Carnegie Mellon Univ

Data base
Systems

Distributed OLTP
Databases

15-445/645 SPRING 2025)) PROF. JIGNESH PATEL

ADMINISTRIVIA

Project #4 is due Sunday April 20 @ 11:59pm
— Recitation: Friday, April 11" in GHC 4303 from 3:00 - 4:00 PM

HW 6 is due Sunday, April 20, 2025 @ 11:59pm

Final Exam is on Monday, April 28, 2025, from
05:30pm - 08:30pm

— Early exam will not be offered. Do not make travel plans.

This course is recruiting TAs for the next semester
— Apply at: https://www.ugrad.cs.cmu.edu/ta/F25/

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.ugrad.cs.cmu.edu/ta/F25/

ADMINISTRIVIA

Class on Monday, April 21: Review Session
— Come to class prepared with your questions. What material do
you want me to go over again’?

Class on Wednesday, April 23: Guest Lecture

— Real-world applications of Gen Al and Databases
— Speaker: Sailesh Krishnamurthy, Google

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

UPCOMING DATABASE TALKS

MariaDB (DB Seminar)

— Monday, April 14 @ 4:30pm

— MariaDB’s New Query Optimizer

— Speaker: Michael Widenius

— https://cmu.zoom.us/j/93441451665

Gel (DB Seminar)
— Monday, April 21 @ 4:30pm
— EdgeQL with Gel

— Speaker: Michael Sullivan
— https://cmu.zoom.us/j/93441451665

JMariaDB

https://cmu.zoom.us/j/93441451665
https://cmu.zoom.us/j/93441451665

£CMU-DB

15-445/645 (Spring 2025)

LAST CLASS

System Architectures
— Shared-Everything, Shared-Disk, Shared-Nothing

Partitioning/Sharding
— Hash, Range, Round Robin

Transaction Coordination
— Centralized vs. Decentralized

£CMU-DB

15-445/645 (Spring 2025)

OLTP VS. OLAP

On-line Transaction Processing (OLTP):

— Short-lived read/write txns.
— Small footprint.
— Repetitive operations.

On-line Analytical Processing (OLAP):
— Long-running, read-only queries.

— Complex joins.

— Exploratory queries.

Application
Server

$2CMU-DB

15-445/645 (Spring 2025)

DECENTRALIZED COORDINATOR

Partitions

-
N
-—_

((

h.
AN

((

DECENTRALIZED COORDINATOR

Application
Server

$2CMU-DB

15-445/645 (Spring 2025)

Partitions

-
N
-—_

((

S
A\

((

DECENTRALIZED COORDINATOR

Begin Request

B N

W Primary Node | Partitions

0
IZZa
R
Application
Server

$ZCMU-DB

15-445/645 (Spring 2025)

\’@
. J

-

DECENTRALIZED COORDINATOR

W Primary Node | Partitions

Query
)
Query I | |
Application @
Q J

Server
Query I

$ZCMU-DB

15-445/645 (Spring 2025)

DECENTRALIZED COORDINATOR

W Primary Node

Application
Server

$2CMU-DB

15-445/645 (Spring 2025)

Partitions

O
N\

((

S
A\

((

DECENTRALIZED COORDINATOR

Commit Request

T

W Primary Node | Partitions

0
IZZa
R
Application
Server

$ZCMU-DB

15-445/645 (Spring 2025)

\’@
. J

-

DECENTRALIZED COORDINATOR

Partitions

W Primary Node
Commit Request
e —
IZZ "
.| Safe to commit?
Application T

Server

$ZCMU-DB

15-445/645 (Spring 2025)

OBSERVATION

Recall that our goal is to have multiple physical
nodes appear as a single logical DBMS.

We have not discussed how to ensure that all nodes
agree to commit a txn and then to make sure it does

commit if the DBMS decides it should.

— What happens if a node fails?

— What happens if messages show up late?

— What happens if the system does not wait for every node
to agree to commit?

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

IMPORTANT ASSUMPTION

We will assume that all nodes in a distributed
DBMS are well-behaved and under the same

administrative domain.
— If we tell a node to commit a txn, then it will commit the
txn (if there is not a failure).

[f you do not trust the other nodes in a distributed
DBMS, then you need to use a Byzantine Fault

Tolerant protocol for txns (blockchain).
— Blockchains are not good for high-throughput workloads.

https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/Byzantine_fault

IMPORTANT ASSUMPTION

We will assume that all nodes in a distributed
DBMS are well-behaved and under the same

administrative domain.

— If we tell a node to commit a txn, then it will commit the
txn (if there is not a failure).

[f you do not trust the other nodes in a distributed

DBMS, then you need to use a Byzantine Fault

\ P 4
Q » Tolerant protocol for txns (blockchain).

B ; — Blockchains are not good for high-throughput workloads.
on

Do This!

£CMU-DB

15-445/645 (Spring 2025)

https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/Byzantine_fault

TODAY'S AGENDA

Replication
Atomic Commit Protocols
Consistency Issues (CAP / PACELC)

£CMU-DB

15-445/645 (Spring 2025)

REPLICATION

The DBMS can replicate a database across

redundant nodes to increase availability.

— Partitioned vs. Non-Partitioned
— Shared-Nothing vs. Shared-Disk

Design Decisions:

— Replica Configuration
— Propagation Scheme
— Propagation Timing
— Update Method

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Approach #1: Primary-Replica

— All updates go to a designated primary for each object.

