
Database
Systems

15-445/645 SPRING 2025 PROF. JIGNESH PATEL

Distributed OLAP
Databases

15-445/645 (Spring 2025)

ADMINISTRIVIA
Project #4 is due Sunday April 20th @ 11:59pm
→ Recitation: Friday, April 11th in GHC 4303 from 3:00 - 4:00 PM

HW6 is due Sunday, April 20, 2025 @ 11:59pm

Final Exam is on Monday, April 28, 2025, from 5:30pm- 8:30pm.
→ Early exam will not be offered. Do not make travel plans.
→ Material: Lecture 12 – Lecture 24.
→ You can use the full 3 hours, though the exam is meant to be done in ~2 hours.

This course is recruiting TAs for the next semester

→ Apply at: https://www.ugrad.cs.cmu.edu/ta/F25/

2

https://www.ugrad.cs.cmu.edu/ta/F25/

15-445/645 (Spring 2025)

ADMINISTRIVIA

My OH on Monday moved to 10:00 -11:00 am

Class on Monday, April 21: Review Session

→ Come to class prepared with your questions. What material do
you want me to go over again?

Class on Wednesday, April 23: Guest Lecture

→ Real-world applications of Gen AI and Databases
→ Speaker: Sailesh Krishnamurthy, Google

3

15-445/645 (Spring 2025)

UPCOMING DATABASE TALKS
3

Gel (DB Seminar)
→ Monday, April 21 @ 4:30pm
→ EdgeQL with Gel
→ Speaker: Michael Sullivan
→ https://cmu.zoom.us/j/93441451665

https://cmu.zoom.us/j/93441451665

15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

OLAP DatabaseOLTP Databases

5

15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

Extract

Transform

Load

OLAP DatabaseOLTP Databases

6

15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

Extract

Transform

Load

OLAP DatabaseOLTP Databases

7

15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

Extract

Transform

Load

OLAP DatabaseOLTP Databases

8

Extract

Load

Transform

15-445/645 (Spring 2025)

BIFURCATED ENVIRONMENT

Extract

Transform

Load

OLAP DatabaseOLTP Databases

9

Extract

Load

Transform

15-445/645 (Spring 2025)

DECISION SUPPORT SYSTEMS

Applications that serve the management,
operations, and planning levels of an organization
to help people make decisions about future issues
and problems by analyzing historical data.

Star Schema vs. Snowflake Schema

10

15-445/645 (Spring 2025)

STAR SCHEMA

CATEGORY_NAME
CATEGORY_DESC
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_CODE
STATE_NAME
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_NUM
MONTH_NAME
DAY_OF_MONTH

TIME_DIM

SALES_FACT

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

11

15-445/645 (Spring 2025)

STAR SCHEMA

CATEGORY_NAME
CATEGORY_DESC
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_CODE
STATE_NAME
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_NUM
MONTH_NAME
DAY_OF_MONTH

TIME_DIM

SALES_FACT

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

12

15-445/645 (Spring 2025)

STAR SCHEMA

CATEGORY_NAME
CATEGORY_DESC
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_CODE
STATE_NAME
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_NUM
MONTH_NAME
DAY_OF_MONTH

TIME_DIM

SALES_FACT

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

13

15-445/645 (Spring 2025)

SNOWFLAKE SCHEMA

CATEGORY_FK
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_FK
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_FK
DAY_OF_MONTH

TIME_DIM

SALES_FACT

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

CAT_LOOKUP

STATE_ID
STATE_CODE
STATE_NAME

STATE_LOOKUP

MONTH_NUM
MONTH_NAME
MONTH_SEASON

MONTH_LOOKUP

14

15-445/645 (Spring 2025)

SNOWFLAKE SCHEMA

CATEGORY_FK
PRODUCT_CODE
PRODUCT_NAME
PRODUCT_DESC

PRODUCT_DIM

COUNTRY
STATE_FK
ZIP_CODE
CITY

LOCATION_DIM

ID
FIRST_NAME
LAST_NAME
EMAIL
ZIP_CODE

CUSTOMER_DIM

YEAR
DAY_OF_YEAR
MONTH_FK
DAY_OF_MONTH

TIME_DIM

SALES_FACT

PRODUCT_FK
TIME_FK
LOCATION_FK
CUSTOMER_FK

PRICE
QUANTITY

CATEGORY_ID
CATEGORY_NAME
CATEGORY_DESC

CAT_LOOKUP

STATE_ID
STATE_CODE
STATE_NAME

STATE_LOOKUP

MONTH_NUM
MONTH_NAME
MONTH_SEASON

MONTH_LOOKUP

15

15-445/645 (Spring 2025)

STAR VS. SNOWFLAKE SCHEMA

Issue #1: Normalization

→ Snowflake schemas take up less storage space.
→ Denormalized data models may incur integrity and

consistency violations.

