
Database
Systems

15-445/645 SPRING 2025 PROF. JIGNESH PATEL

Distributed OLTP
Databases

15-445/645 (Spring 2025)

ADMINISTRIVIA

Project #4 is due Sunday April 20th @ 11:59pm
→ Recitation: Friday, April 11th in GHC 4303 from 3:00 - 4:00 PM

HW6 is due Sunday, April 20, 2025 @ 11:59pm

Final Exam is on Monday, April 28, 2025, from
05:30pm - 08:30pm
→ Early exam will not be offered. Do not make travel plans.

This course is recruiting TAs for the next semester

→ Apply at: https://www.ugrad.cs.cmu.edu/ta/F25/

2

https://www.ugrad.cs.cmu.edu/ta/F25/

15-445/645 (Spring 2025)

ADMINISTRIVIA

Class on Monday, April 21: Review Session

→ Come to class prepared with your questions. What material do
you want me to go over again?

Class on Wednesday, April 23: Guest Lecture

→ Real-world applications of Gen AI and Databases
→ Speaker: Sailesh Krishnamurthy, Google

3

15-445/645 (Spring 2025)

UPCOMING DATABASE TALKS
3

MariaDB (DB Seminar)
→ Monday, April 14 @ 4:30pm
→ MariaDB’s New Query Optimizer
→ Speaker: Michael Widenius
→ https://cmu.zoom.us/j/93441451665

Gel (DB Seminar)
→ Monday, April 21 @ 4:30pm
→ EdgeQL with Gel
→ Speaker: Michael Sullivan
→ https://cmu.zoom.us/j/93441451665

https://cmu.zoom.us/j/93441451665
https://cmu.zoom.us/j/93441451665

15-445/645 (Spring 2025)

LAST CLASS

System Architectures

→ Shared-Everything, Shared-Disk, Shared-Nothing

Partitioning/Sharding

→ Hash, Range, Round Robin

Transaction Coordination

→ Centralized vs. Decentralized

5

15-445/645 (Spring 2025)

OLTP VS. OLAP

On-line Transaction Processing (OLTP):

→ Short-lived read/write txns.
→ Small footprint.
→ Repetitive operations.

On-line Analytical Processing (OLAP):

→ Long-running, read-only queries.
→ Complex joins.
→ Exploratory queries.

6

15-445/645 (Spring 2025)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

Application
Server

Partitions

7

15-445/645 (Spring 2025)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

Application
Server

Partitions

8

15-445/645 (Spring 2025)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

Application
Server

Begin Request

PartitionsPrimary Node

9

15-445/645 (Spring 2025)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

Application
Server

Query

Partitions

Query

Query

Primary Node

10

15-445/645 (Spring 2025)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

Application
Server

PartitionsPrimary Node

11

15-445/645 (Spring 2025)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

Application
Server

Commit Request

PartitionsPrimary Node

12

15-445/645 (Spring 2025)

P3 P4

P1 P2

DECENTRALIZED COORDINATOR

Application
Server

Safe to commit?

Commit Request

PartitionsPrimary Node

13

15-445/645 (Spring 2025)

OBSERVATION

Recall that our goal is to have multiple physical
nodes appear as a single logical DBMS.

We have not discussed how to ensure that all nodes
agree to commit a txn and then to make sure it does
commit if the DBMS decides it should.
→ What happens if a node fails?
→ What happens if messages show up late?
→ What happens if the system does not wait for every node

to agree to commit?

14

15-445/645 (Spring 2025)

IMPORTANT ASSUMPTION

We will assume that all nodes in a distributed
DBMS are well-behaved and under the same
administrative domain.
→ If we tell a node to commit a txn, then it will commit the

txn (if there is not a failure).

If you do not trust the other nodes in a distributed
DBMS, then you need to use a Byzantine Fault
Tolerant protocol for txns (blockchain).
→ Blockchains are not good for high-throughput workloads.

15

https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/Byzantine_fault

15-445/645 (Spring 2025)

IMPORTANT ASSUMPTION

We will assume that all nodes in a distributed
DBMS are well-behaved and under the same
administrative domain.
→ If we tell a node to commit a txn, then it will commit the

txn (if there is not a failure).

