645 (Spring 2025)

INTERLEAVING EXAMPLE (BAD)
25

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

T1 T2

A=954, B=1160

A+B=$2114

I

T
IM

E

Off by $6!

15-445/645 (Spring 2025)

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

DBMS View

T1 T2

INTERLEAVING EXAMPLE (BAD)
26

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge whether a

schedule is correct?

If the schedule is equivalent to
some serial execution.

15-445/645 (Spring 2025)

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

DBMS View

T1 T2

INTERLEAVING EXAMPLE (BAD)
26

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge whether a

schedule is correct?

If the schedule is equivalent to
some serial execution.

15-445/645 (Spring 2025)

INTERLEAVING EXAMPLE (BAD)
26

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge whether a

schedule is correct?

If the schedule is equivalent to
some serial execution.

15-445/645 (Spring 2025)

INTERLEAVING EXAMPLE (BAD)
26

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge whether a

schedule is correct?

If the schedule is equivalent to
some serial execution.

15-445/645 (Spring 2025)

FORMAL PROPERTIES OF SCHEDULES

Serial Schedule

→ A schedule that does not interleave the actions of different
transactions.

Equivalent Schedules

→ For any database state, the effect of executing the first
schedule is identical to the effect of executing the second
schedule.

27I

15-445/645 (Spring 2025)

FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

→ A schedule that is equivalent to some serial execution of
the transactions.

→ If each transaction preserves consistency, every serializable
schedule preserves consistency.

Serializability is a less intuitive notion of correctness
compared to txn initiation time or commit order,
but it provides the DBMS with more flexibility in
scheduling operations.
→ More flexibility means better parallelism.

28I

15-445/645 (Spring 2025)

FORMAL PROPERTIES OF SCHEDULES

Serializable Schedule

→ A schedule that is equivalent to some serial execution of
the transactions.

→ If each transaction preserves consistency, every serializable
schedule preserves consistency.

Serializability is a less intuitive notion of correctness
compared to txn initiation time or commit order,
but it provides the DBMS with more flexibility in
scheduling operations.
→ More flexibility means better parallelism.

28I

15-445/645 (Spring 2025)

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.
Two operations conflict if:
→ They are by different transactions,
→ They are on the same object and one of them is a write.

Interleaved Execution Anomalies

→ Unrepeatable Read (Read-Write)
→ Dirty Read (Write-Read)
→ Lost Update (Write-Write)
→ Phantom Reads (Scan-Write)

→ Write-Skew (Read-Write)

29I

15-445/645 (Spring 2025)

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.
Two operations conflict if:
→ They are by different transactions,
→ They are on the same object and one of them is a write.

Interleaved Execution Anomalies

→ Unrepeatable Read (Read-Write)
→ Dirty Read (Write-Read)
→ Lost Update (Write-Write)
→ Phantom Reads (Scan-Write)

→ Write-Skew (Read-Write)

29I

15-445/645 (Spring 2025)

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.
Two operations conflict if:
→ They are by different transactions,
→ They are on the same object and one of them is a write.

Interleaved Execution Anomalies

→ Unrepeatable Read (Read-Write)
→ Dirty Read (Write-Read)
→ Lost Update (Write-Write)
→ Phantom Reads (Scan-Write)

→ Write-Skew (Read-Write)

29I

15-445/645 (Spring 2025)

CONFLICTING OPERATIONS

We need a formal notion of equivalence that can be
implemented efficiently based on the notion of
“conflicting” operations.
Two operations conflict if:
→ They are by different transactions,
→ They are on the same object and one of them is a write.

Interleaved Execution Anomalies

→ Unrepeatable Read (Read-Write)
→ Dirty Read (Write-Read)
→ Lost Update (Write-Write)
→ Phantom Reads (Scan-Write)

→ Write-Skew (Read-Write)

29I

Lecture #17

Lecture #19

15-445/645 (Spring 2025)

READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

30

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

T1 T2

I

15-445/645 (Spring 2025)

READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

30

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

T1 T2

I

15-445/645 (Spring 2025)

READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

30

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

T1 T2

I

15-445/645 (Spring 2025)

READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

30

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

I

15-445/645 (Spring 2025)

READ-WRITE CONFLICTS

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

30

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

I

15-445/645 (Spring 2025)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

31

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

I

15-445/645 (Spring 2025)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

31

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10

I

15-445/645 (Spring 2025)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

31

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

I

15-445/645 (Spring 2025)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

31

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12

I

15-445/645 (Spring 2025)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

31

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I

15-445/645 (Spring 2025)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

31

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I

15-445/645 (Spring 2025)

WRITE-READ CONFLICTS

Dirty Read: One txn reads data written by another
txn that has not committed yet.

