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ADMINISTRIVIA
Project #4 is due Sunday April 20th @ 11:59pm
→ Recitation: Friday, April 11th in GHC 4303 from 3:00 - 4:00 PM

HW6 is due Sunday, April 20, 2025 @ 11:59pm

Final Exam is on Monday, April 28, 2025, from 5:30pm- 8:30pm. 
→ Early exam will not be offered. Do not make travel plans.
→ Material: Lecture 12 – Lecture 24.
→ You can use the full 3 hours, though the exam is meant to be done in ~2 hours.

This course is recruiting TAs for the next semester

→ Apply at: https://www.ugrad.cs.cmu.edu/ta/F25/
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ADMINISTRIVIA

My OH on Monday moved to 10:00 -11:00 am

Class on Monday, April 21: Review Session

→ Come to class prepared with your questions. What material do 
you want me to go over again?

Class on Wednesday, April 23: Guest Lecture

→ Real-world applications of Gen AI and Databases
→ Speaker: Sailesh Krishnamurthy, Google 
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UPCOMING DATABASE TALKS
3

Gel (DB Seminar)
→ Monday, April 21 @ 4:30pm
→ EdgeQL with Gel
→ Speaker: Michael Sullivan
→ https://cmu.zoom.us/j/93441451665 

https://cmu.zoom.us/j/93441451665
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BIFURCATED ENVIRONMENT

OLAP DatabaseOLTP Databases

5



15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

Extract

Transform

Load

OLAP DatabaseOLTP Databases

6



15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

Extract

Transform

Load

OLAP DatabaseOLTP Databases

7



15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

Extract

Transform

Load

OLAP DatabaseOLTP Databases

8

Extract

Load

Transform



15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

Extract

Transform

Load

OLAP DatabaseOLTP Databases

9

Extract

Load

Transform



15-445/645 (Spring 2025)

DECISION SUPPORT SYSTEMS

Applications that serve the management, 
operations, and planning levels of an organization 
to help people make decisions about future issues 
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema
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STAR SCHEMA
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SNOWFLAKE SCHEMA
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STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and 

consistency violations.

Issue #2: Query Complexity

→ Snowflake schemas require more joins to get the data 
needed for a query.

→ Queries on star schemas will (usually) be faster.
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TODAY'S AGENDA

Execution Models
Query Planning
Distributed Join Algorithms
Cloud Systems
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DISTRIBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS is 
roughly the same as on a single-node DBMS.
→ Query plan is a DAG of physical operators.

For each operator, the DBMS considers where 
input is coming from and where to send output.
→ Table Scans
→ Joins
→ Aggregations
→ Sorting
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DATA CATEGORIES

Persistent Data:

→ The "source of record" for the database (e.g., tables).
→ Modern systems assume that these data files are immutable 

but can support updates by rewriting them.

Intermediate Data:

→ Short-lived artifacts produced by query operators during 
execution and then consumed by other operators.

→ The amount of intermediate data that a query generates 
has little to no correlation to amount of persistent data that 
it reads or the execution time.
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DISTRIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies 
the location of the database's data files. This affects 
how nodes coordinate with each other and where 
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
→ Push Query to Data

→ Pull Data to Query
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PUSH VS. PULL

Approach #1: Push Query to Data

→ Send the query (or a portion of it) to the node that 
contains the data.

→ Perform as much filtering and processing as possible where 
data resides before transmitting over network.

Approach #2: Pull Data to Query

→ Bring the data to the node that is executing a query that 
needs it for processing.

→ This is necessary when there is no compute resources 
available where database files are located.
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PUSH QUERY TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200
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PUSH QUERY TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
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PUSH QUERY TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id

R ⨝ S

IDs [101,200]
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PUSH QUERY TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id

R ⨝ S

IDs [101,200] Result: R ⨝ S
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Storage

PULL DATA TO QUERY

Node

Application
Server Node

P1→ID:1-100

P2→ID:101-200
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PULL DATA TO QUERY

Node

Application
Server Node

R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id

45



15-445/645 (Spring 2025)

Storage

PULL DATA TO QUERY
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Server Node

Page ABC
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R ⨝ S
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P1→ID:1-100
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Storage

PULL DATA TO QUERY

Node

Application
Server Node

R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id

Result: R ⨝ S
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OBSERVATION

The data that a node receives from remote sources 
are cached in the buffer pool.
→ This allows the DBMS to support intermediate results that 

are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a 
node crashes during execution?
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QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs are 
designed to assume that nodes do not fail during 
query execution. 
→ If one node fails during query execution, then the whole 

query fails.