If you do not trust the other nodes in a distributed
DBMS, then you need to use a Byzantine Fault
Tolerant protocol for txns (blockchain).
→ Blockchains are not good for high-throughput workloads.

16

Don't

Do This!

https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/Byzantine_fault

15-445/645 (Spring 2025)

TODAY'S AGENDA

Replication
Atomic Commit Protocols
Consistency Issues (CAP / PACELC)

17

15-445/645 (Spring 2025)

REPLICATION

The DBMS can replicate a database across
redundant nodes to increase availability.
→ Partitioned vs. Non-Partitioned
→ Shared-Nothing vs. Shared-Disk

Design Decisions:
→ Replica Configuration
→ Propagation Scheme
→ Propagation Timing
→ Update Method

18

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Approach #1: Primary-Replica

→ All updates go to a designated primary for each object.
→ The primary propagates updates to its replicas by shipping

logs.
→ Read-only txns may be allowed to access replicas.
→ If the primary goes down, then hold an election to select a

new primary.

Approach #2: Multi-Primary

→ Txns can update data objects at any replica.
→ Replicas must synchronize with each other using an atomic

commit protocol.

19

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

20

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Writes
Reads

21

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Writes
Reads

22

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Writes
Reads

Reads

23

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Multi-Primary

Node 1

Node 2

Writes
Reads

Reads

24

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Multi-Primary

Node 1

Node 2

Writes
Reads Writes

Reads

Writes
Reads

Reads

25

15-445/645 (Spring 2025)

REPLICA CONFIGURATIONS

Primary-Replica

Primary
Replicas

Multi-Primary

Node 1

Node 2

Writes
Reads Writes

Reads

Writes
Reads

Reads

26

15-445/645 (Spring 2025)

K-SAFETY

K-safety is a threshold for determining the fault
tolerance of the replicated database.

The value K represents the number of replicas per
data object that must always be available.

If the number of replicas goes below this threshold,
then the DBMS halts execution and takes itself
offline.

27

15-445/645 (Spring 2025)

PROPAGATION SCHEME

When a txn commits on a replicated database, the
DBMS decides whether it must wait for that txn's
changes to propagate to other nodes before it can
send the acknowledgement to application.

Propagation levels:
→ Synchronous (Strong Consistency)
→ Asynchronous (Eventual Consistency)

28

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

→ The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

15

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

→ The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

15

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

→ The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

15

Commit?

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

→ The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

15

Commit? Flush?

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

→ The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

15

Commit? Flush?

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

→ The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

15

Commit? Flush?

Flush!

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

→ The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

15

Commit? Flush?

AckAck

Flush!

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

→ The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

15

Commit? Flush?

AckAck

Flush!

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

→ The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

15

Commit? Flush?

AckAck

Flush!

Commit?

15-445/645 (Spring 2025)

PROPAGATION SCHEME

Approach #1: Synchronous

→ The primary sends updates to replicas and
then waits for them to acknowledge that
they fully applied (i.e., logged) the
changes.

Approach #2: Asynchronous

→ The primary immediately returns the
acknowledgement to the client without
waiting for replicas to apply the changes.

15

Commit? Flush?

AckAck

Flush!

Commit? Flush?

Ack

15-445/645 (Spring 2025)

PROPAGATION TIMING

Approach #1: Continuous

→ The DBMS sends log messages immediately as it generates
them.

→ Also need to send a commit/abort message.

Approach #2: On Commit

→ The DBMS only sends the log messages for a txn to the
replicas once the txn is commits.

→ Do not waste time sending log records for aborted txns.

39

15-445/645 (Spring 2025)

ACTIVE VS. PASSIVE

Approach #1: Active-Active

→ A txn executes at each replica independently.
→ Need to check at the end whether the txn ends up with the

same result at each replica.

Approach #2: Active-Passive

→ Each txn executes at a single location and propagates the
changes to the replica.

→ Can either do physical or logical replication.
→ Not the same as Primary-Replica vs. Multi-Primary

40

15-445/645 (Spring 2025)

OBSERVATION

If only one node decides whether a txn is allowed to
commit, then making that decision is easy.

Life is much harder when multiple nodes are
allowed to decide:
→ What if multiple nodes need to agree a txn is allowed to

commit?
→ What if a primary node goes down and the system needs to

choose a new primary?

