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ADMINISTRIVIA

Project #4 is due Sunday April 20 @ 11:59pm
— Recitation: Friday, April 11" in GHC 4303 from 3:00 - 4:00 PM

HW 6 is due Sunday, April 20, 2025 @ 11:59pm

Final Exam is on Monday, April 28, 2025, from
05:30pm - 08:30pm

— Early exam will not be offered. Do not make travel plans.

This course is recruiting TAs for the next semester
— Apply at: https://www.ugrad.cs.cmu.edu/ta/F25/
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ADMINISTRIVIA

Class on Monday, April 21: Review Session
— Come to class prepared with your questions. What material do
you want me to go over again’?

Class on Wednesday, April 23: Guest Lecture

— Real-world applications of Gen Al and Databases
— Speaker: Sailesh Krishnamurthy, Google
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UPCOMING DATABASE TALKS

MariaDB (DB Seminar)

— Monday, April 14 @ 4:30pm

— MariaDB’s New Query Optimizer

— Speaker: Michael Widenius

— https://cmu.zoom.us/j/93441451665

Gel (DB Seminar)
— Monday, April 21 @ 4:30pm
— EdgeQL with Gel

— Speaker: Michael Sullivan
— https://cmu.zoom.us/j/93441451665

JMariaDB
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LAST CLASS

System Architectures
— Shared-Everything, Shared-Disk, Shared-Nothing

Partitioning/Sharding
— Hash, Range, Round Robin

Transaction Coordination
— Centralized vs. Decentralized




£CMU-DB

15-445/645 (Spring 2025)

OLTP VS. OLAP

On-line Transaction Processing (OLTP):

— Short-lived read/write txns.
— Small footprint.
— Repetitive operations.

On-line Analytical Processing (OLAP):
— Long-running, read-only queries.

— Complex joins.

— Exploratory queries.
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DECENTRALIZED COORDINATOR
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OBSERVATION

Recall that our goal is to have multiple physical
nodes appear as a single logical DBMS.

We have not discussed how to ensure that all nodes
agree to commit a txn and then to make sure it does

commit if the DBMS decides it should.

— What happens if a node fails?

— What happens if messages show up late?

— What happens if the system does not wait for every node
to agree to commit?
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IMPORTANT ASSUMPTION

We will assume that all nodes in a distributed
DBMS are well-behaved and under the same

administrative domain.
— If we tell a node to commit a txn, then it will commit the
txn (if there is not a failure).

[f you do not trust the other nodes in a distributed
DBMS, then you need to use a Byzantine Fault

Tolerant protocol for txns (blockchain).
— Blockchains are not good for high-throughput workloads.



https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/Byzantine_fault

IMPORTANT ASSUMPTION

We will assume that all nodes in a distributed
DBMS are well-behaved and under the same

administrative domain.

— If we tell a node to commit a txn, then it will commit the
txn (if there is not a failure).

[f you do not trust the other nodes in a distributed

DBMS, then you need to use a Byzantine Fault

\ P 4
Q » Tolerant protocol for txns (blockchain).

B ; — Blockchains are not good for high-throughput workloads.
on

Do This!
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TODAY'S AGENDA

Replication
Atomic Commit Protocols
Consistency Issues (CAP / PACELC)
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REPLICATION

The DBMS can replicate a database across

redundant nodes to increase availability.

— Partitioned vs. Non-Partitioned
— Shared-Nothing vs. Shared-Disk

Design Decisions:

— Replica Configuration
— Propagation Scheme
— Propagation Timing
— Update Method
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REPLICA CONFIGURATIONS

Approach #1: Primary-Replica

— All updates go to a designated primary for each object.

— The primary propagates updates to its replicas by shipping
logs.

— Read-only txns may be allowed to access replicas.

— If the primary goes down, then hold an election to select a
new primary.

Approach #2: Multi-Primary

— Txns can update data objects at any replica.
— Replicas must synchronize with each other using an atomic
commit protocol.
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REPLICA CONFIGURATIONS
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REPLICA CONFIGURATIONS
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REPLICA CONFIGURATIONS
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REPLICA CONFIGURATIONS
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REPLICA CONFIGURATIONS
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REPLICA CONFIGURATIONS
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K-SAFETY

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per
data object that must always be available.

[f the number of replicas goes below this threshold,
then the DBMS halts execution and takes itself
offline.




PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can
send the acknowledgement to application.