The DBMS could take a snapshot of the 
intermediate results for a query during execution to 
allow it to recover if nodes fail.
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    ON R.id = S.id
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QUERY PLANNING

All the optimizations that we talked about before 
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Projection Pushdown
→ Optimal Join Orderings

Distributed query optimization is even harder 
because it must consider the physical location of 
data and network transfer costs.
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QUERY PLAN FRAGMENTS

Approach #1: Physical Operators

→ Generate a single query plan and then break it up into 
partition-specific fragments.

→ Most systems implement this approach.

Approach #2: SQL

→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ SingleStore + Vitess are the only systems we know that use 

this approach.
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QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
    ON R.id = S.id

id:1-100 id:101-200 id:201-300
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QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
    ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300
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QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
    ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
    ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300

Union the output of 

each join to produce 

final result.
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OBSERVATION

The efficiency of a distributed join depends on the 
target tables' partitioning schemes.

One approach is to put entire tables on a single 
node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.
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DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the 
proper tuples on the same node.

Once the data is at the node, the DBMS then 
executes the same join algorithms that we discussed 
earlier in the semester.
→ Need to produce the correct answer as if all the data is 

located in a single node system. 
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SCENARIO #1

The entire copy of one data set is 
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in 
parallel and then sends their results to 
a coordinating node.

R{Id}

S

R{Id}

S

SELECT * FROM R JOIN S
    ON R.id = S.id
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id:1-100
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id:101-200
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SCENARIO #1

The entire copy of one data set is 
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in 
parallel and then sends their results to 
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
    ON R.id = S.id

P1:R⨝S P2:R⨝S

67

Partition Key



15-445/645 (Spring 2025)

SCENARIO #1

The entire copy of one data set is 
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in 
parallel and then sends their results to 
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
    ON R.id = S.id

P1:R⨝S
P2:R⨝S

R⨝S
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SCENARIO #2

Both data sets are partitioned on the 
join attribute. Each node performs the 
join on local data and then sends to a 
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #2

Both data sets are partitioned on the 
join attribute. Each node performs the 
join on local data and then sends to a 
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #2

Both data sets are partitioned on the 
join attribute. Each node performs the 
join on local data and then sends to a 
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

P1:R⨝S
P2:R⨝S

R⨝S

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on 
different keys. If one of the data sets is 
small, then the DBMS "broadcasts" 
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #3 – BROADCAST JOIN
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R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on 
different keys. If one of the data sets is 
small, then the DBMS "broadcasts" 
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on 
different keys. If one of the data sets is 
small, then the DBMS "broadcasts" 
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on 
different keys. If one of the data sets is 
small, then the DBMS "broadcasts" 
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on 
different keys. If one of the data sets is 
small, then the DBMS "broadcasts" 
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S
P2:R⨝S

R⨝S

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the 
join key. The DBMS copies/re-partitions 
the data on-the-fly across nodes. 
→ The repartitioned data copy is generally 

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the 
join key. The DBMS copies/re-partitions 
the data on-the-fly across nodes. 
→ The repartitioned data copy is generally 

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the 
join key. The DBMS copies/re-partitions 
the data on-the-fly across nodes. 
→ The repartitioned data copy is generally 

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the 
join key. The DBMS copies/re-partitions 
the data on-the-fly across nodes. 
→ The repartitioned data copy is generally 

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the 
join key. The DBMS copies/re-partitions 
the data on-the-fly across nodes. 
→ The repartitioned data copy is generally 

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the 
join key. The DBMS copies/re-partitions 
the data on-the-fly across nodes. 
→ The repartitioned data copy is generally 

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the 
join key. The DBMS copies/re-partitions 
the data on-the-fly across nodes. 
→ The repartitioned data copy is generally 

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S P2:R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
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SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the 
join key. The DBMS copies/re-partitions 
the data on-the-fly across nodes. 
→ The repartitioned data copy is generally 

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S
P2:R⨝S

R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
    ON R.id = S.id
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SEMI-JOIN OPTIMIZATION

Before pulling data from another node, 
send a semi-join filter to reduce data 
movement.
→ Perform a join on the bare minimum data 

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
  FROM Fact JOIN Dim
    ON Fact.id = Dim.id
 WHERE Dim.zip = 15213
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SEMI-JOIN OPTIMIZATION

Before pulling data from another node, 
send a semi-join filter to reduce data 
movement.
→ Perform a join on the bare minimum data 

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
  FROM Fact JOIN Dim
    ON Fact.id = Dim.id
 WHERE Dim.zip = 15213
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SEMI-JOIN OPTIMIZATION
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SEMI-JOIN OPTIMIZATION

Before pulling data from another node, 
send a semi-join filter to reduce data 
movement.
→ Perform a join on the bare minimum data 

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
  FROM Fact JOIN Dim
    ON Fact.id = Dim.id
 WHERE Dim.zip = 15213
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OBSERVATION

Direct communication between compute nodes 
means the DBMS knows which nodes will 
participate in query execution ahead of time.
But data skew can cause imbalances…

A better approach is to dynamically adjust compute 
resources on the fly as a query executes.
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SHUFFLE PHASE

Redistribute of intermediate data 
across nodes between query plan 
pipelines.
→ Can repartition / rebalance data based on 

observed data characteristics.