31

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I

15-445/645 (Spring 2025)

WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted
data from another uncommitted txn.

32

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

T1 T2

I

15-445/645 (Spring 2025)

WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted
data from another uncommitted txn.

32

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Bob
$19

T1 T2

$10

Alice

I

15-445/645 (Spring 2025)

WRITE-WRITE CONFLICTS

Lost Update: One txn overwrites uncommitted
data from another uncommitted txn.

32

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Bob
$19

T1 T2

$10

Alice

I

15-445/645 (Spring 2025)

FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what
it means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:
→ Conflict Serializability

→ View Serializability

33I

15-445/645 (Spring 2025)

FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what
it means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:
→ Conflict Serializability

→ View Serializability

33

Most DBMSs try to

support this.

I

15-445/645 (Spring 2025)

FORMAL PROPERTIES OF SCHEDULES

Given these conflicts, we now can understand what
it means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:
→ Conflict Serializability

→ View Serializability

33

Most DBMSs try to

support this.

No DBMS can do this.

I

15-445/645 (Spring 2025)

CONFLICT SERIALIZABLE SCHEDULES

Two schedules are conflict equivalent iff:
→ They involve the same actions of the same transactions.
→ Every pair of conflicting actions is ordered the same way.

Schedule S is conflict serializable if:
→ S is conflict equivalent to some serial schedule.
→ Intuition: You can transform S into a serial schedule by

swapping consecutive non-conflicting operations of
different transactions.

34I

15-445/645 (Spring 2025)

DEPENDENCY GRAPHS

One node per txn.
Edge from Ti to Tj if:
→ An operation Oi of Ti conflicts with an

operation Oj of Tj and
→ Oi appears earlier in the schedule than Oj.

Also known as a precedence graph.
A schedule is conflict serializable iff its
dependency graph is acyclic.

35

Ti Tj

I

Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #1
36

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

Schedule

T1 T2

Dependency Graph

I

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #1
36

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

Schedule

T1 T2

Dependency Graph

I

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #1
36

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A
Schedule

T1 T2

Dependency Graph

I

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #1
36

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A
Schedule

T1 T2

Dependency Graph

I

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #1
36

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

Schedule

T1 T2

Dependency Graph

I

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #1
36

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B
The cycle in the graph reveals the

problem.

The output of T
1
 depends on T

2
,

and vice-versa.

Schedule

T1 T2

Dependency Graph

I

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #2 – THREE TRANSACTIONS
37

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #2 – THREE TRANSACTIONS
37

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #2 – THREE TRANSACTIONS
37

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #2 – THREE TRANSACTIONS
37

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #2 – THREE TRANSACTIONS
37

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #2 – THREE TRANSACTIONS
37

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #2 – THREE TRANSACTIONS
37

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #2 – THREE TRANSACTIONS
37

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #2 – THREE TRANSACTIONS
37

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #2 – THREE TRANSACTIONS
37

Is this equivalent to a serial execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule

T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Schedule

T1 T2

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Schedule

T1 T2

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Schedule

T1 T2

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Schedule

T1 T2

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Schedule

T1 T2

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Schedule

T1 T2

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Schedule

T1 T2 A

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Schedule

T1 T2 A

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Schedule

T1 T2 A

B

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Is it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

Schedule

T1 T2 A

B

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

EXAMPLE #3 – INCONSISTENT ANALYSIS
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Is it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

Schedule

T1 T2 A

Bif(A≥0): cnt++

if(B≥0): cnt++
ECHO cnt

I

Dependency Graph

T
IM

E

15-445/645 (Spring 2025)

VIEW SERIALIZABILITY

Alternative (broader) notion of serializability.

Schedules S1 and S2 are view equivalent if:
→ If T1 reads initial value of A in S1, then T1 also reads initial

value of A in S2.
→ If T1 reads value of A written by T2 in S1, then T1 also reads

value of A written by T2 in S2.
→ If T1 writes final value of A in S1, then T1 also writes final

value of A in S2.

39I

15-445/645 (Spring 2025)

VIEW SERIALIZABILITY
40

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

VIEW SERIALIZABILITY
40

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A
T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

VIEW SERIALIZABILITY
40

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

VIEW SERIALIZABILITY
40

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

A

T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

VIEW SERIALIZABILITY
40

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A
AA

T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

VIEW SERIALIZABILITY
40

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A
AA

A

T1 T2

T3

Schedule

T1 T2 T3

I

T
IM

E
Dependency Graph

15-445/645 (Spring 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡VIEW

Schedule

T1 T2 T3

Schedule

T1 T2 T3

I

T
IM

E

15-445/645 (Spring 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡VIEW

Schedule

T1 T2 T3

Schedule

T1 T2 T3

I

T
IM

E

15-445/645 (Spring 2025)

VIEW SERIALIZABILITY
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡VIEW

Schedule

T1 T2 T3

Allows all conflict

serializable schedules +

“blind writes”

Schedule

T1 T2 T3

I

T
IM

E

15-445/645 (Spring 2025)

SERIALIZABILITY

View Serializability allows for (slightly) more
schedules than Conflict Serializability does.
→ But it is difficult to enforce efficiently.