Propagation levels:
— Synchronous (Strong Consistency)
— Asynchronous (Eventual Consistency)
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PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.
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PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and

then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

£CMU-DB

15-445/645 (Spring 2025)



PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and

Commit? l
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.
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PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and Commit? )
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.
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PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and Commit?l
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.
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PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.
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Commit? l

Flush!




PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.
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PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.
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PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.
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PROPAGATION SCHEME

Approach #1: Synchronous

— The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

— The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.
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PROPAGATION TIMING

Approach #1: Continuous

— The DBMS sends log messages immediately as it generates
them.
— Also need to send a commit/abort message.

Approach #2: On Commit

— The DBMS only sends the log messages for a txn to the
replicas once the txn is commits.

— Do not waste time sending log records for aborted txns.
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ACTIVE VS. PASSIVE

Approach #1: Active-Active

— A txn executes at each replica independently.
— Need to check at the end whether the txn ends up with the
same result at each replica.

Approach #2: Active-Passive

— Each txn executes at a single location and propagates the
changes to the replica.

— Can either do physical or logical replication.

— Not the same as Primary-Replica vs. Multi-Primary




OBSERVATION

[f only one node decides whether a txn is allowed to
commit, then making that decision is easy.

Life is much harder when multiple nodes are

allowed to decide:

— What if multiple nodes need to agree a txn is allowed to
commit?

— What if a primary node goes down and the system needs to
choose a new primary?
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ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across nodes
in a distributed DBMS.

— Commit Order = State Machine
— It does not matter whether the database's contents are
replicated or partitioned.

Examples:

— Two-Phase Commit (1970s)

— Three-Phase Commit (1983)

— Viewstamped Replication (1988)
— Paxos (1989)

> ZAB (2008?)

— Raft (2013)
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ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across nodes
in a distributed DBMS.

— Commit Order = State Machine
— It does not matter whether the database's contents are
replicated or partitioned.

Examples:

— Two-Phase Commit (1970s)
— Three-Phase Commit (1983)
— Viewstamped Replication (1988)
— Paxos (1989)
— ZAB (2008?)
— Raft (2013)
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ATOMIC COMMIT PROTOCOL

Resource Managers (R Ms)

— Execute on different nodes
— Coordinate to decide fate of a txn.

Properties of the Commit Protocol

— Stability: Once the fate is decided, it
cannot be changed.

— Consistency: All RMs end up in the same
state.

Assumes Liveness:

— There is some way of progressing forward. https://wrwumicrosoft.com/ en- . .
us/research/publication/consensus-on-transaction-commit/
— Enough nodes are alive and connected for

the duration of the protocol.
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TWO-PHASE COMMIT (SUCCESS)
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TWO-PHASE COMMIT (SUCCESS)
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TWO-PHASE COMMIT (ABORT)
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TWO-PHASE COMMIT (ABORT)
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TWO-PHASE COMMIT (ABORT)
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TWO-PHASE COMMIT

Each node records the inbound/outbound messages
and outcome of each phase in a non-volatile storage
log.

On recovery, examine the log for 2PC messages:

— If local txn in prepared state, contact coordinator.

— Iflocal txn not in prepared, abort it.

— If local txn was committing and node is the coordinator,
send COMMIT message to nodes.
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TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?

What happens if the participant crashes?
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TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?

— Participants must decide what to do after a timeout
(this only applies if the participants know of all other
participants).

— System is not available during this time.

What happens if the participant crashes?
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TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?

— Participants must decide what to do after a timeout
(this only applies if the participants know of all other
participants).

— System is not available during this time.

What happens if the participant crashes?
— Coordinator assumes that it responded with an abort if it
has not sent an acknowledgement yet.

— Again, nodes use a timeout to determine whether a
participant is dead.




2PC OPTIMIZATIONS

Early Prepare Voting (Rare)

— If you send a query/request to a remote node that you
know will be the last one to execute in this txn, then that
node will also return their vote for the prepare phase with
the query result.

Early Ack After Prepare (Common)

— If all nodes vote to commit a txn, the coordinator can send
the client an acknowledgement that their txn was
successful before the commit phase finishes.
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PAXOS

Consensus protocol where a
coordinator proposes an outcome

e.g., commit or abort) and then the
participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has
provably minimal message delays in
the best case.
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The Part-Time Parliament

LESLIE LAMPORT
Digital Equipment Corporation

Recent archacological discoveries on the island of Paxos reveal that the parliament functioned de-
spite the peripatetic propensity of its part-time legislators. The legislators maintained consistent
copies of the parliamentary record, despite their frequent forays from the chamber and the forget-
fulness of their messengers. The Paxon parliament’s protocol provides a new way of implementing
the state-machine approach to the design of distributed systems.