Some DBMSs support standalone 
fault-tolerant shuffle services.
→ Example: You can replace Spark's built-in 

in-memory shuffle implementation or 
replace it with a separate service.
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SHUFFLE PHASE
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CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS) 
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines 
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3 before 

copying data to compute nodes.
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CLOUD SYSTEMS

Approach #1: Managed DBMSs

→ No significant modification to the DBMS to be "aware" 
that it is running in a cloud environment.

→ Examples: Most vendors

Approach #2: Cloud-Native DBMS

→ System designed explicitly to run in a cloud environment. 
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.

Application
Server

Node
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.

Application
Server

Node
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.

Application
Server

Node
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.
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Page Table
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.

Application
Server

Storage

114



15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.
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SERVERLESS DATABASES

Rather than always maintaining compute resources 
for each customer, a "serverless" DBMS evicts 
tenants when they become idle.
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DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.
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DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.

Storage
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DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.

Storage

Node

CREATE TABLE foo (...);
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DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);
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DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);
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DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);
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DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats.

Storage

Node

SELECT * FROM foo
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Data Lake

DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats. Node

SELECT * FROM foo
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Data Lake

DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats. Node

SELECT * FROM foo
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Data Lake

DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats. Node

SELECT * FROM foo
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Data Lake

DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats. Node

SELECT * FROM foo
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Data Lake

DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats. Node

SELECT * FROM foo

129



15-445/645 (Spring 2025)

Data Lake

DATA LAKES

Repository for storing large amounts 
of structured, semi-structured, and 
unstructured data without having to 
define a schema or ingest the data into  
proprietary internal formats. Node

SELECT * FROM foo
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OLAP DBMS COMPONENTS

One recent trend of the last decade is the breakout 
of OLAP DBMS components into standalone 
services and libraries:
→ System Catalogs
→ Intermediate Representation
→ Query Optimizers
→ File Format / Access Libraries
→ Execution Engines / Fabrics

Lots of engineering challenges to make these 
components interoperable + performant.
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SYSTEM CATALOGS

A DBMS tracks a database's schema (table, columns) 
and data files in its catalog.
→ If the DBMS is on the data ingestion path, then it can 

maintain the catalog incrementally.
→ If an external process adds data files, then it also needs to 

update the catalog so that the DBMS is aware of them.

Notable implementations:
→ HCatalog
→ Google Data Catalog
→ Amazon Glue Data Catalog
→ Databricks Unity
→ Apache Iceberg

40

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/
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DATA FILE FORMATS

Most DBMSs use a proprietary on-disk binary file 
format for their databases.
→ Think of the BusTub page types…

The only way to share data between systems is to 
convert data into a common text-based format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats that 
make it easier to access data across systems.

134

https://github.com/cmu-db/bustub/tree/master/src/include/storage/page
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DATA FILE FORMATS

Apache Parquet

→ Compressed columnar storage from 
Cloudera/Twitter

Apache ORC

→ Compressed columnar storage from 
Apache Hive.

Apache CarbonData

→ Compressed columnar storage with 
indexes from Huawei.

43

Apache Iceberg

→ Flexible data format that supports 
schema evolution from Netflix.

HDF5

→ Multi-dimensional arrays for 
scientific workloads.

Apache Arrow

→ In-memory compressed columnar 
storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/
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Cloudera/Twitter

Apache ORC

→ Compressed columnar storage from 
Apache Hive.

Apache CarbonData

→ Compressed columnar storage with 
indexes from Huawei.
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Apache Iceberg

→ Flexible data format that supports 
schema evolution from Netflix.

HDF5

→ Multi-dimensional arrays for 
scientific workloads.

Apache Arrow

→ In-memory compressed columnar 
storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/
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EXECUTION ENGINES

Standalone libraries for executing vectorized query 
operators on columnar data.
→ Input is a DAG of physical operators.
→ Require external scheduling and orchestration.

Notable implementations:
→ Velox
→ DataFusion
→ Intel OAP
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https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/
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CONCLUSION

The cloud has made the distributed OLAP DBMS 
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems…
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NEXT CLASS

Final Review
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