Carnegie Mellon Univ

Data base
Systems

Distributed OLAP
Databases

15-445/645 SPRING 2025)) PROF. JIGNESH PATEL

ADMINISTRIVIA

Project #4 is due Sunday April 20 @ 11:59pm
— Recitation: Friday, April 11% in GHC 4303 from 3:00 - 4:00 PM

HW 6 is due Sunday, April 20, 2025 @ 11:59pm
Final Exam is on Monday, April 28, 2025, from 5:30pm- 8:30pm.

— Early exam will not be offered. Do not make travel plans.
— Material: Lecture 12 — Lecture 24.
— You can use the full 3 hours, though the exam is meant to be done in ~2 hours.

This course is recruiting TAs for the next semester
— Apply at: https://www.ugrad.cs.cmu.edu/ta/F25/

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.ugrad.cs.cmu.edu/ta/F25/

ADMINISTRIVIA

My OH on Monday moved to 10:00 -11:00 am

Class on Monday, April 21: Review Session

— Come to class prepared with your questions. What material do
you want me to go over again?

Class on Wednesday, April 23: Guest Lecture
— Real-world applications of Gen Al and Databases
— Speaker: Sailesh Krishnamurthy, Google

$ZCMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

UPCOMING DATABASE TALKS

Gel (DB Seminar)
oel

— Monday, April 21 @ 4:30pm

— EdgeQL with Gel

— Speaker: Michael Sullivan

— https://cmu.zoom.us/j/93441451665

https://cmu.zoom.us/j/93441451665

BIFURCATED ENVIRONMENT

(OO O

OLTP Databases OLAP Database

$2CMU-DB

15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

Extract
ransform

=

oad

(OO O

OLTP Databases OLAP Database

$2CMU-DB

15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

‘) Informatica

@ \\\ Fivetran
‘ﬂtalend Qlik@
Extract
g Transform
Load

OLTP Databases

OLAP Database

BIFURCATED ENVIRONMENT

“ Informatica
‘\\\‘ Fivetran

~stalend Qlik@

Extract

%1 Extract
=0 Load

Transform

Hdbt /) arope OLAP Database

BIFURCATED ENVIRONMENT

(‘ Informatica V
‘\\\‘ Fivetran
‘ talend Qlik@

Extract

T
— Extract

= ioad

Transform
OLAP Database

OLTP Databases “ dbt 'f)?Airbyte

C;CMU -DB

£CMU-DB

15-445/645 (Spring 2025)

DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

STAR SCHEMA

PRODUCT_DIM CUSTOMER_DIM
CATEGORY_NAME ID

SRODUCT CODE SALES_FACT - Eggiﬂﬁga

PRODLCT DESC UL J1p.CODE

LOCATION_FK
CUSTOMER_FK

LOCATION_DIM TIME_DIM
COUNTRY PRICE YEAR
STATE_CODE / QUANTITY \ DAY_OF_YEAR
STATE_NAME MONTH_NUM
7IP_CODE MONTH_NAME
CITY DAY_OF _MONTH

£CMU-DB

15-445/645 (Spring 2025)

STAR SCHEMA

PRODUCT _DIM CUSTOMER_DIM
CATEGORY_NAME ID
CATEGORY_DESC FIRST_NAME
PRODUCT _CODE SALES_FACT LAST_NAME
PRODUCT _NAME EMATL
PRODUCT _DESC FRODLIC A ZIP_CODE

TIME_FK

LOCATION_FK

CUSTOMER_FK
LOCATION_DIM TIME_DIM
COUNTRY PRICE YEAR
STATE_CODE QUANTITY DAY_OF _YEAR
STATE_NAME MONTH_NUM
ZIP_CODE MONTH_NAME
CITY DAY_OF _MONTH

£CMU-DB

15-445/645 (Spring 2025)

STAR SCHEMA

PRODUCT_DIM CUSTOMER_DIM
CATEGORY_NAME ID

CATEGORY_DESC FIRST_NAME
PRODUCT_CODE SALES_FACT LAST_NAME

\

PRODUCT _NAME PRODUCT_FK EMAIL

PRODUCT _DESC ZIP_CODE
TIME_FK

LOCATION_FK
CUSTOMER_FK

LOCATION_DIM TIME_DIM
COUNTRY PRICE YEAR
STATE_CODE / QUANTITY \ DAY_OF_YEAR
STATE_NAME MONTH_NUM
7IP_CODE MONTH_NAME
CITY DAY_OF _MONTH

£CMU-DB

15-445/645 (Spring 2025)