— The primary propagates updates to its replicas by shipping
logs.

— Read-only txns may be allowed to access replicas.

— If the primary goes down, then hold an election to select a
new primary.

Approach #2: Multi-Primary

— Txns can update data objects at any replica.
— Replicas must synchronize with each other using an atomic
commit protocol.

REPLICA CONFIGURATIONS

Primary-Replica

@@

Primary

Rephcas

"CMU -DB

555555555555555555555

REPLICA CONFIGURATIONS

Primary-Replica

Primary @

Replicas

Writes
Reads

£CMU-DB

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Writes
Reads

Replicas

£CMU-DB

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Writes Reads
Reads
"'
0...*
Primary
Replicas

£CMU-DB

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica Multi-Primary
Writes Reads |
Reads
“'
““““ Node 1
0...*
Primary
Replicas
Node 2

£CMU-DB

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica Multi-Primary

| Writes Reads
Reads Writes »
Reads
“'
"""" Node 1
“oa Writesll,>
Primary Reads
Replicas

Node 2

£CMU-DB

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica Multi-Primary

. Writes Reads
Reads Writes »
Reads)
“' “‘-
"""" Nodel
N Writesll,> s
Primary Reads
Replicas

Node 2

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

K-SAFETY

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per
data object that must always be available.

[f the number of replicas goes below this threshold,
then the DBMS halts execution and takes itself
offline.

PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can
send the acknowledgement to application.

Propagation levels:
— Synchronous (Strong Consistency)
— Asynchronous (Eventual Consistency)

£CMU-DB

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

£CMU-DB

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and

then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

£CMU-DB

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and

Commit? l
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

£CMU-DB

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and Commit?)
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

£CMU-DB

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and Commit?l
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

$ZCMU-DB

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

£CMU-DB

15-445/645 (Spring 2025)

Commit? l

Flush!

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

£CMU-DB

15-445/645 (Spring 2025)

Commit? l

‘III

Ack

Flush!

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

$ZCMU-DB

15-445/645 (Spring 2025)

Commit? l

Flush!

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

$ZCMU-DB

15-445/645 (Spring 2025)

Flush!

Commit? l

‘III

Ack Ack

SQS

PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

$ZCMU-DB

15-445/645 (Spring 2025)

Commit? l

‘III

Ack

Commit? l

Flush!

£CMU-DB

15-445/645 (Spring 2025)

PROPAGATION TIMING

Approach #1: Continuous

— The DBMS sends log messages immediately as it generates
them.
— Also need to send a commit/abort message.

Approach #2: On Commit

— The DBMS only sends the log messages for a txn to the
replicas once the txn is commits.

— Do not waste time sending log records for aborted txns.

£CMU-DB

15-445/645 (Spring 2025)

ACTIVE VS. PASSIVE

Approach #1: Active-Active

— A txn executes at each replica independently.
— Need to check at the end whether the txn ends up with the
same result at each replica.

Approach #2: Active-Passive

— Each txn executes at a single location and propagates the
changes to the replica.

— Can either do physical or logical replication.

— Not the same as Primary-Replica vs. Multi-Primary

OBSERVATION

[f only one node decides whether a txn is allowed to
commit, then making that decision is easy.

Life is much harder when multiple nodes are

allowed to decide:

— What if multiple nodes need to agree a txn is allowed to
commit?

— What if a primary node goes down and the system needs to
choose a new primary?

£CMU-DB

15-445/645 (Spring 2025)

ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across nodes
in a distributed DBMS.

— Commit Order = State Machine
— It does not matter whether the database's contents are
replicated or partitioned.

Examples:

— Two-Phase Commit (1970s)

— Three-Phase Commit (1983)

— Viewstamped Replication (1988)
— Paxos (1989)

> ZAB (2008?)

— Raft (2013)

£CMU-DB

15-445/645 (Spring 2025)

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://dl.acm.org/doi/10.1145/62546.62549
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Apache_ZooKeeper
https://en.wikipedia.org/wiki/Raft_(algorithm)

ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across nodes
in a distributed DBMS.

— Commit Order = State Machine
— It does not matter whether the database's contents are
replicated or partitioned.

Examples:

— Two-Phase Commit (1970s)
— Three-Phase Commit (1983)
— Viewstamped Replication (1988)
— Paxos (1989)
— ZAB (2008?)
— Raft (2013)

£CMU-DB

15-445/645 (Spring 2025)

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://dl.acm.org/doi/10.1145/62546.62549
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Apache_ZooKeeper
https://en.wikipedia.org/wiki/Raft_(algorithm)

ATOMIC COMMIT PROTOCOL

Resource Managers (R Ms)

— Execute on different nodes
— Coordinate to decide fate of a txn.

Properties of the Commit Protocol

— Stability: Once the fate is decided, it
cannot be changed.

— Consistency: All RMs end up in the same
state.

Assumes Liveness:

— There is some way of progressing forward. https://wrwumicrosoft.com/ en- . .
us/research/publication/consensus-on-transaction-commit/
— Enough nodes are alive and connected for

the duration of the protocol.