Neither definition allows all schedules that you
would consider “serializable.”
→ This is because they don’t understand the meanings of the

operations or the data (recall example #3)
→ In practice, Conflict Serializability is what systems support

because it can be enforced efficiently.

42I

15-445/645 (Spring 2025)

All Schedules

UNIVERSE OF SCHEDULES
43I

15-445/645 (Spring 2025)

All Schedules

UNIVERSE OF SCHEDULES
43I

Serial

15-445/645 (Spring 2025)

All Schedules

UNIVERSE OF SCHEDULES
43

Conflict Serializable

I

Serial

15-445/645 (Spring 2025)

All Schedules

UNIVERSE OF SCHEDULES
43

View Serializable

Conflict Serializable

I

Serial

15-445/645 (Spring 2025)

TRANSACTION DURABILITY

All the changes of committed transactions should be
persistent.
→ No torn updates.
→ No changes from failed transactions.

The DBMS can use either logging or shadow paging
to ensure that all changes are durable.

44D

15-445/645 (Spring 2025)

CORRECTNESS CRITERIA: ACID
45

Atomicity
All actions in txn happen, or none happen.
“All or nothing…”

Consistency
If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation
Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

15-445/645 (Spring 2025)

CORRECTNESS CRITERIA: ACID
45

Atomicity
All actions in txn happen, or none happen.
“All or nothing…”

Consistency
If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation
Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

Concurrency

Control

15-445/645 (Spring 2025)

CORRECTNESS CRITERIA: ACID
45

Atomicity
All actions in txn happen, or none happen.
“All or nothing…”

Consistency
If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation
Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

Integrity

Constraints

Concurrency

Control

15-445/645 (Spring 2025)

CORRECTNESS CRITERIA: ACID
45

Atomicity
All actions in txn happen, or none happen.
“All or nothing…”

Consistency
If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation
Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

Redo/Undo

Mechanism

Integrity

Constraints

Concurrency

Control

Redo/Undo

Mechanism

15-445/645 (Spring 2025)

CORRECTNESS CRITERIA: ACID
45

Atomicity
All actions in txn happen, or none happen.
“All or nothing…”

Consistency
If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation
Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

Redo/Undo

Mechanism

Integrity

Constraints

Concurrency

Control

Redo/Undo

Mechanism

15-445/645 (Spring 2025)

CONCLUSION
Concurrency control and recovery are
among the most important functions
provided by a DBMS.
Concurrency control is automatic
→ System automatically inserts lock/unlock

requests and schedules actions of different txns.
→ Ensures that resulting execution is equivalent

to executing the txns one after the other in
some order.

Just like “NoSQL” there was a “who needs
transactions” phase. That has passed.
→ SQL and transactions are good and necessary!

46

15-445/645 (Spring 2025)

CONCLUSION
Concurrency control and recovery are
among the most important functions
provided by a DBMS.
Concurrency control is automatic
→ System automatically inserts lock/unlock

requests and schedules actions of different txns.
→ Ensures that resulting execution is equivalent

to executing the txns one after the other in
some order.

Just like “NoSQL” there was a “who needs
transactions” phase. That has passed.
→ SQL and transactions are good and necessary!

46

15-445/645 (Spring 2025)

CONCLUSION
Concurrency control and recovery are
among the most important functions
provided by a DBMS.
Concurrency control is automatic
→ System automatically inserts lock/unlock

requests and schedules actions of different txns.
→ Ensures that resulting execution is equivalent

to executing the txns one after the other in
some order.

Just like “NoSQL” there was a “who needs
transactions” phase. That has passed.
→ SQL and transactions are good and necessary!

46

15-445/645 (Spring 2025)

CONCLUSION
Concurrency control and recovery are
among the most important functions
provided by a DBMS.
Concurrency control is automatic
→ System automatically inserts lock/unlock

requests and schedules actions of different txns.
→ Ensures that resulting execution is equivalent

to executing the txns one after the other in
some order.

Just like “NoSQL” there was a “who needs
transactions” phase. That has passed.
→ SQL and Transactions are good and necessary!

46

15-445/645 (Spring 2025)

NEXT CLASS

Two-Phase Locking
Isolation Levels

47

