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ADMINISTRIVIA

Project #4 is due Sunday April 20th @ 11:59pm
→ Recitation: Friday, April 11th in GHC 4303 from 3:00 - 4:00 PM

HW6 is due Sunday, April 20, 2025 @ 11:59pm

Final Exam is on Monday, April 28, 2025, from 
05:30pm - 08:30pm
→ Early exam will not be offered. Do not make travel plans.

This course is recruiting TAs for the next semester

→ Apply at: https://www.ugrad.cs.cmu.edu/ta/F25/
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ADMINISTRIVIA

Class on Monday, April 21: Review Session

→ Come to class prepared with your questions. What material do 
you want me to go over again?

Class on Wednesday, April 23: Guest Lecture

→ Real-world applications of Gen AI and Databases
→ Speaker: Sailesh Krishnamurthy, Google 
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UPCOMING DATABASE TALKS
3

MariaDB (DB Seminar)
→ Monday, April 14 @ 4:30pm
→ MariaDB’s New Query Optimizer
→ Speaker: Michael Widenius
→ https://cmu.zoom.us/j/93441451665 

Gel (DB Seminar)
→ Monday, April 21 @ 4:30pm
→ EdgeQL with Gel
→ Speaker: Michael Sullivan
→ https://cmu.zoom.us/j/93441451665 

https://cmu.zoom.us/j/93441451665
https://cmu.zoom.us/j/93441451665
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LAST CLASS

System Architectures

→ Shared-Everything, Shared-Disk, Shared-Nothing

Partitioning/Sharding

→ Hash, Range, Round Robin

Transaction Coordination

→ Centralized vs. Decentralized
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OLTP VS. OLAP

On-line Transaction Processing (OLTP):

→ Short-lived read/write txns.
→ Small footprint.
→ Repetitive operations.

On-line Analytical Processing (OLAP):

→ Long-running, read-only queries.
→ Complex joins.
→ Exploratory queries.
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OBSERVATION

Recall that our goal is to have multiple physical 
nodes appear as a single logical DBMS.

We have not discussed how to ensure that all nodes 
agree to commit a txn and then to make sure it does 
commit if the DBMS decides it should.
→ What happens if a node fails?
→ What happens if messages show up late?
→ What happens if the system does not wait for every node 

to agree to commit?
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IMPORTANT ASSUMPTION

We will assume that all nodes in a distributed 
DBMS are well-behaved and under the same 
administrative domain.
→ If we tell a node to commit a txn, then it will commit the 

txn (if there is not a failure).

If you do not trust the other nodes in a distributed 
DBMS, then you need to use a Byzantine Fault 
Tolerant protocol for txns (blockchain).
→ Blockchains are not good for high-throughput workloads.
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TODAY'S AGENDA

Replication
Atomic Commit Protocols
Consistency Issues (CAP / PACELC)

17
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REPLICATION

The DBMS can replicate a database across 
redundant nodes to increase availability.
→ Partitioned vs. Non-Partitioned
→ Shared-Nothing vs. Shared-Disk

Design Decisions:
→ Replica Configuration
→ Propagation Scheme
→ Propagation Timing
→ Update Method

18
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REPLICA CONFIGURATIONS

Approach #1: Primary-Replica

→ All updates go to a designated primary for each object.
→ The primary propagates updates to its replicas by shipping 

logs.
→ Read-only txns may be allowed to access replicas.
→ If the primary goes down, then hold an election to select a 

new primary.

Approach #2: Multi-Primary

→ Txns can update data objects at any replica.
→ Replicas must synchronize with each other using an atomic 

commit protocol.

19



15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

20



15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Writes
Reads

21



15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Writes
Reads

22



15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Writes
Reads

Reads

23



15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Multi-Primary

Node 1

Node 2

Writes
Reads

Reads

24



15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Multi-Primary

Node 1

Node 2

Writes
Reads Writes

Reads

Writes
Reads

Reads

25



15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Multi-Primary

Node 1

Node 2

Writes
Reads Writes

Reads

Writes
Reads

Reads

26



15-445/645 (Spring 2025)

K-SAFETY

K-safety is a threshold for determining the fault 
tolerance of the replicated database.

The value K represents the number of replicas per 
data object that must always be available.

