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ADMINISTRIVIA

Project #4 is due Sunday April 20 @ 11:59pm
— Recitation: Friday, April 11% in GHC 4303 from 3:00 - 4:00 PM

HW 6 is due Sunday, April 20, 2025 @ 11:59pm
Final Exam is on Monday, April 28, 2025, from 5:30pm- 8:30pm.

— Early exam will not be offered. Do not make travel plans.
— Material: Lecture 12 — Lecture 24.
— You can use the full 3 hours, though the exam is meant to be done in ~2 hours.

This course is recruiting TAs for the next semester
— Apply at: https://www.ugrad.cs.cmu.edu/ta/F25/
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https://www.ugrad.cs.cmu.edu/ta/F25/

ADMINISTRIVIA

My OH on Monday moved to 10:00 -11:00 am

Class on Monday, April 21: Review Session

— Come to class prepared with your questions. What material do
you want me to go over again?

Class on Wednesday, April 23: Guest Lecture
— Real-world applications of Gen Al and Databases
— Speaker: Sailesh Krishnamurthy, Google

$ZCMU-DB

15-445/645 (Spring 2025)



£CMU-DB

15-445/645 (Spring 2025)

UPCOMING DATABASE TALKS

Gel (DB Seminar)
oel

— Monday, April 21 @ 4:30pm

— EdgeQL with Gel

— Speaker: Michael Sullivan

— https://cmu.zoom.us/j/93441451665



https://cmu.zoom.us/j/93441451665

BIFURCATED ENVIRONMENT
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DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema




STAR SCHEMA

PRODUCT_DIM CUSTOMER_DIM
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STAR SCHEMA

PRODUCT _DIM CUSTOMER_DIM
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STAR SCHEMA
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SNOWFLAKE SCHEMA
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SNOWFLAKE SCHEMA
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STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

— Snowflake schemas take up less storage space.
— Denormalized data models may incur integrity and
consistency violations.

Issue #2: Query Complexity

— Snowflake schemas require more joins to get the data
needed for a query.

— Queries on star schemas will (usually) be faster.

£CMU-DB

15-445/645 (Spring 2025)



PROBLEM SETUP

Partitions

Application
Server
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PROBLEM SETUP

SELECT * FROM R JOIN S Partitions
ON R.id = S.id

Application
Server
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PROBLEM SETUP

SELECT * FROM R JOIN S Partitions
ON R.id = S.id

Application
Server
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PROBLEM SETUP

1 Partitions

SELECT * FROM R JOIN
ON R.id = S.1id

Application
Server
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TODAY'S AGENDA

Execution Models

Query Planning

Distributed Join Algorithms
Cloud Systems




DISTRIBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS is

roughly the same as on a single-node DBMS.
— Query plan is a DAG of physical operators.

For each operator, the DBMS considers where

input is coming from and where to send output.
— Table Scans

— Joins

— Aggregations

— Sorting
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DISTRIBUTED QUERY EXECUTION

W orker Nodes
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DISTRIBUTED QUERY EXECUTION

Persistent Data &

W orker Nodes
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DISTRIBUTED QUERY EXECUTION
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Shuffle Nodes
(Optional)
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DISTRIBUTED QUERY EXECUTION
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DISTRIBUTED QUERY EXECUTION
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DISTRIBUTED QUERY EXECUTION
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DISTRIBUTED QUERY EXECUTION
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DISTRIBUTED QUERY EXECUTION
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DISTRIBUTED QUERY EXECUTION
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DATA CATEGORIES

Persistent Data;

— The "source of record" for the database (e.g., tables).
— Modern systems assume that these data files are immutable
but can support updates by rewriting them.

Intermediate Data:

— Short-lived artifacts produced by query operators during
execution and then consumed by other operators.

— The amount of intermediate data that a query generates

has little to no correlation to amount of persistent data that
it reads or the execution time.
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DISTRIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
the location of the database's data files. This affects
how nodes coordinate with each other and where
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
— Push Query to Data
— Pull Data to Query




PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data.

— Perform as much filtering and processing as possible where
data resides before transmitting over network.
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PUSH VS. PULL

Approach #1: Push Query to Data

— Send the query (or a portion of it) to the node that
contains the data.