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/
https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/

TWO-PHASE COMMIT (SUCCESS)

Application @
Server

Node 2

= =

Node 1 Node 3

$2CMU-DB

15-445/645 (Spring 2025)

TWO-PHASE COMMIT (SUCCESS)

AR ;
g %mt Request
IZaa |
ZZZ
Application
Server Nodob
oae

= =

Node 1 Node 3

"CMU -DB

TWO-PHASE COMMIT (SUCCESS)

AR Commit Request
T
IZaa |

IZZR
Application
Server
Node 2
§ ~ \ 4
£
T
S
Q =
Node 1 Node 3

£CMU-DB

15-445/645 (Spring 2025)

TWO-PHASE COMMIT (SUCCESS)

Commit Request

za
o .
Crreer

Application
Server

A

Coordinator

" Node 1

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

v

|
juvdidngavg

juvdidngavg

TWO-PHASE COMMIT (SUCCESS)

AR Commit Request
T
IZaa |

3
Application
Server
Phasel: Prepare
s[>
g
U =
Node 1

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

|
juvdidngavg

|
juvdidngavg

£CMU-DB

15-445/645 (Spring 2025)

Application

Server

Commit Request

Z—

IZE
7

Phasel: Prepare

TWO-PHASE COMMIT (SUCCESS)

OK

A

Coordinator

v

juvdidngavg

v

juvdidngavg

Node 3

TWO-PHASE COMMIT (SUCCESS)

Commit Request
e EE T OK

[T
Application
Server
Phasel: Prepare Node 2
oI Y\ ~ : OK
2 Phase2: Commit >
8
'§ >
U —
Node 1 Node 3

£CMU-DB

15-445/645 (Spring 2025)

|
juvdidngavg

|
juvdidngavg

TWO-PHASE COMMIT (SUCCESS)

m‘- %nit Request
IZan |
R

Application

Server

Coordinator

£CMU-DB

15-445/645 (Spring 2025)

A

Phasel: Prepare

|
juvdidngavg

|
juvdidngavg

TWO-PHASE COMMIT (SUCCESS)

Application
Server

A

Coordinator

Success!

|

" Node 1

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

v

|
juvdidngavg

juvdidngavg

TWO-PHASE COMMIT (ABORT)

Application
Server

Node 2

A

Coordinator

v

" Node 1 Node 3 ~

£CMU-DB

15-445/645 (Spring 2025)

|
juvdidngavg

juvdidngavg

TWO-PHASE COMMIT (ABORT)

T wit Request
IIZEa
ZZ3K
Application
Server
Node 2
§ B \ 4
S
S
T
S
U -
Node 1 Node 3

£CMU-DB

15-445/645 (Spring 2025)

|
juvdidngavg

|
juvdidngavg

TWO-PHASE COMMIT (ABORT)

AR Commit Request
e aadhini
IZaa |

3
Application
Server
Phasel: Prepare
s[>
g
U =
Node 1

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

|
juvdidngavg

|
juvdidngavg

TWO-PHASE COMMIT (ABORT)

ABORT!

m‘- wit Request
IZEn
K
Application
Server
Phasel: Prepare
s [=2
= -
O

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

|
juvdidngavg

|
juvdidngavg

TWO-PHASE COMMIT (ABORT)

m‘- Aborted
IZZ
IZZ
Application
Server
Node 2
5] ABORT!|
S
S <
T
S
U —
Node 1 Node 3

£CMU-DB

15-445/645 (Spring 2025)

|
juvdidngavg

|
juvdidngavg

TWO-PHASE COMMIT (ABORT)

AR Aborted

Zmm, =, ——

Z

73

Application
Server
] ABORT!
% Phase2: Abort >
S
§ >
U —
Node 1

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

|
juvdidngavg

|
juvdidngavg

TWO-PHASE COMMIT (ABORT)

ABORT!

OK

AR Aborted
LT
ZZ
IZHIQ
Application
Server
o
§ Phase2: Abort
S
~
S
O

" Node 1

£CMU-DB

15-445/645 (Spring 2025)

|
juvdidngavg

Node 3

|
juvdidngavg

TWO-PHASE COMMIT

Each node records the inbound/outbound messages
and outcome of each phase in a non-volatile storage
log.

On recovery, examine the log for 2PC messages:

— If local txn in prepared state, contact coordinator.

— Iflocal txn not in prepared, abort it.

— If local txn was committing and node is the coordinator,
send COMMIT message to nodes.

£CMU-DB

15-445/645 (Spring 2025)

TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?

What happens if the participant crashes?

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?

— Participants must decide what to do after a timeout
(this only applies if the participants know of all other
participants).

— System is not available during this time.

What happens if the participant crashes?

£CMU-DB

15-445/645 (Spring 2025)

TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?

— Participants must decide what to do after a timeout
(this only applies if the participants know of all other
participants).

— System is not available during this time.

What happens if the participant crashes?
— Coordinator assumes that it responded with an abort if it
has not sent an acknowledgement yet.

— Again, nodes use a timeout to determine whether a
participant is dead.

2PC OPTIMIZATIONS

Early Prepare Voting (Rare)

— If you send a query/request to a remote node that you
know will be the last one to execute in this txn, then that
node will also return their vote for the prepare phase with
the query result.

Early Ack After Prepare (Common)

— If all nodes vote to commit a txn, the coordinator can send
the client an acknowledgement that their txn was
successful before the commit phase finishes.