If the number of replicas goes below this threshold, 
then the DBMS halts execution and takes itself 
offline.
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PROPAGATION SCHEME

When a txn commits on a replicated database, the 
DBMS decides whether it must wait for that txn's 
changes to propagate to other nodes before it can 
send the acknowledgement to application.

Propagation levels:
→ Synchronous (Strong Consistency)
→ Asynchronous (Eventual Consistency)
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PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and 
then waits for them to acknowledge that 
they fully applied (i.e., logged) the 
changes.

Approach #2: Asynchronous

→ The primary immediately returns the 
acknowledgement to the client without 
waiting for replicas to apply the changes.

15



15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and 
then waits for them to acknowledge that 
they fully applied (i.e., logged) the 
changes.

Approach #2: Asynchronous

→ The primary immediately returns the 
acknowledgement to the client without 
waiting for replicas to apply the changes.

15



15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and 
then waits for them to acknowledge that 
they fully applied (i.e., logged) the 
changes.

Approach #2: Asynchronous

→ The primary immediately returns the 
acknowledgement to the client without 
waiting for replicas to apply the changes.

15

Commit?



15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and 
then waits for them to acknowledge that 
they fully applied (i.e., logged) the 
changes.

Approach #2: Asynchronous

→ The primary immediately returns the 
acknowledgement to the client without 
waiting for replicas to apply the changes.

15

Commit? Flush?



15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and 
then waits for them to acknowledge that 
they fully applied (i.e., logged) the 
changes.

Approach #2: Asynchronous

→ The primary immediately returns the 
acknowledgement to the client without 
waiting for replicas to apply the changes.

15

Commit? Flush?



15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and 
then waits for them to acknowledge that 
they fully applied (i.e., logged) the 
changes.

Approach #2: Asynchronous

→ The primary immediately returns the 
acknowledgement to the client without 
waiting for replicas to apply the changes.

15

Commit? Flush?

Flush!



15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and 
then waits for them to acknowledge that 
they fully applied (i.e., logged) the 
changes.

Approach #2: Asynchronous

→ The primary immediately returns the 
acknowledgement to the client without 
waiting for replicas to apply the changes.

15

Commit? Flush?

AckAck

Flush!



15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and 
then waits for them to acknowledge that 
they fully applied (i.e., logged) the 
changes.

Approach #2: Asynchronous

→ The primary immediately returns the 
acknowledgement to the client without 
waiting for replicas to apply the changes.

15

Commit? Flush?

AckAck

Flush!



15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and 
then waits for them to acknowledge that 
they fully applied (i.e., logged) the 
changes.

Approach #2: Asynchronous

→ The primary immediately returns the 
acknowledgement to the client without 
waiting for replicas to apply the changes.

15

Commit? Flush?

AckAck

Flush!

Commit?



15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and 
then waits for them to acknowledge that 
they fully applied (i.e., logged) the 
changes.

Approach #2: Asynchronous

→ The primary immediately returns the 
acknowledgement to the client without 
waiting for replicas to apply the changes.

15

Commit? Flush?

AckAck

Flush!

Commit? Flush?

Ack



15-445/645 (Spring 2025)

PROPAGATION TIMING

Approach #1: Continuous

→ The DBMS sends log messages immediately as it generates 
them.

→ Also need to send a commit/abort message.

Approach #2: On Commit

→ The DBMS only sends the log messages for a txn to the 
replicas once the txn is commits.

→ Do not waste time sending log records for aborted txns.
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ACTIVE VS. PASSIVE

Approach #1: Active-Active

→ A txn executes at each replica independently.
→ Need to check at the end whether the txn ends up with the 

same result at each replica.

Approach #2: Active-Passive

→ Each txn executes at a single location and propagates the 
changes to the replica.

→ Can either do physical or logical replication.
→ Not the same as Primary-Replica vs. Multi-Primary
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OBSERVATION

If only one node decides whether a txn is allowed to 
commit, then making that decision is easy.

Life is much harder when multiple nodes are 
allowed to decide:
→ What if multiple nodes need to agree a txn is allowed to 

commit?
→ What if a primary node goes down and the system needs to 

choose a new primary?
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ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across nodes 
in a distributed DBMS.
→ Commit Order = State Machine
→ It does not matter whether the database's contents are 

replicated or partitioned.

Examples:

→ Two-Phase Commit (1970s)
→ Three-Phase Commit (1983)
→ Viewstamped Replication (1988)
→ Paxos (1989)
→ ZAB (2008?)
→ Raft (2013)

42
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ATOMIC COMMIT PROTOCOL

Resource Managers (RMs)

→ Execute on different nodes
→ Coordinate to decide fate of a txn.