— Perform as much filtering and processing as possible where
data resides before transmitting over network.

Approach #2: Pull Data to Query
— Bring the data to the node that is executing a query that
needs it for processing.

— This is necessary when there is no compute resources
available where database files are located.




Filtering and retrieving data usin

PDF ‘\ RSS

— Bring
needs it for processing.

— This is necessary when there is no compute resources
available where database files are located.
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With Amazon s3

Query Blob Contents

Article * 07/20/2021 + 10 minutes to read ¢ 3 contributors 4 Feedback

The Query Blob contents API applies a simple Structured Query Language (SQL) statementon a blob's
contents and returns only the queried subset of the data. You can also call Query slob Contents toquery

the contents of a version or snapshot.

Request

The Query Blob contents request may be constructed as follows. HTTPS is recommended. Replace

myaccount with the name of your storage account:

POST Method Request URI HTTP Version
https: //myaccount. blob.core.windows. net/mycontainer/myblob?comp:query HTTP/1.0
HTTP/1.1

https: //myaccount _blob.core.windows. net/mycontainer/myblob?comp:query&snapshot:<DateTime>

https: //myaccount. blob.core.windows. net/mycontainer/myblob?comp:query&versionid:<DateTime>

Filter:
ittering and retrieving data usin

- Microsoft

g Amazon S3 Select

lery language
ge (SQL) statements to filter the cont:
ents of an

at you need. B
- By usin
ch reduces the costgz-:::j11 [a 20N 53 Select to filter this dat
atency to retri ata, you can
rieve this data

rA
Pache Parquet format. It also wo

only), and server-

rks with obj
. jects tha
termine how the tare

side encry,
pted objects. Y
. . YOU can .
records in the result are delimiteS:Eley the

z0n S3 Select s
c upports a
Select, s subset of S
ee SQL reference for Amazon?; SFOr more information
elect.

Dbject Cont
ent
e limits the amF;EST AP, the AWS Command Li
unt of data returned to 40 MBlne Interface
- To retrieve

Apute resources

od.




Application
Server

£CMU-DB

15-445/645 (Spring 2025)

PUSH QUERY TO DATA

]

P1»R.1id:1-100
P1S.id:1-100

1

P2»>R.i1d:101-200
P2»>S.id:101-200




PUSH QUERY TO DATA

SELECT * FROM R JOIN S
ON R.id = S.id

s

Application
Server

]

P1»R.1id:1-100
P1S.id:1-100
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PUSH QUERY TO DATA

SELECT * FROM R JOIN S

]

ON R.id = S.1id

ZZ
I
I
Application
Server
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P1»R.1id:1-100
P1S.id:1-100

IDs [101,200]

)

]

P2»>R.i1d:101-200
P2»>S.id:101-200




PUSH QUERY TO DATA

SELECT * FROM R JOIN S

]

ON R.id = S.1id

ZZ
I
I
Application
Server
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P1»R.1id:1-100
P1S.id:1-100

IDs [101,200]

! Result: R} S

)

]

P2»>R.i1d:101-200
P2»>S.id:101-200
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Server

£CMU-DB

15-445/645 (Spring 2025)

PULL DATA TO QUERY

P1->ID:1-100
Node

a4

Node

d:

P2>ID:101-200

Storage




PULL DATA TO QUERY

P1>ID:1-100
SELECT * FROM R JOIN S Node - ~
ON R.id = S.id #% Storage
P /
I
I
I
Application
Server ( Node |
\_ _J

P2>ID:101-200
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PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node r ~N

ON R.id = S.id ﬁ“—% Storage

RS
IDs [101,200]

A 4

Application
Server ( Node |

d:

P2>ID:101-200
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PULL DATA TO QUERY

P1->ID:1-100

SELECT * FROM R JOIN S Node e ~
Storage

ON R.id = S.1id ﬁ_%

RS
{ IDs [ 101@
Application

Server Node

P2>ID:101-200
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PULL DATA TO QUERY