£CMU-DB

15-445/645 (Spring 2025)

Application
Server

£CMU-DB

15-445/645 (Spring 2025)

A

Coordinator

EARLY ACKNOWLEDGEMENT

" Node 1

Node 2

v

Node 3

|
juvdidngavg

juvdidngavg

EARLY ACKNOWLEDGEMENT

za
o .
Crreer

Commit Request -

Application
Server

|
juvdidngavg

Node 2

A

Coordinator
||
jupdgang

" Node 1 Node 3

£CMU-DB

15-445/645 (Spring 2025)

EARLY ACKNOWLEDGEMENT

AR Commit Request
T
IZaa |

3
Application
Server
Phasel: Prepare
s[>
g
U =
Node 1

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

|
juvdidngavg

|
juvdidngavg

£CMU-DB

15-445/645 (Spring

EARLY ACKNOWLEDGEMENT

AR Commit Request
T
IZaa |

R
Application
Server

Phasel: Prepare

A

Coordinator

2025)

OK

Node 3

|
juvdidngavg

|
juvdidngavg

EARLY ACKNOWLEDGEMENT

OK

A /
) Success!
K
K

Application
Server
Phasel: Prepare
- |

5 >
=
§
S

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

|
juvdidngavg

|
juvdidngavg

EARLY ACKNOWLEDGEMENT

OK

OK

A /
K
K
Application
Server
Phasel: Prepare
< [—\ ~
= Phase2: Commit
S
§
S

" Node 1

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

|
juvdidngavg

|
juvdidngavg

AR Success!
T
K
[T
Application
Server
Phasel: Prepare
o
S
S
S
T
S
O

£CMU-DB

15-445/645 (Spring 2025)

EARLY ACKNOWLEDGEMENT

OK

OK

|
juvdidngavg

|
juvdidngavg

PAXOS

Consensus protocol where a
coordinator proposes an outcome

e.g., commit or abort) and then the
participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has
provably minimal message delays in
the best case.

£CMU-DB

15-445/645 (Spring 2025)

The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Recent archacological discoveries on the island of Paxos reveal that the parliament functioned de-
spite the peripatetic propensity of its part-time legislators. The legislators maintained consistent
copies of the parliamentary record, despite their frequent forays from the chamber and the forget-
fulness of their messengers. The Paxon parliament’s protocol provides a new way of implementing
the state-machine approach to the design of distributed systems.

Categories and Subject Descriptors: C2.4 [C icati Distributed
Systems—Network operating systems, D4.5 [O ting Systems]: Reliability—Ft l s
J1[A Data i

General Terms: Design, Reliability

Additional Key Words and Phrases: State machines, three-phase commit, voting

This submission was recently discovered behind a filing cabinet in the TOCS editorial
office. Despite its age, the editor-in-chief felt that it was worth publishing. Because the
author s currently doing field work in the Greek isles and cannot be reached, I was asked
to prepare it for publication.

The author appears to be an archeologist with only a passing interest in computer sci-
ence. This is unfortunate; even though the obscure ancient Paxon civilization he describes
is of little interest to most computer scientists, its legislative system is an excellent model
for how to implement a distributed computer system in an asynchronous environment.
Indeed, some of the refinements the Paxons made to their protocol appear to be unknown
in the systems literature.

The author does give a brief discussion of the Paxon Parliament’s relevance to dis-
tributed computing in Section 4. Computer scientists will probably want to read that
section first. Even before that, they might want to read the explanation of the algorithm
for computer scientists by Lampson [1996]. The algorithm is also described more formally
by De Prisco et al. [1997). I have added further comments on the relation between the
ancient protocols and more recent work at the end of Section 4.

Keith Marzullo
University of California, San Diego

Authors address: Systems Research Center, Digital Equipment Corporation, 130 Lytton Avenue,
Palo Alto, CA 94301.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

© 1998 ACM 0000-0000/98/0000-0000 $00.00

Consensus protocol where a

coordinator proposes an out;omf
e.g., commit or abort) and t e}Ill ;
participants vote on whether tha

outcome should succeed.

Does not block if a majority of
participants are available and has

provably minimal message delay
the best case.

$2CMU-DB

15-445/645 (Spring 2025)

Consensus on Transaction Commit

JIM GRAY and LESLIE LAMPORT
Microsoft Research

currency; D.4.5 [Oper,
Organization and Design—Diysyipypers systems

General Terms: Algorithms, Reliability

Additional Key Words and Phrages: Consensus, Paxos, two-phase commi

1. INTRODUCTION

Adistributed transaction consists of a number of operations, performed at mul-
tiple sites, terminated by a request to commit or abort the transaction. The
sites then use transaction commit protocol to decide whether the transac-
tion is committed or aborted. The transaction can be committeq only if all siteg
are willing to commit, it. Achieving this aH-or~nothing atomicity Property in a
distributed system is not trivia]. The Tequirements for transaction commit are
stated precisely in Section 2.