SNOWFLAKE SCHEMA

CAT_LOOKUP

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

PRODUCT_DIM

CATEGORY_FK

PRODUCT _CODE
PRODUCT _NAME
PRODUCT_DESC

SALES_FACT

CUSTOMER_DIM

LOCATION_DIM

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

ID
FIRST_NAME
LAST_NAME
EMAIL

ZIP_CODE

COUNTRY
STATE_FK
ZIP_CODE Y~ PRICE
et QUANTITY
STATE._LOOKUP
STATE_ID
STATE_CODE —
STATE_NAME

& -DB

15-445/645 (Spring 2025)

TIME_DIM

YEAR

DAY_OF _YEAR
MONTH_FK
DAY_OF _MONTH

MONTH_LOOKUP

MONTH_NUM
MONTH_NAME
MONTH_SEASON

SNOWFLAKE SCHEMA

CAT_LOOKUP

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

PRODUCT_DIM

CATEGORY_FK
PRODUCT _CODE
PRODUCT _NAME
PRODUCT _DESC

LOCATION_DIM

SALES_FACT

CUSTOMER_DIM

COUNTRY
STATE_FK
ZIP_CODE
CITY
STATE_LOOKUP
STATE_ID
STATE_CODE —
STATE_NAME

£CMUDB

15-445/645 (Spring 2025)

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

ID
FIRST_NAME
LAST_NAME
EMAIL

ZIP_CODE

PRICE
QUANTITY

TIME_DIM

YEAR

DAY_OF _YEAR
MONTH_FK
DAY_OF _MONTH

MONTH_LOOKUP

MONTH_NUM
ey MONTH_NAME
MONTH_SEASON

STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

— Snowflake schemas take up less storage space.
— Denormalized data models may incur integrity and
consistency violations.

Issue #2: Query Complexity

— Snowflake schemas require more joins to get the data
needed for a query.

— Queries on star schemas will (usually) be faster.

£CMU-DB

15-445/645 (Spring 2025)

PROBLEM SETUP

Partitions

Application
Server

£CMU-DB

15-445/645 (Spring 2025)

PROBLEM SETUP

SELECT * FROM R JOIN S Partitions
ON R.id = S.id

Application
Server

£CMU-DB

15-445/645 (Spring 2025)

PROBLEM SETUP

SELECT * FROM R JOIN S Partitions
ON R.id = S.id

Application
Server

$ZCMU-DB

15-445/645 (Spring 2025)

PROBLEM SETUP

1 Partitions

SELECT * FROM R JOIN
ON R.id = S.1id

Application
Server

$ZCMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms
Cloud Systems

DISTRIBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS is

roughly the same as on a single-node DBMS.
— Query plan is a DAG of physical operators.

For each operator, the DBMS considers where

input is coming from and where to send output.
— Table Scans

— Joins

— Aggregations

— Sorting

£CMU-DB

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION

W orker Nodes
£2CMU-DB

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION

Persistent Data &

W orker Nodes
$2CMU-DB

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION

Intermediate

% Data
Persistent Data

»—
T e Y

]

Intermediate

Data

.]
Persistent Data I
I

I

W orker Nodes
£2CMU-DB

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION

Intermediate

% Data
Persistent Data

»—
T e Y

]

Intermediate

Data

.]
Persistent Data I
I

I

W orker Nodes
£2CMU-DB

15-445/645 (Spring 2025)

Shuffle Nodes
(Optional)

$ZCMU-DB

DISTRIBUTED QUERY EXECUTION

Intermediate
M &

Persistent Data &

Intermediat,
Data
Persistent Data
| » nunsas
=
W orker Nodes Shuffle Nodes
(Optional)

15-445/645 (Spring 2025)

Persistent Data &

$ZCMU-DB

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION

Intermediate —_—
» aasshs aasshs
0 0
Intermediat,
Data
Persistent Data
| » e e
0 0
—_—

W orker Nodes Shuffle Nodes W orker Nodes

(Optional)

$ZCMU-DB

DISTRIBUTED QUERY EXECUTION

Intermediate —_—

Persistent Data &

» —
] i ol ol —
— [[

Intermediat,
Data
Persistent Data
»]
I

W orker Nodes Shuffle Nodes W orker Nodes
(Optional)

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION

Shuf; fle Nodes W orker Nodes
(Optional)

555555555555555555555

DISTRIBUTED QUERY EXECUTION

Shuf; fle Nodes W orker Nodes
(Optional)

555555555555555555555

DISTRIBUTED QUERY EXECUTION

Int%diate/v — Scheduler /
Coordinator
Persistent Data & & &
] g ="
0 0 \

Intermediat,
Persistent Data
D » ="
=S
]
W orker Nodes Shuffle Nodes W orker Nodes
(Optional)

$ZCMU-DB

15-445/645 (Spring 2025)

DATA CATEGORIES

Persistent Data;

— The "source of record" for the database (e.g., tables).
— Modern systems assume that these data files are immutable
but can support updates by rewriting them.