18

15-445/645 (Spring 2025)

ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across nodes
in a distributed DBMS.
→ Commit Order = State Machine
→ It does not matter whether the database's contents are

replicated or partitioned.

Examples:

→ Two-Phase Commit (1970s)
→ Three-Phase Commit (1983)
→ Viewstamped Replication (1988)
→ Paxos (1989)
→ ZAB (2008?)
→ Raft (2013)

42

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://dl.acm.org/doi/10.1145/62546.62549
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Apache_ZooKeeper
https://en.wikipedia.org/wiki/Raft_(algorithm)

15-445/645 (Spring 2025)

ATOMIC COMMIT PROTOCOL

Coordinating the commit order of txns across nodes
in a distributed DBMS.
→ Commit Order = State Machine
→ It does not matter whether the database's contents are

replicated or partitioned.

Examples:

→ Two-Phase Commit (1970s)
→ Three-Phase Commit (1983)
→ Viewstamped Replication (1988)
→ Paxos (1989)
→ ZAB (2008?)
→ Raft (2013)

43

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://dl.acm.org/doi/10.1145/62546.62549
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Apache_ZooKeeper
https://en.wikipedia.org/wiki/Raft_(algorithm)

15-445/645 (Spring 2025)

ATOMIC COMMIT PROTOCOL

Resource Managers (RMs)

→ Execute on different nodes
→ Coordinate to decide fate of a txn.

Properties of the Commit Protocol

→ Stability: Once the fate is decided, it
cannot be changed.

→ Consistency: All RMs end up in the same
state.

Assumes Liveness:

→ There is some way of progressing forward.
→ Enough nodes are alive and connected for

the duration of the protocol.

44

https://www.microsoft.com/en-
us/research/publication/consensus-on-transaction-commit/

https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/
https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit/

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (SUCCESS)

Application
Server

Node 3

Node 2

45

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (SUCCESS)

Commit Request

Application
Server

Node 3

Node 2

46

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (SUCCESS)

Commit Request

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

47

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (SUCCESS)

Commit Request

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

48

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (SUCCESS)

Commit Request

Phase1: Prepare

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

49

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (SUCCESS)

Commit Request

OK

OK

Phase1: Prepare

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

50

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (SUCCESS)

Commit Request

OK

OK

Phase1: Prepare

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

Phase2: Commit

51

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (SUCCESS)

Commit Request

OK

OK

OK

Phase1: Prepare

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

Phase2: Commit

OK

52

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (SUCCESS)
P

a
r

t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

Success!

53

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (ABORT)
P

a
r

t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

54

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (ABORT)

Commit Request

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

55

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (ABORT)

Commit Request

Phase1: Prepare

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

56

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (ABORT)

Commit Request

ABORT!

Phase1: Prepare

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

57

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (ABORT)

ABORT!

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

Aborted

58

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (ABORT)

ABORT!

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

Phase2: Abort

Aborted

59

15-445/645 (Spring 2025)

Node 1

TWO-PHASE COMMIT (ABORT)

ABORT!

OK

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

Phase2: Abort

OK

Aborted

60

15-445/645 (Spring 2025)

TWO-PHASE COMMIT

Each node records the inbound/outbound messages
and outcome of each phase in a non-volatile storage
log.

On recovery, examine the log for 2PC messages:
→ If local txn in prepared state, contact coordinator.
→ If local txn not in prepared, abort it.
→ If local txn was committing and node is the coordinator,

send COMMIT message to nodes.

61

15-445/645 (Spring 2025)

TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?

→ Participants must decide what to do after a timeout
(this only applies if the participants know of all other

participants).
→ System is not available during this time.

What happens if the participant crashes?

→ Coordinator assumes that it responded with an abort if it
has not sent an acknowledgement yet.

→ Again, nodes use a timeout to determine whether a
participant is dead.

62

15-445/645 (Spring 2025)

TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?

→ Participants must decide what to do after a timeout
(this only applies if the participants know of all other

participants).
→ System is not available during this time.

What happens if the participant crashes?

→ Coordinator assumes that it responded with an abort if it
has not sent an acknowledgement yet.

→ Again, nodes use a timeout to determine whether a
participant is dead.

63

15-445/645 (Spring 2025)

TWO-PHASE COMMIT FAILURES

What happens if the coordinator crashes?