The classic transaction commit protoco] g Two-Phase Commit [Gray 1978],
described in Section 3. It uses asingle coordinator to reach agreement, The fail-
ure of that coordinator can cause the protocol to block, with no process knowing
the outcome, until the coordinator is Trepaired. In Section 4, we use the Paxos
consensus algorithm [Lamport 1998] to obtain a transaction commit protoco]

Authors’ addresses: J, Gray, Microsoft, Research, 455 Market St., San Francisco, CA 94105; email:
Jim.Grayomicrosofy. com; L. Lamport, Microsoft Research, 1065 La Avenida, Mountain View, CA
94043,

Permission to make digital or harq €OPies of part or all of this work for personal or classroom use js
granted without fee provided that coPies are not made or distributed for Profit or direct commercia]
advantage and that copies shoy this notice on the first page or initial screen of a display along
with the full citation. Copyrights for combonents of this work owned by ot hary than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to pog gn servers,

PAXOS

AR
7K
I Node 2
ZZ
Application
Server
Node 3

Node 1
$2CMU-DB Node 4

15-445/645 (Spring 2025)

PAXOS

AR
73
IZE
3

Application
Server

Z—

Commit Request

Node 1

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

Node 4

PAXOS

AR Commit Request
T
Iz |
73
Application
Server
= \ 4
S
S .
S
o
" Node 1

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

Node 4

PAXOS
AR ;
T wzt Request
IIZaa
3
Application
Server
= \ 4
S
S .
=
&
“ Node 1

£CMU-DB

15-445/645 (Spring 2025)

Node 2

Node 3

Node 4

|| ||
401d220y 403d220y

||
401d220y

N
00

PAXOS

AR Commit Request
T
IIZaa
I3
Application
Server
Propose
. " Node 3
%;_ —
=
&

- Node 1
$2CMU-DB Node 4

15-445/645 (Spring 2025)

N
!

v

401d220y

|

401d220y

|

401d220y

PAXOS

T wzt Request
IZan | Node 2 -
3]
Application
Server
Propose
§ -
S -
=)
&

- Node 1
$2CMU-DB Node 4 -

15-445/645 (Spring 2025)

00
!

v

||
401d220y

401d220y

|

401d220y

PAXOS

Commit Request
T
IIZaa -
I3]
Application
Server
Propose

5 -

S .

£

- Node 1
$2CMU-DB Node 4 -

15-445/645 (Spring 2025)

[0}
=

v

||
401d220y

401d220y

|

401d220y

PAXOS

Iz Siadind. b
IIZaa
73
Application
Server

Propose
\/

-

v
C | Commit

Proposer
\/
\

£2CMU-DB Node 4 -

15-445/645 (Spring 2025)

(0]
N

v

||
401d220y

401d220y

|

401d220y

Acceptor Acceptor Acceptor
A A A

PAXOS

quest

Commit Re
Z—

1
dasodoag

AR
IZZ
R

Application
Server

Node 4 -

ZCMU-DB

&

15-445/645 (Spring 2025)

PAXOS -

2

)

S

ﬁ Success! S

—

I
i o]

Application >

()

Server -3

S

<

&~ =

g

- 2>

2 8

& -3

L S

Node 1 =

$2CMU-DB Node 4 -

15-445/645 (Spring 2025)

PAXOS -

Success!

ﬁﬁ?i

Application
Server

Proposer
|

~ Node 1
$2CMU-DB Node 4 -

15-445/645 (Spring 2025)

00
9]

v

||
401d220y

401d220y

|

401d220y

Proposer
—
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
v

PAXOS
Acceptors
T

Proposer
—
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
|
|
1
v

15-445/645 (Spring 2025)

$=CMU-DB

-
-

PAXOS

Proposer

Acceptors

Proposer

Propose(n)

15-445/645 (Spring 2025)

$=CMU-DB

-
-

PAXOS

Proposer

15-445/645 (Spring 2025)

ZCMU-DB

&

preeeeeeeeeeeeeeeeeeee v
<
2
=~ v_\/ |||||||||||||||||||||||| >
Q S
S ~
<t
~Y))
<
[S e >
)
N}
Q
| S
5 &
g >
&y

PAXOS

15-445/645 (Spring 2025)

ZCMU-DB

&

S
[>% N
1)))R S >
) E
&~) -
Ry >
=,
S
<
e v
<
8 5
w.. v_\/ o >
Q S
S ~—
ik
o0
h |
e >
)
E
Q
| S
5| &
S| & fP-mmemmmm e >
&~
<

)3

Proposer

Propose(n+1)

e >
%) o
o ¢ f
> = ()= N s >
< S |
o < S
S
= |
T >
S =
(I mN
S Y) s LS N A >
&

£=CMU-DB
15-445/645 (Spring 2025)

(]
=

PAXOS

Proposer Acceptors Proposer
Pro
pose(n) — — — —
Agree(n) T T
| 1 AV:' j: Propose(n+1)
e m——
Commit(n)] : E‘7Z},
T~ Reject(n,n+1)
|
|

|

€ e e e e e el

\\

€ e e e e

€
€

$ZCMU-DB

15-445/645 (Spring 2025)

PAXOS

Proposer Acceptors Proposer
Pro
pose(n) — — — —
Agree(n) T T
| 1 AV:' j: Propose(n+1)
e m——
Commit(n)] : E‘7Z},
™\ Reject(n,n+1) !

»

</
P S A A A —

<----------

€
€= = e e

$ZCMU-DB

15-445/645 (Spring 2025)

PAXOS

Proposer Acceptors Proposer
Pro
pose(n) — — — —
Agree(n) T T
| 1 AV:' j: Propose(n+1)
e m——
Commit(n)] : E‘%
™\ Reject(n,n+1) ! i
| >l |
1 1 1
| i :

(--T---F-
i

€

$ZCMU-DB

15-445/645 (Spring 2025)

PAXOS

Proposer Acceptors Proposer
Pro
pose(n) — — — —
Agree(n) T T
| 1 AV:' j: Propose(n+1)
e m——
Commit(n)] : E‘7Z},
™\ Reject(n,n+1) !