Intermediate Data:

— Short-lived artifacts produced by query operators during
execution and then consumed by other operators.

— The amount of intermediate data that a query generates

has little to no correlation to amount of persistent data that
it reads or the execution time.

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

DISTRIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
the location of the database's data files. This affects
how nodes coordinate with each other and where
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
— Push Query to Data
— Pull Data to Query

PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data.

— Perform as much filtering and processing as possible where
data resides before transmitting over network.

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data.

— Perform as much filtering and processing as possible where
data resides before transmitting over network.

Approach #2: Pull Data to Query
— Bring the data to the node that is executing a query that
needs it for processing.

— This is necessary when there is no compute resources
available where database files are located.

Filtering and retrieving data usin

PDF ‘\ RSS

— Bring
needs it for processing.

— This is necessary when there is no compute resources
available where database files are located.

$ZCMU-DB

15-445/645 (Spring 2025)

PDF |
F | Rss

With Amazon s3

Query Blob Contents

Article * 07/20/2021 + 10 minutes to read ¢ 3 contributors 4 Feedback

The Query Blob contents API applies a simple Structured Query Language (SQL) statementon a blob's
contents and returns only the queried subset of the data. You can also call Query slob Contents toquery

the contents of a version or snapshot.

Request

The Query Blob contents request may be constructed as follows. HTTPS is recommended. Replace

myaccount with the name of your storage account:

POST Method Request URI HTTP Version
https: //myaccount. blob.core.windows. net/mycontainer/myblob?comp:query HTTP/1.0
HTTP/1.1

https: //myaccount _blob.core.windows. net/mycontainer/myblob?comp:query&snapshot:<DateTime>

https: //myaccount. blob.core.windows. net/mycontainer/myblob?comp:query&versionid:<DateTime>

Filter:
ittering and retrieving data usin

- Microsoft

g Amazon S3 Select

lery language
ge (SQL) statements to filter the cont:
ents of an

at you need. B
- By usin
ch reduces the costgz-:::j11 [a 20N 53 Select to filter this dat
atency to retri ata, you can
rieve this data

rA
Pache Parquet format. It also wo

only), and server-

rks with obj
. jects tha
termine how the tare

side encry,
pted objects. Y
. . YOU can .
records in the result are delimiteS:Eley the

z0n S3 Select s
c upports a
Select, s subset of S
ee SQL reference for Amazon?; SFOr more information
elect.

Dbject Cont
ent
e limits the amF;EST AP, the AWS Command Li
unt of data returned to 40 MBlne Interface
- To retrieve

Apute resources

od.

Application
Server

£CMU-DB

15-445/645 (Spring 2025)

PUSH QUERY TO DATA

]

P1»R.1id:1-100
P1S.id:1-100

1

P2»>R.i1d:101-200
P2»>S.id:101-200

PUSH QUERY TO DATA

SELECT * FROM R JOIN S
ON R.id = S.id

s

Application
Server

]

P1»R.1id:1-100
P1S.id:1-100

£CMU-DB

15-445/645 (Spring 2025)

1

P2»>R.i1d:101-200
P2»>S.id:101-200

PUSH QUERY TO DATA

SELECT * FROM R JOIN S

]

ON R.id = S.1id

ZZ
I
I
Application
Server

£CMU-DB

15-445/645 (Spring 2025)

P1»R.1id:1-100
P1S.id:1-100

IDs [101,200]

)

]

P2»>R.i1d:101-200
P2»>S.id:101-200

PUSH QUERY TO DATA

SELECT * FROM R JOIN S

]

ON R.id = S.1id

ZZ
I
I
Application
Server

£CMU-DB

15-445/645 (Spring 2025)

P1»R.1id:1-100
P1S.id:1-100

IDs [101,200]

! Result: R} S

)

]

P2»>R.i1d:101-200
P2»>S.id:101-200

Application
Server

£CMU-DB

15-445/645 (Spring 2025)

PULL DATA TO QUERY

P1->ID:1-100
Node

a4

Node

d:

P2>ID:101-200

Storage

PULL DATA TO QUERY

P1>ID:1-100
SELECT * FROM R JOIN S Node - ~
ON R.id = S.id #% Storage
P /
I
I
I
Application
Server (Node |
_ _J

P2>ID:101-200

£CMU-DB

15-445/645 (Spring 2025)

PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node r ~N

ON R.id = S.id ﬁ“—% Storage

RS
IDs [101,200]

A 4

Application
Server (Node |

d:

P2>ID:101-200

$ZCMU-DB

15-445/645 (Spring 2025)