→ Participants must decide what to do after a timeout
(this only applies if the participants know of all other

participants).
→ System is not available during this time.

What happens if the participant crashes?

→ Coordinator assumes that it responded with an abort if it
has not sent an acknowledgement yet.

→ Again, nodes use a timeout to determine whether a
participant is dead.

64

15-445/645 (Spring 2025)

2PC OPTIMIZATIONS

Early Prepare Voting (Rare)

→ If you send a query/request to a remote node that you
know will be the last one to execute in this txn, then that
node will also return their vote for the prepare phase with
the query result.

Early Ack After Prepare (Common)

→ If all nodes vote to commit a txn, the coordinator can send
the client an acknowledgement that their txn was
successful before the commit phase finishes.

65

15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT
P

a
r

t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

66

15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

Commit Request

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

67

15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

Commit Request

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2Phase1: Prepare

68

15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

Commit Request

OK

OK

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2Phase1: Prepare

69

15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

OK

OK

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

Success!

Phase1: Prepare

70

15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

OK

OK

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

Success!

Phase1: Prepare

Phase2: Commit

71

15-445/645 (Spring 2025)

Node 1

EARLY ACKNOWLEDGEMENT

OK

OK

OK

P
a

r
t
i
c
i
p

a
n

t
P

a
r

t
i
c
i
p

a
n

t

C
o

o
r

d
i
n

a
t
o

r

Application
Server

Node 3

Node 2

OK

Success!

Phase1: Prepare

Phase2: Commit

72

15-445/645 (Spring 2025)

73

PAXOS

Consensus protocol where a
coordinator proposes an outcome
(e.g., commit or abort) and then the
participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has
provably minimal message delays in
the best case.

15-445/645 (Spring 2025)

74

PAXOS

Consensus protocol where a
coordinator proposes an outcome
(e.g., commit or abort) and then the
participants vote on whether that
outcome should succeed.

Does not block if a majority of
participants are available and has
provably minimal message delays in
the best case.

15-445/645 (Spring 2025)

Node 1

PAXOS

Application
Server

Node 4

Node 2

Node 3

75

15-445/645 (Spring 2025)

Node 1

PAXOS

Commit Request

Application
Server

Node 4

Node 2

Node 3

76

15-445/645 (Spring 2025)

Node 1

PAXOS

Commit Request

P
r

o
p

o
s
e

r

Application
Server

Node 4

Node 2

Node 3

77

15-445/645 (Spring 2025)

Node 1

PAXOS

Commit Request

A
c
c
e

p
t
o

r
A

c
c
e

p
t
o

r

P
r

o
p

o
s
e

r

Application
Server

Node 4

Node 2

A
c
c
e

p
t
o

r

Node 3

78

15-445/645 (Spring 2025)

Node 1

PAXOS

Commit Request

A
c
c
e

p
t
o

r
A

c
c
e

p
t
o

r

P
r

o
p

o
s
e

r

Application
Server

Node 4

Node 2

A
c
c
e

p
t
o

r

Node 3
Propose

79

15-445/645 (Spring 2025)

Node 1

PAXOS

Commit Request

A
c
c
e

p
t
o

r
A

c
c
e

p
t
o

r

P
r

o
p

o
s
e

r

Application
Server

Node 4

Node 2

A
c
c
e

p
t
o

r

Node 3
Propose

80

15-445/645 (Spring 2025)

Node 1

PAXOS

Commit Request

Agree

Agree

A
c
c
e

p
t
o

r
A

c
c
e

p
t
o

r

P
r

o
p

o
s
e

r

Application
Server

Node 4

Node 2

A
c
c
e

p
t
o

r

Node 3
Propose

81

15-445/645 (Spring 2025)

Node 1

PAXOS

Commit Request

Agree

Agree

A
c
c
e

p
t
o

r
A

c
c
e

p
t
o

r

P
r

o
p

o
s
e

r

Application
Server

Node 4

Node 2

A
c
c
e

p
t
o

r

Node 3
Propose

Commit

82

15-445/645 (Spring 2025)

Node 1

PAXOS

Commit Request

Agree

Agree

Accept

A
c
c
e

p
t
o

r
A

c
c
e

p
t
o

r

P
r

o
p

o
s
e

r

Application
Server

Node 4

Node 2

Accept

A
c
c
e

p
t
o

r

Node 3
Propose

Commit

83

15-445/645 (Spring 2025)

Node 1

PAXOS
A

c
c
e

p
t
o

r
A

c
c
e

p
t
o

r

P
r

o
p

o
s
e

r

Application
Server

Node 4

Node 2
Success!