»

€

$ZCMU-DB

15-445/645 (Spring 2025)

MULTI-PAXOS

[f the system elects a single leader that oversees
proposing changes for some period, then it can skip

the Propose phase.
— Fall back to full Paxos whenever there is a failure.

The system periodically renews the leader (known
as a lease) using another Paxos round.

— Nodes must exchange log entries during leader election to
make sure that everyone is up-to-date.

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

2PC VS. PAXOS VS. RAFT

Two-Phase Commit

— Blocks if coordinator fails after the prepare message is sent,
until coordinator recovers.

Paxos

— Non-blocking if a majority participants are alive, provided
there is a sufficiently long period without further failures.

Raft:

— Similar to Paxos but with fewer node types.
— Only nodes with most up-to-date log can become leaders.

CAP THEOREM

Proposed in the late 1990s that is impossible for a

distributed database to always be:
— Consistent

— Always Available

— Network Partition Tolerant

Whether a DBMS provides Consistency or
Availability during a Network partition.

£CMU-DB

15-445/645 (Spring 2025)

CONSISTENCY

Application Application
Server Server

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

IZE
7

Application
Server

CONSISTENCY

Set A=2

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

Application
Server

IZE
7

Application
Server

CONSISTENCY

Set A=2

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

Application
Server

100

IZE
7

Application
Server

CONSISTENCY

Set A=2

$ZCMU-DB

15-445/645 (Spring 2025)

Primary

Application
Server

101

_

Application
Server

CONSISTENCY

$ZCMU-DB

15-445/645 (Spring 2025)

Primary

Application
Server

102

_

Application
Server

CONSISTENCY

Read A

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

Il
7

Application
Server

103

104

CONSISTENCY
_ A
Set A=2 Read A ZZzZzZzag
Application Application
Server ACK A=2 Server

Primary
£=CMU-DB

15-445/645 (Spring 2025)

CONSISTENCY

If Primary says the txn
committed, then it should be
\immediately visible on replicas.

g Read A
Application Application
Server ACK =2 Server

Primary
£=CMU-DB

15-445/645 (Spring 2025)

AVAILABILITY

Application Application
Server Server

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

106

AVAILABILITY

Application Application
Server Server

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

107

IZE
7

Application
Server

AVAILABILITY

Read B

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

Application
Server

108

109

AVAILABILITY

_

Read B ;
Application Application
Server B=3 Server

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

AVAILABILITY

Application Application
Server Server

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

110

Application
Server

$ZCMU-DB

15-445/645 (Spring 2025)

AVAILABILITY

Primary

Read A

Application
Server

111

112

AVAILABILITY
AR
st e
ZZ3K
Read A ZzzZaa
Application Application
Server AT Server

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

113

PARTITION TOLERANCE

Application Application
Server Server

Primary Replica
QCMU -DB

114

PARTITION TOLERANCE
Application Application
Server Server
=l =1y
N B=8 |/ N B=8 [/
—_— —_—
Primary Replica

C3CMU -DB

PARTITION TOLERANCE

Application
Server

C

NLA=T L

N B=8 |/

—

Primary

C3CMU -DB

Application

Replica

Server

115

116

PARTITION TOLERANCE

Application Application
Server Server

Primary Primary

C3CMU -DB

117

PARTITION TOLERANCE

Application
Server

Primary

C3CMU -DB

Application
Server

-
=
B=8
.

Primary

118

PARTITION TOLERANCE
AR AR
Iz Set A=2 Set A=3 Iz
Application Application

Server Server

Primary Primary

C3CMU -DB

119

PARTITION TOLERANCE
AR AR
Iz Set A=2 Set A=3 Iz
Application Application

Server Server

Primary Primary

C3CMU -DB

PARTITION TOLERANCE

—

Application
Server

Set A=2

Set A=3

ACK

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

ACK

ﬁ

Application
Server

Primary

120

PARTITION TOLERANCE
AR AR
BNy i
ZZE Set A=2 Set A=3 ZZZE
Application Application
Server i o Server

Primary

$ZCMU-DB

15-445/645 (Spring 2025)

Primary

121

PARTITION TOLERANCE

—

Application
Server

Set A=3

$ZCMU-DB

15-445/645 (Spring 2025)

Primary

ACK

ﬁ

Application
Server

Primary

122

£CMU-DB

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Choice #1: Halt the System

— Stop accepting updates in any partition that does not have
a majority of the nodes.

Choice #2: Allow Split, Reconcile Changes

— Allow each side of partition to keep accepting updates.

— Upon reconnection, perform reconciliation to determine
the "correct” version of any updated record

— Server-side: Last Update Wins

— Client-side: Vector Clocks

https://en.wikipedia.org/wiki/Vector_clock

PARTITION TOLERANCE

Choice #1: Halt the System

— Stop accepting updates in any partition that does not have
a majority of the nodes.

Choice #2: Allow Split, Reconcile Changes

— Allow each side of partition to keep accepting updates.

— Upon reconnection, perform reconciliation to determine
the "correct” version of any updated record

— Server-side: Last Update Wins

» — Client-side: Vector Clocks

Don't
Do This!