PULL DATA TO QUERY

P1->ID:1-100

SELECT * FROM R JOIN S Node e ~
Storage

ON R.id = S.1id ﬁ_%

RS
{ IDs [101@
Application

Server Node

P2>ID:101-200

$ZCMU-DB

15-445/645 (Spring 2025)

PULL DATA TO QUERY

P1»>ID:1-100
SELECT * FROM R JOIN S Node
ON R.id = S.id ﬁ_% Page ABC
IZZ3K { RIS
ZZZ IDs [101,200] Page XYZ
Application |

Server

$ZCMU-DB

15-445/645 (Spring 2025)

7~

Node

d:

P2>ID:101-200

r

Storage

PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node r ~N

ON R.id = S.id ﬁ“—% Storage

A

RIS
IDs [101,200] | Result: R} S

A 4

Application
Server (Node |

d:

P2>ID:101-200

$ZCMU-DB

15-445/645 (Spring 2025)

OBSERVATION

The data that a node receives from remote sources

are cached in the buffer pool.
— This allows the DBMS to support intermediate results that

are large than the amount of memory available.
— Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs are
designed to assume that nodes do not fail during

query execution.
— If one node fails during query execution, then the whole
query fails.

The DBMS could take a snapshot of the

intermediate results for a query during execution to
allow it to recover if nodes fail.

QUERY FAULT TOLERANCE

a Y

SELECT * FROM R JOIN S Node r ~

ON R.id = S.id ﬁ“—% Storage

Application
Server Node

a4

£CMU-DB

15-445/645 (Spring 2025)

QUERY FAULT TOLERANCE

a Y

SELECT * FROM R JOIN S Node - ~
ON R.id = S.id #% Storage
P /

I
I
I

Application

Server (Node |

a4

£CMU-DB

15-445/645 (Spring 2025)

QUERY FAULT TOLERANCE

a Y

SELECT * FROM R JOIN S Node r ~

ON R.id = S.id ﬁ_% Storage
RMA

AppI|cat|on
Server (Node)

a4

£CMU-DB

15-445/645 (Spring 2025)

QUERY FAULT TOLERANCE

a Y

SELECT * FROM R JOIN S Node r ~

ON R.id = S.1id ﬁ_% Storage

IZZZZ-
R MA Result: R} S
AppI|cat|on ~
Server (Node)

a4

$ZCMU-DB

15-445/645 (Spring 2025)

QUERY FAULT TOLERANCE

a Y

SELECT * FROM R JOIN S Node - ~
ON R.id = S.id ﬁ“‘% Storage
P /

I
I
I

Application

Server

$ZCMU-DB

15-445/645 (Spring 2025)

QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S
ON R.id = S.1id

~

2

Application
Server

$ZCMU-DB

15-445/645 (Spring 2025)

Node

a4

"\

r

Result: R S

Storage

£CMU-DB

15-445/645 (Spring 2025)

QUERY PLANNING

All the optimizations that we talked about before

are still applicable in a distributed environment.
— Predicate Pushdown

— Projection Pushdown

— Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

£CMU-DB

15-445/645 (Spring 2025)

QUERY PLAN FRAGMENTS

Approach #1: Physical Operators

— Generate a single query plan and then break it up into
partition-specific fragments.
— Most systems implement this approach.

Approach #2: SQL

— Rewrite original query into partition-specific queries.

— Allows for local optimization at each node.

— SingleStore + Vitess are the only systems we know that use
this approach.

https://www.singlestore.com/
https://vitess.io/

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
ON R.id = S.id

id:1-100 id:101-200 id:201-300

£CMU-DB

15-445/645 (Spring 2025)

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
ON R.id = S.1id

:

Ill

b

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 101 AND 200

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 201 AND 300

id:1-100

£CMU-DB

15-445/645 (Spring 2025)

id:101-200

id:201-300

Union the output of
each join to produce

final re‘il';\skom R JOIN S
ON~\id = S.id

:

FRAGMENTS

b

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 101 AND 200

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 201 AND 300

id:1-100

£CMU-DB

15-445/645 (Spring 2025)

id:101-200

id:201-300

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single

node and then perform the join.

— You lose the parallelism of a distributed DBMS.
— Costly data transfer over the network.

£CMU-DB

15-445/645 (Spring 2025)

DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we discussed

earlier in the semester.

— Need to produce the correct answer as if all the data is
located in a single node system.