A
c
c
e

p
t
o

r

Node 3

84

15-445/645 (Spring 2025)

Node 1

PAXOS
A

c
c
e

p
t
o

r
A

c
c
e

p
t
o

r

P
r

o
p

o
s
e

r

Application
Server

Node 4

Node 2
Success!

A
c
c
e

p
t
o

r

Node 3

85

15-445/645 (Spring 2025)

PAXOS

Proposer ProposerAcceptors

T
IM

E

86

15-445/645 (Spring 2025)

PAXOS

Proposer ProposerAcceptors

Propose(n)

T
IM

E

87

15-445/645 (Spring 2025)

PAXOS

Proposer ProposerAcceptors

Propose(n)

Agree(n)

T
IM

E

88

15-445/645 (Spring 2025)

PAXOS

Proposer ProposerAcceptors

Propose(n)

Agree(n)

Propose(n+1)

T
IM

E

89

15-445/645 (Spring 2025)

PAXOS

Proposer ProposerAcceptors

Propose(n)

Agree(n)

Propose(n+1)

Commit(n)

T
IM

E

90

15-445/645 (Spring 2025)

PAXOS

Proposer ProposerAcceptors

Propose(n)

Agree(n)

Propose(n+1)

Commit(n)

Reject(n,n+1)

T
IM

E

91

15-445/645 (Spring 2025)

PAXOS

Proposer ProposerAcceptors

Propose(n)

Agree(n)

Propose(n+1)

Commit(n)

Reject(n,n+1)

Agree(n+1)

T
IM

E

92

15-445/645 (Spring 2025)

PAXOS

Proposer ProposerAcceptors

Propose(n)

Agree(n)

Propose(n+1)

Commit(n)

Reject(n,n+1)

Commit(n+1)

Agree(n+1)

T
IM

E

93

15-445/645 (Spring 2025)

PAXOS

Proposer ProposerAcceptors

Propose(n)

Agree(n)

Propose(n+1)

Commit(n)

Reject(n,n+1)

Commit(n+1)

Agree(n+1)

Accept(n+1)

T
IM

E

94

15-445/645 (Spring 2025)

MULTI-PAXOS

If the system elects a single leader that oversees
proposing changes for some period, then it can skip
the Propose phase.
→ Fall back to full Paxos whenever there is a failure.

The system periodically renews the leader (known
as a lease) using another Paxos round.
→ Nodes must exchange log entries during leader election to

make sure that everyone is up-to-date.

95

15-445/645 (Spring 2025)

2PC VS. PAXOS VS. RAFT

Two-Phase Commit

→ Blocks if coordinator fails after the prepare message is sent,
until coordinator recovers.

Paxos

→ Non-blocking if a majority participants are alive, provided
there is a sufficiently long period without further failures.

Raft:

→ Similar to Paxos but with fewer node types.
→ Only nodes with most up-to-date log can become leaders.

96

15-445/645 (Spring 2025)

CAP THEOREM

Proposed in the late 1990s that is impossible for a
distributed database to always be:
→ Consistent
→ Always Available
→ Network Partition Tolerant

Whether a DBMS provides Consistency or
Availability during a Network partition.

97

15-445/645 (Spring 2025)

CONSISTENCY

Primary Replica
NETWORK

A=1
B=8

A=1
B=8

Application
Server

Application
Server

98

15-445/645 (Spring 2025)

CONSISTENCY

Primary Replica
NETWORK

Set A=2

A=1
B=8

A=1
B=8

Application
Server

Application
Server

99

15-445/645 (Spring 2025)

CONSISTENCY

Primary Replica
NETWORK

Set A=2

A=1
B=8
A=2 A=1

B=8

Application
Server

Application
Server

100

15-445/645 (Spring 2025)

CONSISTENCY

Primary Replica
NETWORK

Set A=2

A=1
B=8
A=2 A=1

B=8
A=2

Application
Server

Application
Server

101

15-445/645 (Spring 2025)