£CMU-DB

15-445/645 (Spring 2025)

https://en.wikipedia.org/wiki/Vector_clock

125

PACELC THEOREM

Extension to CAP proposed in 2010 to include

consistency vs. latency trade-offs:
— Partition Tolerant

— Always Available

— Consistent

— Else, choose during normal operations
— Latency

— Consistency

£CMU-DB

15-445/645 (Spring 2025)

https://en.wikipedia.org/wiki/PACELC_theorem

126

LATENCY VS. CONSISTENCY

Application

Server Replica
(us-west)

Primary Replica
$2CMU-DB (us-east) (eu-east)

127

LATENCY VS. CONSISTENCY

R
Application
Server

Set A=2

Primary
$2CMU-DB (us-east)

Replica
(us-west)

Replica
(eu-east)

128

LATENCY VS. CONSISTENCY

R
Application
Server

Set A=2

Primary
$2CMU-DB (us-east)

Replica
(us-west)

Replica
(eu-east)

LATENCY VS. CONSISTENCY

IIZaa |
ZZa Set A=2
Application .
Server : Replica
: (us-west)

Primary Replica
ST (us-east) (eu-east)

15-445/645 (Spring 2025)

129

130

LATENCY VS. CONSISTENCY

ACK
Application -
Server Replica
(us-west)
ACK
Primary Replica
ST (us-east) (eu-east)
15-445/645 (Spring 2025)

131

LATENCY VS. CONSISTENCY

Annlicatinn

Trade-of f between how long to
wait for acknowledgements and
the latency of the DBMS.

Primary
$2CMU-DB (us-east)

15-445/645 (Spring 2025)

ACK

ACK

Replica
(us-west)

Replica
(eu-east)

132

LATENCY VS. CONSISTENCY

ACK
Application -
Server : Replica
(us-west)
ACK
Primary Replica
ST (us-east) (eu-east)

15-445/645 (Spring 2025)

133

LATENCY VS. CONSISTENCY

ACK

Application -
Server Replica
(us-west)

Primary Replica
ST (us-east) (eu-east)

15-445/645 (Spring 2025)

134

LATENCY VS. CONSISTENCY

ACK

_

Application -
Server ACK Replica
(us-west)

Primary Replica
ST (us-east) (eu-east)

15-445/645 (Spring 2025)

135

CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.

— Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols
to ensure correctness in a distributed DBMS.

More info (and humiliation):
— Kyle Kingsbury's Jepsen Project

£CMU-DB

15-445/645 (Spring 2025)

https://aphyr.com/tags/jepsen

$2CMU-DB

15-445/645 (Spring 2025)

136

CONCLUSIO

Spanner: Google’s Globally-l)istributed Database

James C. Corbers, Jeffrey Dean, Michael K stein, Andyey: Fikes, Chri stopher Frosy, 7 Furnan,
.S'anjuy Ghemawas, Andrey Gubarey, ¢ ristopher Heiser: Peter lllll'lh('/l”ll, Wilson Hsieh,
Sebastian Kanthatk, Eugene Kogan, Hongyi 1;, Alexander Lioyd, Sergey Meini, David Myaura,
David Nagje, Sean Quinian, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Saymaniak,
Christopher Taylor, Ruth Wang, Date Woodford

Maintaining transactional consist
multiple nodes is hard. Bad tl}'mg
— Don't let the "unwashed masses" go

Google, Inc.

Abstract tency over higher availability, as long as they can survive
1 or 2 datacenter failures,

Spanner is Google's scalable, multi-version, globally- . .) .
disteibuted. and synchronously.replicaey database. Ijs Spanner's main focys i eing cross-datacentcr
o e 1 it dt gl s e e e DUt e e s s 3 gy g
o Cxtemlly-consistent distributed transyegigr This Wme in designing ang implementing important databuse
Paper deseribes how Spanper Mructured, its feature ser, features on 10p of our distributed-systems Infrastructure,
Even though man;

the rationale underlying various design decisions, and
novel time API thar Cxposcs clock uncertainty. This Ap[
and its implementation are critical 1o supporting exter-

that Bigtable can be difficult to usc for some kinds of ap-
nal consistency and 4 variely of powerful features; nop. Plications: those that have cm_nplex. r_:\volwing schemas,
blacking reads in the past, lock-froe read-only transc. o those that \\:anl‘.\’lmng..un‘rmslcnq in the presence of
tions, and atomic schema changes. across all of Spanner. Wide-area replication, (s, milar claims have been made
by other authors 137]) Many applications at Google
have chosen 10 use Me store [S] because of ity sem.
1 Introduction relational data modef and support for synchronous replj-
cation, despite jts relatively poor write throughput. As 5
Spanner is a scalable, elobally-distributed dacabase ge. comsequence, Spanner has evolyed from 5 Biglable-like
signed, buill, and deployed o Google. At the high. versioned key o & temporal muli-version
o8t level of abstraction, it is 4 dytgfhyge that shards datg " schematized semi.relaciona)
X0s [21] state machines in data. tables; data js versioned, and eqch m s automari-
he world, Replication is useq for cally timestamped with its commi timg; old versions of
ilability and £cographic locality; clicnts auto- data are subject to configurable 2arbage-collection poli-
matically failover between replicas. Spanner automati. cies: and applications can read dar; Ol timestamps.
cally reshards dagy across machines ag the amount of daty Spanncr supports general-purpose transactions, and pro-
Or the number of servers changes, g it automatically vides a SQL-baseq query language.
migrates data across machines (even across datacenters) As a #loballydisiributed database, Spanner pravides
Lo balance load and in response 1o Tailures. Spanner is several Interesting features, First, the replication con-
designed to scale up to millions of machines acros hun- figurations tor data can be dynam; ally controlled ata
dreds of datacenters and trillions of database rows fine grain by applications. Applic.
Applications can use Spanner for high availabili " straing

even in the face of

2PC / Paxos / Raft are the mos.tb
to ensure correctness in a distri

ver.