£CMU-DB

15-445/645 (Spring 2025)

SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

id:1-100

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

Replicated

SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key

g

id:1-100

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

Replicated

Partition Key

SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

—~

g

id:1-100

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

Replicated

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key

SCENARIO #1

SELECT * FROM R JOIN S
ON R.id = S.1id

—~

g

id:1-100

$ZCMU-DB

15-445/645 (Spring 2025)

e vos I

id:101-200

Replicated

SCENARIO #2

Both data sets are partitioned on the
join attribute. Each node performs the
join on local data and then sends to a
coordinator node for coalescing.

id:1-100

id:1-100

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

SCENARIO #2
Both data sets are partitioned on the
join attribute. Each node performs the SELECT » EROM R JOIN <
join on local data and then sends to a ONR.id = S.id

coordinator node for coalescing.

—~

id:1-100 id:101-200

id:101-200

id:1-100

$ZCMU-DB

15-445/645 (Spring 2025)

SCENARIO #2
Both data sets are partitioned on the
join attribute. Each node performs the SELECT » EROM R JOIN <
join on local data and then sends to a ONR.id = S.id

coordinator node for coalescing.

id:1-100 id:101-200

id:101-200

id:1-100

$ZCMU-DB

15-445/645 (Spring 2025)

SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

£CMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

£CMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

£CMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100

SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one 01: the data sets is SELECT * FROM R JOIN S
small, then the DBMS "broadcasts ON R.id = S.id

that data to all nodes.

e~ =

P2:RIXS

id:1-100 id:101-200

val:1-50 val:51-100

$ZCMU-DB

15-445/645 (Spring 2025)

SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

name: A-M

val:1-50

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

name:N-Z

val:51-100

SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

name: A-M

val:1-50

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

name:N-Z

val:51-100

SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

id:1-100

name: A-M

val:1-50

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

name:N-Z

val:51-100

SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

id:1-100 R{id}

name: A-M

val:1-50

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100

SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

id:1-100

id:1-100

name: A-M

L
L.

val:1-50

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100

SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

id:1-100
id:1-100
name: A-M
val:1-50

$ZCMU-DB

15-445/645 (Spring 2025)

SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200

name:N-Z

val:51-100

SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

SELECT * FROM R JOIN S
ON R.id = S.1id

id:1-100 R{id} R{id}
id:1-100 S{id}
—-———
name: A-M | R{name} |
e
val:1-50

$ZCMU-DB

15-445/645 (Spring 2025)

id:101-200

id:101-200

name:N-Z

val:51-100

SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions SELECT * FROM R JOIN S
the data on-the-fly across nodes. ON R.id = S.id

— The repartitioned data copy is generally
»

deleted when the query is done. P1:
P2: RIS

id:1-100 id:101-200
id:1-100 id:101-200
name: A-M name:N-Z

val:1-50 val:51-100

$ZCMU-DB

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [E EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

$ZCMU-DB

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [E EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

$ZCMU-DB

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [E EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

$ZCMU-DB

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [E EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

F-small = Fact ¥ Dim

semi

$ZCMU-DB

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [E EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Factsi Dim

semi —

[T (o zip = 15213 Dim)

F-small = Fact ¥ Dim

semi

$ZCMU-DB

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [E EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Result =1 (Dim FaCtsmall)

price

$ZCMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

OBSERVATION

Direct communication between compute nodes
means the DBMS knows which nodes will
participate in query execution ahead of time.

But data skew can cause imbalances...

A better approach is to dynamically adjust compute
resources on the fly as a query executes.

SHUFFLE PHASE

Redistribute of intermediate data APACHE <’\Z
across nodes between query plan gion?grlj Spqr
pipelines.

— Can repartition / rebalance data based on
observed data characteristics.

Some DBMSs support standalone
. APACHE
fault-tolerant shuffle services. Ce eleborn

— Example: You can replace Spark's built-in
in-memory shuffle implementation or

replace it with a separate service. ov Apache Uniffle

£CMU-DB

15-445/645 (Spring 2025)

SHUFFLE PHASE

i—
i—

Els

Shared-Disk
£2CMU-DB

15-445/645 (Spring 2025)

SHUFFLE PHASE

i—
i—

Els

Shared-Disk
£2CMU-DB

15-445/645 (Spring 2025)

SHUFFLE PHASE

Shared-Disk

$ZCMU-DB

15-445/645 (Spring 2025)

SHUFFLE PHASE

Shared-Disk

$ZCMU-DB

15-445/645 (Spring 2025)

SHUFFLE PHASE

@ @ Stagen+1

Shared-Disk
£2CMU-DB

15-445/645 (Spring 2025)

SHUFFLE PHASE

@ @ Stagem.]

Shared-Disk
£2CMU-DB

15-445/645 (Spring 2025)

SHUFFLE PHASE

Stage n+1

Shared-Disk
£2CMU-DB

15-445/645 (Spring 2025)

SHUFFLE PHASE

Stage n+1

Shared-Disk
£2CMU-DB

15-445/645 (Spring 2025)

SHUFFLE PHASE

EXCHANGE OPERATOR
ExchangeT

Ype #1 - Gather
— Combine the results

from multiple workers
into a single output s

tream.