CONSISTENCY

Primary Replica
NETWORK

Set A=2

A=1
B=8
A=2 A=1

B=8
A=2

Application
Server

Application
ServerACK

102

15-445/645 (Spring 2025)

CONSISTENCY

Primary Replica
NETWORK

Set A=2

A=1
B=8
A=2

Read A

A=1
B=8
A=2

Application
Server

Application
ServerACK

103

15-445/645 (Spring 2025)

CONSISTENCY

Primary Replica
NETWORK

Set A=2

A=1
B=8
A=2

Read A

A=2

A=1
B=8
A=2

Application
Server

Application
ServerACK

104

15-445/645 (Spring 2025)

CONSISTENCY

Primary Replica
NETWORK

Set A=2

A=1
B=8
A=2

Read A

A=2

A=1
B=8
A=2

If Primary says the txn

committed, then it should be

immediately visible on replicas.

Application
Server

Application
ServerACK

105

15-445/645 (Spring 2025)

AVAILABILITY

Primary Replica
NETWORK

A=1
B=8

A=1
B=8

Application
Server

Application
Server

106

15-445/645 (Spring 2025)

AVAILABILITY

Primary Replica
NETWORK

A=1
B=8

A=1
B=8

Application
Server

Application
Server

107

15-445/645 (Spring 2025)

AVAILABILITY

Primary Replica
NETWORK

A=1
B=8

A=1
B=8

Application
Server

Application
Server

Read B

108

15-445/645 (Spring 2025)

AVAILABILITY

Primary Replica
NETWORK

A=1
B=8

A=1
B=8

Application
Server

Application
Server

Read B

B=8

109

15-445/645 (Spring 2025)

AVAILABILITY

Primary Replica
NETWORK

A=1
B=8

A=1
B=8

Application
Server

Application
Server

110

15-445/645 (Spring 2025)

AVAILABILITY

Primary Replica
NETWORK

A=1
B=8

A=1
B=8

Application
Server

Application
Server

Read A

111

15-445/645 (Spring 2025)

AVAILABILITY

Primary Replica
NETWORK

A=1
B=8

A=1
B=8

Application
Server

Application
Server

Read A

A=1

112

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Primary Replica
NETWORK

A=1
B=8

A=1
B=8

Application
Server

Application
Server

113

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Primary Replica

A=1
B=8

A=1
B=8

Application
Server

Application
Server

114

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Primary Replica

A=1
B=8

A=1
B=8

Application
Server

Application
Server

115

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Primary

A=1
B=8

A=1
B=8

Application
Server

Application
Server

Primary

116

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Primary

A=1
B=8

A=1
B=8

Application
Server

Application
Server

Primary

117

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Primary

Set A=2

A=1
B=8

Set A=3

A=1
B=8

Application
Server

Application
Server

Primary

118

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Primary

Set A=2

A=1
B=8
A=2

Set A=3

A=1
B=8
A=3

Application
Server

Application
Server

Primary

119

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Primary

Set A=2

A=1
B=8
A=2

Set A=3

ACK

A=1
B=8
A=3

Application
Server

Application
ServerACK

Primary

120

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Primary
NETWORK

Set A=2

A=1
B=8
A=2

Set A=3

ACK

A=1
B=8
A=3

Application
Server

Application
ServerACK

Primary

121

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Primary
NETWORK

Set A=2

A=1
B=8
A=2

Set A=3

ACK

A=1
B=8
A=3

Application
Server

Application
ServerACK

Primary

122

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Choice #1: Halt the System

→ Stop accepting updates in any partition that does not have
a majority of the nodes.

Choice #2: Allow Split, Reconcile Changes

→ Allow each side of partition to keep accepting updates.
→ Upon reconnection, perform reconciliation to determine

the "correct" version of any updated record
→ Server-side: Last Update Wins
→ Client-side: Vector Clocks

36

https://en.wikipedia.org/wiki/Vector_clock

15-445/645 (Spring 2025)

PARTITION TOLERANCE

Choice #1: Halt the System

→ Stop accepting updates in any partition that does not have
a majority of the nodes.