P1»>ID:1-100
SELECT * FROM R JOIN S Node
ON R.id = S.id ﬁ_% Page ABC
IZZ3K { RIS
ZZZ IDs [101,200] Page XYZ
Application |

Server
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PULL DATA TO QUERY

P1->ID:1-100
SELECT * FROM R JOIN S Node r ~N

ON R.id = S.id ﬁ“—% Storage

A

RIS
IDs [101,200] | Result: R} S

A 4

Application
Server ( Node |

d:

P2>ID:101-200
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OBSERVATION

The data that a node receives from remote sources

are cached in the buffer pool.
— This allows the DBMS to support intermediate results that

are large than the amount of memory available.
— Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?
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QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs are
designed to assume that nodes do not fail during

query execution.
— If one node fails during query execution, then the whole
query fails.

The DBMS could take a snapshot of the

intermediate results for a query during execution to
allow it to recover if nodes fail.




QUERY FAULT TOLERANCE

a Y

SELECT * FROM R JOIN S Node r ~

ON R.id = S.id ﬁ“—% Storage

Application
Server Node

a4
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QUERY FAULT TOLERANCE

a Y

SELECT * FROM R JOIN S Node - ~
ON R.id = S.id #% Storage
P /

I
I
I

Application

Server ( Node |

a4
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QUERY FAULT TOLERANCE

a Y

SELECT * FROM R JOIN S Node r ~

ON R.id = S.id ﬁ_% Storage
RMA

AppI|cat|on
Server ( Node )

a4
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QUERY FAULT TOLERANCE

a Y

SELECT * FROM R JOIN S Node r ~

ON R.id = S.1id ﬁ_% Storage

IZZZZ-
R MA Result: R} S
AppI|cat|on ~
Server ( Node )

a4
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QUERY FAULT TOLERANCE

a Y

SELECT * FROM R JOIN S Node - ~
ON R.id = S.id ﬁ“‘% Storage
P /

I
I
I

Application

Server
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QUERY FAULT TOLERANCE

SELECT * FROM R JOIN S
ON R.id = S.1id

~

2

Application
Server
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QUERY PLANNING

All the optimizations that we talked about before

are still applicable in a distributed environment.
— Predicate Pushdown

— Projection Pushdown

— Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.
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QUERY PLAN FRAGMENTS

Approach #1: Physical Operators

— Generate a single query plan and then break it up into
partition-specific fragments.
— Most systems implement this approach.

Approach #2: SQL

— Rewrite original query into partition-specific queries.

— Allows for local optimization at each node.

— SingleStore + Vitess are the only systems we know that use
this approach.



https://www.singlestore.com/
https://vitess.io/

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
ON R.id = S.id

id:1-100 id:101-200 id:201-300
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QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
ON R.id = S.1id

:

Ill

b

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 101 AND 200

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 201 AND 300

id:1-100
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id:101-200

id:201-300




Union the output of
each join to produce

final re‘il';\skom R JOIN S
ON~\id = S.id

:

FRAGMENTS

b

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 1 AND 100

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 101 AND 200

SELECT * FROM R JOIN S
ON R.id = S.id
WHERE R.id BETWEEN 201 AND 300

id:1-100
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id:101-200

id:201-300




OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single

node and then perform the join.

— You lose the parallelism of a distributed DBMS.
— Costly data transfer over the network.
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DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we discussed

earlier in the semester.

— Need to produce the correct answer as if all the data is
located in a single node system.
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SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.
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SELECT * FROM R JOIN S
ON R.id = S.1id




SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

id:1-100
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

Replicated



SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key

g

id:1-100
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

Replicated




Partition Key

SCENARIO #1

The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

—~

g

id:1-100
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

Replicated




The entire copy of one data set is

replicated at every node.
— Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

Partition Key

SCENARIO #1

SELECT * FROM R JOIN S
ON R.id = S.1id

—~

g

id:1-100
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e vos I

id:101-200

Replicated




SCENARIO #2

Both data sets are partitioned on the
join attribute. Each node performs the
join on local data and then sends to a
coordinator node for coalescing.

id:1-100

id:1-100
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

id:101-200




SCENARIO #2
Both data sets are partitioned on the
join attribute. Each node performs the SELECT » EROM R JOIN <
join on local data and then sends to a ONR.id = S.id

coordinator node for coalescing.