Exchange Type #2 - D;

— Split a single input streap ; T
output streams,

Exchange Type #3 - Repartition

— Shuffle multiple inpyt Streams acrogg

multiple output streams,

— Some DBMS; always perform this step after

€.g., Dremel/ BigQuery),
................................ :%
$2CMU-DB

Shared-Disk
SCMU-DB

15-445/645 (Spring 2025)

103

CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines

between shared-nothing and shared-disk.

— Example: You can do simple filtering on Amazon S3 before
copying data to compute nodes.

£CMU-DB

15-445/645 (Spring 2025)

104

CLOUD SYSTEMS

Approach #1: Managed DBMSs

— No significant modification to the DBMS to be "aware"
that it is running in a cloud environment.
— Examples: Most vendors

Approach #2: Cloud-Native DBMS
— System designed explicitly to run in a cloud environment.

— Usually based on a shared-disk architecture.
— Examples: Snowflake, Google BigQuery

£CMU-DB

15-445/645 (Spring 2025)

105

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

3 @

Application

Server
£CMU-DB

15-445/645 (Spring 2025)

106

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

- v
[z - ode

[z < @
G

Application
Server

£CMU-DB

15-445/645 (Spring 2025)

107

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

3 @

~

| Application
» Server

"CMU -DB

55555 /645 (Spring 2025)

108

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Node @ @

| Application
» Server

C;CMU -DB

55555 /645 (Spring 2025)

109

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage
o [T EJ Q
o af
ZZlK
Application
Server

£2CMU-DB \ /

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage
T Q Q
2 < #E} . -
ZZE
Application
Server

£2CMU-DB \

15-445/645 (Spring 2025)

110

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage

ﬁ E
| Application

» Server
£CMU-DB _

15-445/645 (Spring 2025)

111

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage
Buffer Pool
Page Table a Q
N
og ’
| Application

» Server
£CMU-DB _

15-445/645 (Spring 2025)

112

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage
o’
el Q Q
ZZ3
73K
® 7K
| Application
Server
£2CMU-DB ' \

15-445/645 (Spring 2025)

113

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage

ﬁﬁ

| Application g
» Server

"CMU -DB \

55555 /645 (Spring 2025)

B

114

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage
T EJ Q
o af
ZZlK
Application
Server

£2CMU-DB \

15-445/645 (Spring 2025)

115

116

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage

»| Node a Q

98—

Application —[_llz)%e;fglﬂ
Server

£2CMU-DB C /

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

W olanetscale

§ CockroachDB

[1/ NEON

amazon -
ol 7

Y fauna Iz

5 e Application
2 SQLAzure Server
$2CMU-DB

15-445/645 (Spring 2025)

Storage

Buffer Pool
Page Table

¢ y

117

118

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

£CMU-DB

15-445/645 (Spring 2025)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Node

a4

£CMU-DB \

Storage

 aVaVlaVlaVlal

CA AT A drd

@

15-445/645 (Spring 2025)

119

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

CREATE TABLE foo (...);

|

Node

a4

£CMU-DB \

Storage

 aVaVlaVlaVlal

CA AT A drd

@

15-445/645 (Spring 2025)

120

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

£CMU-DB

15-445/645 (Spring 2025)

CREATE TABLE foo (...);

INSERT INTO foo VALUES (...);

!

Node

a4

7

.

Storage

SIS

 aVaVlaVlaVlal
" A~ A~ A A 4

@

121

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

£CMU-DB

15-445/645 (Spring 2025)

CREATE TABLE foo (...);

INSERT INTO foo VALUES (...);

!

Node

a4

*
e®

us®

Storage

 aVaVlaVlaVlal
" A~ A~ A A 4

(((. PP T

1=EE

122

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

£CMU-DB

15-445/645 (Spring 2025)

CREATE TABLE foo (...);

INSERT INTO foo VALUES (...);

!

Node

a4

*
e®

us®

7

.

Stoiage

 aVaVlaVlaVlal
" A~ A~ A A 4

(((. PP T

123

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

SELECT * FROM foo

l

Node

a4

*
®

us®

£CMU-DB \

Stoiage

 aVaVlaVlaVlal
" A~ A~ A A 4

(((. PP T

15-445/645 (Spring 2025)

124

125

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into

proprietary internal formats. %

SELECT * FROM foo

& Data Lake

i B

£CMU-DB J

15-445/645 (Spring 2025)

126

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and

SELECT * FROM foo

unstructured data without having to l
define a schema or ingest the data into
: . Node
proprietary internal formats. %
& Data Lake)

i B

£CMU-DB J

15-445/645 (Spring 2025)

127

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and

SELECT * FROM foo

unstructured data without having to l
define a schema or ingest the data into
roprietary internal formats = Node
prop y ’ E\ E_ #%
Q===
& Data Lake)

i B

£CMU-DB J

15-445/645 (Spring 2025)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into

SELECT * FROM foo

proprietary internal formats.