Properties of the Commit Protocol

→ Stability: Once the fate is decided, it 
cannot be changed. 

→ Consistency: All RMs end up in the same 
state. 

Assumes Liveness:

→ There is some way of progressing forward.
→ Enough nodes are alive and connected for 

the duration of the protocol.
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TWO-PHASE COMMIT

Each node records the inbound/outbound messages 
and outcome of each phase in a non-volatile storage 
log.

On recovery, examine the log for 2PC messages:
→ If local txn in prepared state, contact coordinator.
→ If local txn not in prepared, abort it.
→ If local txn was committing and node is the coordinator, 

send COMMIT message to nodes.
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TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?

→ Participants must decide what to do after a timeout 
(this only applies if the participants know of all other 

participants).
→ System is not available during this time.

What happens if the participant crashes?

→ Coordinator assumes that it responded with an abort if it 
has not sent an acknowledgement yet.

→ Again, nodes use a timeout to determine whether a 
participant is dead.
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2PC OPTIMIZATIONS

Early Prepare Voting (Rare)

→ If you send a query/request to a remote node that you 
know will be the last one to execute in this txn, then that 
node will also return their vote for the prepare phase with 
the query result.

Early Ack After Prepare (Common)

→ If all nodes vote to commit a txn, the coordinator can send 
the client an acknowledgement that their txn was 
successful before the commit phase finishes.

65



15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT
P

a
r

t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

66



15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

Commit Request

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

67



15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

Commit Request

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2Phase1: Prepare

68



15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

Commit Request

OK

OK

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2Phase1: Prepare

69



15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

OK

OK

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

Success!

Phase1: Prepare

70



15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

OK

OK

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

Success!

Phase1: Prepare

Phase2: Commit

71



15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

OK

OK

OK

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

OK

Success!

Phase1: Prepare

Phase2: Commit

72



15-445/645 (Spring 2025)

73

PAXOS

Consensus protocol where a 
coordinator proposes an outcome 
(e.g., commit or abort) and then the 
participants vote on whether that 
outcome should succeed.

Does not block if a majority of 
participants are available and has 
provably minimal message delays in 
the best case.
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MULTI-PAXOS

If the system elects a single leader that oversees 
proposing changes for some period, then it can skip 
the Propose phase.
→ Fall back to full Paxos whenever there is a failure.

The system periodically renews the leader (known 
as a lease) using another Paxos round.
→ Nodes must exchange log entries during leader election to 

make sure that everyone is up-to-date.
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2PC VS. PAXOS VS. RAFT

Two-Phase Commit

→ Blocks if coordinator fails after the prepare message is sent, 
until coordinator recovers.

Paxos

→ Non-blocking if a majority participants are alive, provided 
there is a sufficiently long period without further failures.

Raft:

→ Similar to Paxos but with fewer node types.
→ Only nodes with most up-to-date log can become leaders.
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CAP THEOREM

Proposed in the late 1990s that is impossible for a 
distributed database to always be:
→ Consistent
→ Always Available
→ Network Partition Tolerant

Whether a DBMS provides Consistency or 
Availability during a Network partition.
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PARTITION TOLERANCE

Choice #1: Halt the System

→ Stop accepting updates in any partition that does not have 
a majority of the nodes.

Choice #2: Allow Split, Reconcile Changes

→ Allow each side of partition to keep accepting updates.
→ Upon reconnection, perform reconciliation to determine 

the "correct" version of any updated record
→ Server-side: Last Update Wins
→ Client-side: Vector Clocks

36

https://en.wikipedia.org/wiki/Vector_clock
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PACELC THEOREM

Extension to CAP proposed in 2010 to include 
consistency vs. latency trade-offs:
→ Partition Tolerant
→ Always Available
→ Consistent
→ Else, choose during normal operations
→ Latency
→ Consistency

125
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wait for acknowledgements and 

the latency of the DBMS.
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CONCLUSION

Maintaining transactional consistency across 
multiple nodes is hard. Bad things will happen.
→ Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols 
to ensure correctness in a distributed DBMS.

More info (and humiliation):
→ Kyle Kingsbury's Jepsen Project

135

https://aphyr.com/tags/jepsen
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