Categories and Subject Descriptors: C2.4 [C icati Distributed
Systems—Network operating systems, D4.5 [O ting Systems]: Reliability—Ft l s
J1[A Data i

General Terms: Design, Reliability

Additional Key Words and Phrases: State machines, three-phase commit, voting

This submission was recently discovered behind a filing cabinet in the TOCS editorial
office. Despite its age, the editor-in-chief felt that it was worth publishing. Because the
author s currently doing field work in the Greek isles and cannot be reached, I was asked
to prepare it for publication.

The author appears to be an archeologist with only a passing interest in computer sci-
ence. This is unfortunate; even though the obscure ancient Paxon civilization he describes
is of little interest to most computer scientists, its legislative system is an excellent model
for how to implement a distributed computer system in an asynchronous environment.
Indeed, some of the refinements the Paxons made to their protocol appear to be unknown
in the systems literature.

The author does give a brief discussion of the Paxon Parliament’s relevance to dis-
tributed computing in Section 4. Computer scientists will probably want to read that
section first. Even before that, they might want to read the explanation of the algorithm
for computer scientists by Lampson [1996]. The algorithm is also described more formally
by De Prisco et al. [1997). I have added further comments on the relation between the
ancient protocols and more recent work at the end of Section 4.

Keith Marzullo
University of California, San Diego

Authors address: Systems Research Center, Digital Equipment Corporation, 130 Lytton Avenue,
Palo Alto, CA 94301.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
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Consensus on Transaction Commit

JIM GRAY and LESLIE LAMPORT
Microsoft Research

currency; D.4.5 [Oper,
Organization and Design—Diysyipypers systems

General Terms: Algorithms, Reliability

Additional Key Words and Phrages: Consensus, Paxos, two-phase commi

1. INTRODUCTION

Adistributed transaction consists of a number of operations, performed at mul-
tiple sites, terminated by a request to commit or abort the transaction. The
sites then use transaction commit protocol to decide whether the transac-
tion is committed or aborted. The transaction can be committeq only if all siteg
are willing to commit, it. Achieving this aH-or~nothing atomicity Property in a
distributed system is not trivia]. The Tequirements for transaction commit are
stated precisely in Section 2.

The classic transaction commit protoco] g Two-Phase Commit [Gray 1978],
described in Section 3. It uses asingle coordinator to reach agreement, The fail-
ure of that coordinator can cause the protocol to block, with no process knowing
the outcome, until the coordinator is Trepaired. In Section 4, we use the Paxos
consensus algorithm [Lamport 1998] to obtain a transaction commit protoco]
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MULTI-PAXOS

[f the system elects a single leader that oversees
proposing changes for some period, then it can skip

the Propose phase.
— Fall back to full Paxos whenever there is a failure.

The system periodically renews the leader (known
as a lease) using another Paxos round.

— Nodes must exchange log entries during leader election to
make sure that everyone is up-to-date.
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2PC VS. PAXOS VS. RAFT

Two-Phase Commit

— Blocks if coordinator fails after the prepare message is sent,
until coordinator recovers.

Paxos

— Non-blocking if a majority participants are alive, provided
there is a sufficiently long period without further failures.

Raft:

— Similar to Paxos but with fewer node types.
— Only nodes with most up-to-date log can become leaders.




CAP THEOREM

Proposed in the late 1990s that is impossible for a

distributed database to always be:
— Consistent

— Always Available

— Network Partition Tolerant

Whether a DBMS provides Consistency or
Availability during a Network partition.
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CONSISTENCY

If Primary says the txn
committed, then it should be
\immediately visible on replicas.
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PARTITION TOLERANCE

Choice #1: Halt the System

— Stop accepting updates in any partition that does not have
a majority of the nodes.

Choice #2: Allow Split, Reconcile Changes

— Allow each side of partition to keep accepting updates.

— Upon reconnection, perform reconciliation to determine
the "correct” version of any updated record

— Server-side: Last Update Wins

— Client-side: Vector Clocks



https://en.wikipedia.org/wiki/Vector_clock

PARTITION TOLERANCE

Choice #1: Halt the System

— Stop accepting updates in any partition that does not have
a majority of the nodes.