@

= DR ﬁ_%

128

£CMU-DB

& Data Lake

i B

15-445/645 (Spring 2025)

129

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and

SELECT * FROM foo

unstructured data without having to l
define a schema or ingest the data into
. . T = Node
proprietary internal formats. ¢o| & |,
Q|== ﬁ-&}
4 A

£CMU-DB _ J

15-445/645 (Spring 2025)

130

DATA LAKES

Repository for storing large amounts

of structured, semi-structured, and SELECT * FROM foo

unstructured data without having to l
define a schema or ingest the data into . S
. . T = Node
proprietary internal formats. =] .
¢lo==
) ﬂ %

amazon Google r D
% trino . REDSHIFT Big Query %

@ databricks %‘°:<SﬂOWf|Oke presto ":S;' =-HIVE

$2CMU-DB \ J

15-445/645 (Spring 2025)

OLAP DBMS COMPONENTS

One recent trend of the last decade is the breakout
of OLAP DBMS components into standalone

services and libraries:

— System Catalogs

— Intermediate Representation
— Query Optimizers

— File Format / Access Libraries
— Execution Engines / Fabrics

Lots of engineering challenges to make these
components interoperable + performant.

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

SYSTEM CATALOGS

A DBMS tracks a database's schema (table, columns)

and data files in its catalog.

— [f the DBMS is on the data ingestion path, then it can
maintain the catalog incrementally.

— If an external process adds data files, then it also needs to
update the catalog so that the DBMS is aware of them.

Notable implementations:
— HCatalog

— Google Data Catalog

— Amazon Glue Data Catalog
— Databricks Unity

— Apache Iceberg

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/

SYSTEM C/AEnhaa

A DBMS tracks a database' ERSHVBEIEINIeS paid $1B for 5

and data files in its catalog. Person startup (Tabular)
— [f the DBMS is on the data i

maintain the catalog incremg(
— [f an external process adds d
update the catalog so that t

Notable implementations
— HCatalog
— Google Data Catalog |

— Amazon Glue Data Catalo gl e L e
— Databricks Unity
— Apache Iceberg

Pany behind the open source

$ZCMU-DB

15-445/645 (Spring 2025)

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/

134

DATA FILE FORMATS

Most DBMSs use a proprietary on-disk binary file

format for their databases.
— Think of the BusTub page types...

The only way to share data between systems is to

convert data into a common text-based format
— Examples: CSV, JSON, XML

There are new open-source binary file formats that
make it easier to access data across systems.

£CMU-DB

15-445/645 (Spring 2025)

https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

DATA FILE FORMATS

Apache Parquet

— Compressed columnar storage from
Cloudera/Twitter

Apache ORC

— Compressed columnar storage from
Apache Hive.
Apache CarbonData

— Compressed columnar storage with
indexes from Huawei.

$ZCMU-DB

15-445/645 (Spring 2025)

Apache Iceberg

— Flexible data format that supports
schema evolution from Netflix.

HDF5

— Multi-dimensional arrays for
scientific workloads.
Apache Arrow

— In-memory compressed columnar
storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