—~

id:1-100 id:101-200

id:101-200

id:1-100
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SCENARIO #2
Both data sets are partitioned on the
join attribute. Each node performs the SELECT » EROM R JOIN <
join on local data and then sends to a ONR.id = S.id

coordinator node for coalescing.

id:1-100 id:101-200

id:101-200

id:1-100
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SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100




SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100




SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100




SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100




SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

id:1-100

val:1-50
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SELECT * FROM R JOIN S
ON R.id = S.1id

id:101-200

val:51-100




SCENARIO #3 — BROADCAST JOIN

Both data sets are partitioned on
different keys. If one 01: the data sets is SELECT * FROM R JOIN S
small, then the DBMS "broadcasts ON R.id = S.id

that data to all nodes.

e~ =

P2:RIXS
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SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.
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SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.
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SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.
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SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.
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SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions

the data on-the-fly across nodes.
— The repartitioned data copy is generally
deleted when the query is done.

SELECT * FROM R JOIN S
ON R.id = S.1id

id:1-100 R{id} R{id}
id:1-100 S{id}
—-———
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e
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SCENARIO #4 — SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions SELECT * FROM R JOIN S
the data on-the-fly across nodes. ON R.id = S.id

— The repartitioned data copy is generally
»

deleted when the query is done. P1:
P2: RIS

id:1-100 id:101-200
id:1-100 id:101-200
name: A-M name:N-Z

val:1-50 val:51-100
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SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [E EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).
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Before pulh.n.g flata. from another node, [E EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.id
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SEMI-JOIN OPTIMIZATION

Before pulh.n.g flata. from another node, [E EcT Fact. orice, Dim.x
send a semi-join filter to reduce data FROM Fact JOIN Dim
movement. ON Fact.id = Dim.id
— Perform a join on the bare minimum data WHERE Dim.zip = 15213

needed to avoid unnecessary transfers.
— Could use an approximate filter (Bloom Join).

Result =1 (Dim FaCtsmall)

price
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OBSERVATION

Direct communication between compute nodes
means the DBMS knows which nodes will
participate in query execution ahead of time.

But data skew can cause imbalances...

A better approach is to dynamically adjust compute
resources on the fly as a query executes.




SHUFFLE PHASE

Redistribute of intermediate data APACHE <’\Z
across nodes between query plan gion?grlj Spqr
pipelines.

— Can repartition / rebalance data based on
observed data characteristics.

Some DBMSs support standalone
. APACHE
fault-tolerant shuffle services. Ce eleborn

— Example: You can replace Spark's built-in
in-memory shuffle implementation or

replace it with a separate service. ov Apache Uniffle
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SHUFFLE PHASE
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SHUFFLE PHASE

Stage n+1

Shared-Disk
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SHUFFLE PHASE

Stage n+1

Shared-Disk
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SHUFFLE PHASE

EXCHANGE OPERATOR
ExchangeT

Ype #1 - Gather
— Combine the results

from multiple workers
into a single output s

tream.

Exchange Type #2 - D;

— Split a single input streap ; T
output streams,

Exchange Type #3 - Repartition

— Shuffle multiple inpyt Streams acrogg

multiple output streams,

— Some DBMS; always perform this step after

€.g., Dremel/ BigQuery),
................................ :%
$2CMU-DB
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CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines

between shared-nothing and shared-disk.

— Example: You can do simple filtering on Amazon S3 before
copying data to compute nodes.
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CLOUD SYSTEMS

Approach #1: Managed DBMSs

— No significant modification to the DBMS to be "aware"
that it is running in a cloud environment.
— Examples: Most vendors

Approach #2: Cloud-Native DBMS
— System designed explicitly to run in a cloud environment.