Choice #2: Allow Split, Reconcile Changes

— Allow each side of partition to keep accepting updates.

— Upon reconnection, perform reconciliation to determine
the "correct” version of any updated record

— Server-side: Last Update Wins

» — Client-side: Vector Clocks

Don't
Do This!
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PACELC THEOREM

Extension to CAP proposed in 2010 to include

consistency vs. latency trade-offs:
— Partition Tolerant

— Always Available

— Consistent

— Else, choose during normal operations
— Latency

— Consistency
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LATENCY VS. CONSISTENCY
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LATENCY VS. CONSISTENCY
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CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.

— Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols
to ensure correctness in a distributed DBMS.

More info (and humiliation):
— Kyle Kingsbury's Jepsen Project
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CONCLUSIO

Spanner: Google’s Globally-l)istributed Database
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multiple nodes is hard. Bad tl}'mg
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Abstract tency over higher availability, as long as they can survive
1 or 2 datacenter failures,

Spanner is Google's scalable, multi-version, globally- . . ) .
disteibuted. and synchronously.replicaey database. Ijs  Spanner's main focys i eing cross-datacentcr
o e 1 it dt gl s e e e DUt e e s s 3 gy g
o Cxtemlly-consistent distributed transyegigr This  Wme in designing ang implementing important databuse
Paper deseribes how Spanper Mructured, its feature ser,  features on 10p of our distributed-systems Infrastructure,
Even though man;

the rationale underlying various design decisions, and
novel time API thar Cxposcs clock uncertainty. This Ap[
and its implementation are critical 1o supporting exter-

that Bigtable can be difficult to usc for some kinds of ap-
nal consistency and 4 variely of powerful features; nop.  Plications: those that have cm_nplex. r_:\volwing schemas,
blacking reads in the past, lock-froe read-only transc. o those that \\:anl‘.\’lmng..un‘rmslcnq in the presence of
tions, and atomic schema changes. across all of Spanner.  Wide-area replication, (s, milar claims have been made
by other authors 137]) Many applications at Google
have chosen 10 use Me store [S] because of ity sem.
1 Introduction relational data modef and support for synchronous replj-
cation, despite jts relatively poor write throughput. As 5
Spanner is a scalable, elobally-distributed dacabase ge. comsequence, Spanner has evolyed from 5 Biglable-like
signed, buill, and deployed o Google. At the high.  versioned key o & temporal muli-version
o8t level of abstraction, it is 4 dytgfhyge that shards datg " schematized semi.relaciona)
X0s [21] state machines in data. tables; data js versioned, and eqch m s automari-
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cally reshards dagy across machines ag the amount of daty Spanncr supports general-purpose transactions, and pro-
Or the number of servers changes, g it automatically  vides a SQL-baseq query language.
migrates data across machines (even across datacenters) As a #loballydisiributed database, Spanner pravides
Lo balance load and in response 1o Tailures. Spanner is several Interesting features, First, the replication con-
designed to scale up to millions of machines acros hun- figurations tor data can be dynam; ally controlled ata
dreds of datacenters and trillions of database rows fine grain by applications. Applic.
Applications can use Spanner for high availabili " straing

even in the face of

2PC / Paxos / Raft are the mos.tb
to ensure correctness in a distri

ver.

More info (and humiliatlop :
— Kyle Kingsbury's Jepsen Project

how Far replicas are from each ather (10 control write Jy-
teney), and how many replicas are maimtained (to con-
tro] durability, availa) ity and read performance). Datg
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tween datacenters by the system 10 balance resource us-
ographic region, byt with relatively independent failure Aage across datacenters, Second, Spanner has two features
modes. Tha js, most applications will choose lower 1. that are diflicul; implement in a distributed database: it
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was in part built to address this failing. Some authors
have claimed that general two-phase commit is too ex-
pensive to support, because of the performance or avail-
ability problems that it brings [9, 10, 19]. We believe it
is better to have application programmers deal with per-
formance problems due to overuse of transactions as bot-
tlenecks arise, rather than always coding around the lack
of transactions. Running two-phase commit over Paxos

mitigates the availability problems.
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CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.

— Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols
to ensure correctness in a distributed DBMS.

More info (and humiliation):
— Kyle Kingsbury's Jepsen Project
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