DATA FILE F

Xinyu Zeng Yulong Huj Jiahong Shen
Tsinghua University Tsinghua University Tsinghua University
zeng-xy2] @mails.tsinghua e dy,cn huiyl22@mails s, ghua.edu.cn shen-jh20@mails tsin ghua.edu.cn
Andrew Paylo Wes McKinney Huanchen Zhang*
Camnegie Mellon University Voltron Data Tsinghua University
t Pavlo@cs.cmu.edy wes@voltrondata,com huanchen@tsinghua edy,cn
he Parque ABSTRACT 105], lmpah[lﬁ].Spark[ZO.llS].andPrcslo[m. 98], to respond to
p a C Columnar storage s 4 core component of a modern datg analytics the petabytes of data senerated per day and he Srowing demand for
a e ro m a2, ARhough many databsse manacss Systems DBAS)) arge-sele data analpyy o faciltate data sharing across the vy
m n ar St O r g have proprictary sto rage formats, most proyide extensive support 1o ous Hadoop-based query “ngines, vendors propaed open-source
e C O u oben-source storage formats such g Parquet and ORC to facilitate columnar storage formats (18,17, 18, 76], represented by Parquet
‘ O m re S S cross-platform data sharing, Byt yege formats were developed over and ORC, that have become the e facto standard for data storage in
H a decade ago, in the early 20105, for the Hadoop ecosystem, Since today's data warehouses and data lakes [14, 15, 19, 2, 59, 38, 61].
. then, both the hardware qug workload landscapes hae cf anged. These formats, however, were developed more than g degagp ago.
I Wltte r I this paper, we revigit he most widely adopted open-sppee The hardware landscape has changed since then: persistent stor-
10 u e r a columnar storage formar (Parquetand ORC) with deep dive into 28¢ performance has improyed by orders of magnitu e, achieving
their internals. e designed a benchmark 1o stress-test the formats' gigabytes per second [48]. Meanwhile, the rige of data lakes means
Performance and gpace efficiency under differens workload config- ghore column-oriented files reside i cheap cloud storage (e g, aws
urations. From our comprehensive evaluation of Parquet and ORe. S307]. Azue Blob Storage [24], Google Cloud Storage [33]), which
We identify design decisigns advantageous with modory hardware exhibits both high bandwidth and highlatency. O the software side,
e and real-world data distributions, These include using dictionary anumber ofnewhghl\wighlcompression schemes [57, 65, g7, 116],
ac encoding by defayy, favoring decoding speed oyer compression as well as indexing and filtering techniques (77, 6, 101, 115), have
e ro m ratio for integer encoding algorithums, making block compression been proposed in academia, while €Xisting open columnar format
ar St O r ag CPtional, and embedding finer-grained auxiliary data structyres, are based on DBMS methods from the 20005 [s5).
d C O umn We also point out the inefliciencies in the formp, designs when Prior studies on storage formats focus on measuring the end-
O m re S S e handling common machine learning workloads ang using GPUs to-end performance of Hadoop-based query €Ngines 72, 80). They
_> for decoding, Our analysis identifieq important considerations tha il to analyse the design decisions and their trade-offs. Moreover,
. may guide future formats to better fi modem technology trends. they use synthetic workloads that do not consider skeeq data
distributions observed in the real world [109). Such data sets are
h e H 1Ve o PVLDB Refercnce Formay, less suitable for storage foryog benchmarking,

P aC Xinyu Zeng, Yulong Huj, Jiahong Shen, Andrey Pavlo, Wes McKinney, The goal of this Paperis to analyze common columnar fije for-
Huanchen Zhang. An Empirica] Evaluation of Columpar Storage Formats, mats and to identify desj 80 considerations 1o Provide insights for
PVLDB, 17(2). 145 . 161,2023, de\'elcping hext-generation column-oriented storage formats, we
doii: 10. 1477813626292 3626 208 created a benchmark With predefined workloads whose configura-

PVLDB Artifact Availability
The source code, data, and/or otherartifacts have been made available at
BpS:github com) xip OfCal

Apache CarbonData

— Compressed columnar storage with

1 INTRODUCTION

. Columnar storage ha been Widely adopted for daty analytics he- their designs are friendly to GPUS e detail the lessons learneq in
cause of jts advantages, such a5 irrelevant attribyge skipping, effi- Section 6 and summarize our main findings beloy,
H uawel . cient data compression, and vectorized query processing 55, 59, 68]. First, there is no clear winner between Parquet and Ope in
- e S fro m In the early 2010 Organizations developed data Processing engines format efficiency. Parquet has a slight file size advantage because of
1n eX for the open-source big data ecosystem (12], including Hive [13, its aggressive dictionary encoding Parquet also hag faster column

_
s work s iensed wnder the Creatie Sommons BY-NC-ND €0 nternation]
License. Visit b e, e beesommens ceg e nses by g g o view a copy of

this license. For any usebeyond those coverd by license, dbtain permission by of its zone aps (atype of sparse in,
gt BIo@dors. Copyright s bty s he owner'suthork). Pubbcation g Second, most columns iy Fealworld data sets have 3 gngy num-
et the VDR Edonmerg ber of distinet values (or oy "NDV ratios” defined jn Section 4.1),

Procecdings of the vLpp Endowment, Val. 17, No. 2 1gy 2150-5097.
dok10.14775 %2629 3626 205

_
“Huanchen Zhang s 114 “lilisted with Shanghay x 71 Institute

£2CMU-DB

15-445/645 (Spring 2025)

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

EXECUTION ENGINES

Standalone libraries for executing vectorized query

operators on columnar data.
— Input is a DAG of physical operators.
— Require external scheduling and orchestration.

Notable implementations:
— Velox

— DataFusion
— Intel OAP

£CMU-DB

15-445/645 (Spring 2025)

https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/

138

CONCLUSION

The cloud has made the distributed OLAP DBMS
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems...

£CMU-DB

15-445/645 (Spring 2025)

139

NEXT CLASS

Final Review

£CMU-DB

15-445/645 (Spring 2025)