Choice #2: Allow Split, Reconcile Changes

→ Allow each side of partition to keep accepting updates.
→ Upon reconnection, perform reconciliation to determine

the "correct" version of any updated record
→ Server-side: Last Update Wins
→ Client-side: Vector Clocks

36

Don't

Do This!

https://en.wikipedia.org/wiki/Vector_clock

15-445/645 (Spring 2025)

PACELC THEOREM

Extension to CAP proposed in 2010 to include
consistency vs. latency trade-offs:
→ Partition Tolerant
→ Always Available
→ Consistent
→ Else, choose during normal operations
→ Latency
→ Consistency

125

https://en.wikipedia.org/wiki/PACELC_theorem

15-445/645 (Spring 2025)

LATENCY VS. CONSISTENCY

Primary
(us-east)

Replica
(eu-east)

A=1 A=1

Application
Server

126

Replica
(us-west)

A=1

15-445/645 (Spring 2025)

LATENCY VS. CONSISTENCY

Primary
(us-east)

Replica
(eu-east)

Set A=2

A=1 A=1

Application
Server

127

Replica
(us-west)

A=1

15-445/645 (Spring 2025)

LATENCY VS. CONSISTENCY

Primary
(us-east)

Replica
(eu-east)

Set A=2

A=1A=2 A=1

Application
Server

128

Replica
(us-west)

A=1

15-445/645 (Spring 2025)

LATENCY VS. CONSISTENCY

Primary
(us-east)

Replica
(eu-east)

Set A=2

A=1A=2 A=1A=2

Application
Server

129

Replica
(us-west)

A=1A=2

15-445/645 (Spring 2025)

LATENCY VS. CONSISTENCY

Primary
(us-east)

Replica
(eu-east)

A=1A=2 A=1A=2

Application
Server

130

Replica
(us-west)

A=1A=2
ACK

ACK

15-445/645 (Spring 2025)

LATENCY VS. CONSISTENCY

Primary
(us-east)

Replica
(eu-east)

A=1A=2 A=1A=2

Application
Server

131

Replica
(us-west)

A=1A=2
ACK

ACK

Trade-off between how long to

wait for acknowledgements and

the latency of the DBMS.

15-445/645 (Spring 2025)

LATENCY VS. CONSISTENCY

Primary
(us-east)

Replica
(eu-east)

A=1A=2 A=1A=2

Application
Server

132

Replica
(us-west)

A=1A=2
ACK

ACK

15-445/645 (Spring 2025)

LATENCY VS. CONSISTENCY

Primary
(us-east)

Replica
(eu-east)

A=1A=2 A=1A=2

Application
Server

133

Replica
(us-west)

A=1A=2
ACK

ACK

15-445/645 (Spring 2025)

LATENCY VS. CONSISTENCY

Primary
(us-east)

Replica
(eu-east)

A=1A=2 A=1A=2

Application
Server ACK

134

Replica
(us-west)

A=1A=2
ACK

ACK

15-445/645 (Spring 2025)

CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.
→ Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols
to ensure correctness in a distributed DBMS.

More info (and humiliation):
→ Kyle Kingsbury's Jepsen Project

135

https://aphyr.com/tags/jepsen

15-445/645 (Spring 2025)

CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.
→ Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols
to ensure correctness in a distributed DBMS.

More info (and humiliation):
→ Kyle Kingsbury's Jepsen Project

136

https://aphyr.com/tags/jepsen

15-445/645 (Spring 2025)

CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.
→ Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols
to ensure correctness in a distributed DBMS.

More info (and humiliation):
→ Kyle Kingsbury's Jepsen Project

137

https://aphyr.com/tags/jepsen

15-445/645 (Spring 2025)

CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.
→ Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols
to ensure correctness in a distributed DBMS.

More info (and humiliation):
→ Kyle Kingsbury's Jepsen Project

138

https://aphyr.com/tags/jepsen

15-445/645 (Spring 2025)

CONCLUSION

Maintaining transactional consistency across
multiple nodes is hard. Bad things will happen.
→ Don't let the "unwashed masses" go without txns!

2PC / Paxos / Raft are the most common protocols
to ensure correctness in a distributed DBMS.

More info (and humiliation):
→ Kyle Kingsbury's Jepsen Project

139

https://aphyr.com/tags/jepsen

15-445/645 (Spring 2025)

NEXT CLASS

Distributed OLAP Systems

140