More info (and humiliatlop :
— Kyle Kingsbury's Jepsen Project

how Far replicas are from each ather (10 control write Jy-
teney), and how many replicas are maimtained (to con-
tro] durability, availa) ity and read performance). Datg
can also be dynamically ung transparently moyed pe.
tween datacenters by the system 10 balance resource us-
ographic region, byt with relatively independent failure Aage across datacenters, Second, Spanner has two features
modes. Tha js, most applications will choose lower 1. that are diflicul; implement in a distributed database: it

Published in the Proceedings af OSDI 2012

https://aphyr.com/tags/jepsen

$ZCMU-DB

15-445/645 (Spring 2025)

Maintaining transactional consist
multiple nodes is hard. Bad thing

CONCLUSIO

Sebastian Kanthaj,

Google, Inc.

" Ahstract

ox

James C. Corbery Jeffr
tes C. s Jeffrey Dean, Michael Eperor
g o / 2 - Michael Epstein, / ew Fik
anjay Ghemay (g Andrey Gubarey, (.'/12\'{0/)’/1(1;’;;’:;'“ h}"ﬂ:
' ’ uriy ciser. Per,
D Sm,.!g;/,":/ 5":)5::1,‘ H/wrg)’l Li, Alexander Llu:dy
s - Rajesh Rao, Lindsay Rolio v
o , L Y Rolig, Yasushi
Christopher Taylor; Ruth Wang, I;::/w Woodford

S . Y
Panner: Google’s Glol)ally-l)istribuwd Database

Christopher Frost, J7 Furman
r Ilm'/m'/zilzl, Wilson Hyieh '

Sergey

— Don't let

2PC / Paxq
to ensure d

More info
— Kyle Kin;

4—Lr\ "11“117nn1\r\f] LY WaVWalaVaVal

was in part built to address this failing. Some authors
have claimed that general two-phase commit is too ex-
pensive to support, because of the performance or avail-
ability problems that it brings [9, 10, 19]. We believe it
is better to have application programmers deal with per-
formance problems due to overuse of transactions as bot-
tlenecks arise, rather than always coding around the lack
of transactions. Running two-phase commit over Paxos

mitigates the availability problems.

The application data model is layered on top of the
directory-bucketed key-value mappings supported by the

TEBHSHEd 1 the Proceeding,

s af OSDI 2072

Melnik, Davig Mwaura,

Saito, Michal Szymaniak,

ty. as long as they can suryive

cross-datacenter
of

137

https://aphyr.com/tags/jepsen

$ZCMU-DB

15-445/645 (Spring 2025)

Maintaining transactional consist
multiple nodes is hard. Bad thing

CONCLUSIO

Sebastian Kanthaj,

Google, Inc.

" Ahstract

ox

James C. Corbery Jeffr
tes C. s Jeffrey Dean, Michael Eperor
g o / 2 - Michael Epstein, / ew Fik
anjay Ghemay (g Andrey Gubarey, (.'/12\'{0/)’/1(1;’;;’:;'“ h}"ﬂ:
' ’ uriy ciser. Per,
D Sm,.!g;/,":/ 5":)5::1,‘ H/wrg)’l Li, Alexander Llu:dy
s - Rajesh Rao, Lindsay Rolio v
o , L Y Rolig, Yasushi
Christopher Taylor; Ruth Wang, I;::/w Woodford

S . Y
Panner: Google’s Glol)ally-l)istribuwd Database

Christopher Frost, J7 Furman
r Ilm'/m'/zilzl, Wilson Hyieh '

Sergey

— Don't let

2PC / Paxq
to ensure d

More info
— Kyle Kin;

4—Lr\ "11“117nn1\r\f] LY WaVWalaVaVal

was in part built to address this failing. Some authors
have claimed that general two-phase commit is too ex-
pensive to support, because of the performance or avail-
ability problems that it brings [9, 10, 19]. We believe it
is better to have application programmers deal with per-
formance problems due to overuse of transactions as bot-
tlenecks arise, rather than always coding around the lack
of transactions. Running two-phase commit over Paxos

mitigates the availability problems.

The application data model is layered on top of the
directory-bucketed key-value mappings supported by the

TEBHSHEd 1 the Proceeding,

s af OSDI 2072

Melnik, Davig Mwaura,

Saito, Michal Szymaniak,

ty. as long as they can suryive

cross-datacenter
of

138

https://aphyr.com/tags/jepsen

139

CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.

— Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols
to ensure correctness in a distributed DBMS.

More info (and humiliation):
— Kyle Kingsbury's Jepsen Project

£CMU-DB

15-445/645 (Spring 2025)

https://aphyr.com/tags/jepsen

140

NEXT CLASS

Distributed OLAP Systems

£CMU-DB

15-445/645 (Spring 2025)