— Usually based on a shared-disk architecture.
— Examples: Snowflake, Google BigQuery

£CMU-DB
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

3 @

Application

Server
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage
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Page Table a Q
N
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Storage
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SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

W olanetscale

§ CockroachDB
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2 SQLAzure Server
$2CMU-DB

15-445/645 (Spring 2025)

Storage

Buffer Pool
Page Table

¢ y

117



118

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

CREATE TABLE foo (...);

|
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.
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CREATE TABLE foo (...);

INSERT INTO foo VALUES (...);
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.
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CREATE TABLE foo (...);

INSERT INTO foo VALUES (...);
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.
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INSERT INTO foo VALUES (...);
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

SELECT * FROM foo

l
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into

proprietary internal formats. %

SELECT * FROM foo

& Data Lake
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£CMU-DB J

15-445/645 (Spring 2025)




126

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and

SELECT * FROM foo

unstructured data without having to l
define a schema or ingest the data into
: . Node
proprietary internal formats. %
& Data Lake )

i B
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and

SELECT * FROM foo

unstructured data without having to l
define a schema or ingest the data into
roprietary internal formats = Node
prop y ’ E\ E_ #%
Q===
& Data Lake )
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into

SELECT * FROM foo

proprietary internal formats.
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DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and

SELECT * FROM foo

unstructured data without having to l
define a schema or ingest the data into
. . T = Node
proprietary internal formats. ¢o| & |,
Q|== ﬁ-&}
4 A
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DATA LAKES

Repository for storing large amounts

of structured, semi-structured, and SELECT * FROM foo

unstructured data without having to l
define a schema or ingest the data into . S
. . T = Node
proprietary internal formats. =] .
¢lo==
) ﬂ %

amazon Google r D
% trino . REDSHIFT Big Query %

@ databricks %‘°:<SﬂOWf|Oke presto ":S;' =-HIVE
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OLAP DBMS COMPONENTS

One recent trend of the last decade is the breakout
of OLAP DBMS components into standalone

services and libraries:

— System Catalogs

— Intermediate Representation
— Query Optimizers

— File Format / Access Libraries
— Execution Engines / Fabrics

Lots of engineering challenges to make these
components interoperable + performant.

£CMU-DB
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SYSTEM CATALOGS

A DBMS tracks a database's schema (table, columns)

and data files in its catalog.

— [f the DBMS is on the data ingestion path, then it can
maintain the catalog incrementally.

— If an external process adds data files, then it also needs to
update the catalog so that the DBMS is aware of them.

Notable implementations:
— HCatalog

— Google Data Catalog

— Amazon Glue Data Catalog
— Databricks Unity

— Apache Iceberg



https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/

SYSTEM C/AEnhaa

A DBMS tracks a database' ERSHVBEIEINIeS paid $1B for 5

and data files in its catalog. Person startup (Tabular)
— [f the DBMS is on the data i

maintain the catalog incremg(
— [f an external process adds d
update the catalog so that t

Notable implementations
— HCatalog
— Google Data Catalog |

— Amazon Glue Data Catalo gl e L e
— Databricks Unity
— Apache Iceberg

Pany behind the open source
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https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/
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DATA FILE FORMATS

Most DBMSs use a proprietary on-disk binary file

format for their databases.
— Think of the BusTub page types...

The only way to share data between systems is to

convert data into a common text-based format
— Examples: CSV, JSON, XML

There are new open-source binary file formats that
make it easier to access data across systems.

£CMU-DB
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https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

DATA FILE FORMATS

Apache Parquet

— Compressed columnar storage from
Cloudera/Twitter

Apache ORC

— Compressed columnar storage from
Apache Hive.
Apache CarbonData

— Compressed columnar storage with
indexes from Huawei.

$ZCMU-DB

15-445/645 (Spring 2025)

Apache Iceberg

— Flexible data format that supports
schema evolution from Netflix.

HDF5

— Multi-dimensional arrays for
scientific workloads.
Apache Arrow

— In-memory compressed columnar
storage from Pandas/Dremio.



https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/
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https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

EXECUTION ENGINES

Standalone libraries for executing vectorized query

operators on columnar data.
— Input is a DAG of physical operators.
— Require external scheduling and orchestration.

Notable implementations:
— Velox

— DataFusion
— Intel OAP
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https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/
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CONCLUSION

The cloud has made the distributed OLAP DBMS
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems...
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NEXT CLASS

Final Review
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