Issue #2: Query Complexity

→ Snowflake schemas require more joins to get the data
needed for a query.

→ Queries on star schemas will (usually) be faster.

16

15-445/645 (Spring 2025)

P3 P4

P1 P2

PROBLEM SETUP

Application
Server

Partitions

17

15-445/645 (Spring 2025)

P3 P4

P1 P2

PROBLEM SETUP

Application
Server

PartitionsSELECT * FROM R JOIN S
 ON R.id = S.id

18

15-445/645 (Spring 2025)

P3 P4

P1 P2

PROBLEM SETUP

Application
Server

PartitionsSELECT * FROM R JOIN S
 ON R.id = S.id

P2
P4
P3

19

15-445/645 (Spring 2025)

P3 P4

P1 P2

PROBLEM SETUP

Application
Server

PartitionsSELECT * FROM R JOIN S
 ON R.id = S.id

P2
P4
P3

20

15-445/645 (Spring 2025)

TODAY'S AGENDA

Execution Models
Query Planning
Distributed Join Algorithms
Cloud Systems

21

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION

Executing an OLAP query in a distributed DBMS is
roughly the same as on a single-node DBMS.
→ Query plan is a DAG of physical operators.

For each operator, the DBMS considers where
input is coming from and where to send output.
→ Table Scans
→ Joins
→ Aggregations
→ Sorting

12

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION
13

⋮

Worker Nodes

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION
13

⋮

Worker Nodes

Persistent Data

Persistent Data

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION
13

Intermediate

Data

Intermediate

Data

⋮

Worker Nodes

Persistent Data

Persistent Data

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION
13

⋮

Shuffle Nodes

(Optional)

Intermediate

Data

Intermediate

Data

⋮

Worker Nodes

Persistent Data

Persistent Data

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION
13

⋮

Shuffle Nodes

(Optional)

Intermediate

Data

Intermediate

Data

⋮

Worker Nodes

Persistent Data

Persistent Data

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION
13

⋮

Shuffle Nodes

(Optional)

Intermediate

Data

Intermediate

Data

⋮

Worker Nodes

⋮

Worker Nodes

Persistent Data

Persistent Data

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION
13

⋮

Shuffle Nodes

(Optional)

Intermediate

Data

Intermediate

Data

⋮

Worker Nodes

⋮

Worker Nodes

Persistent Data

Persistent Data

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION
13

⋮

Shuffle Nodes

(Optional)

Intermediate

Data

Intermediate

Data

⋮

Worker Nodes

⋮

Worker Nodes

Persistent Data

Persistent Data

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION
13

⋮

Shuffle Nodes

(Optional)

Intermediate

Data

Intermediate

Data

⋮

Worker Nodes

⋮

Worker Nodes

Final

Result

Persistent Data

Persistent Data

15-445/645 (Spring 2025)

DISTRIBUTED QUERY EXECUTION
13

⋮

Shuffle Nodes

(Optional)

Intermediate

Data

Intermediate

Data

⋮

Worker Nodes

⋮

Worker Nodes

Final

Result

Persistent Data

Persistent Data

Scheduler /

Coordinator

15-445/645 (Spring 2025)

DATA CATEGORIES

Persistent Data:

→ The "source of record" for the database (e.g., tables).
→ Modern systems assume that these data files are immutable

but can support updates by rewriting them.

Intermediate Data:

→ Short-lived artifacts produced by query operators during
execution and then consumed by other operators.

→ The amount of intermediate data that a query generates
has little to no correlation to amount of persistent data that
it reads or the execution time.

14

15-445/645 (Spring 2025)

DISTRIBUTED SYSTEM ARCHITECTURE

A distributed DBMS's system architecture specifies
the location of the database's data files. This affects
how nodes coordinate with each other and where
they retrieve/store objects in the database.

Two approaches (not mutually exclusive):
→ Push Query to Data

→ Pull Data to Query

15

15-445/645 (Spring 2025)

PUSH VS. PULL

Approach #1: Push Query to Data

→ Send the query (or a portion of it) to the node that
contains the data.

→ Perform as much filtering and processing as possible where
data resides before transmitting over network.

Approach #2: Pull Data to Query

→ Bring the data to the node that is executing a query that
needs it for processing.

→ This is necessary when there is no compute resources
available where database files are located.

16

15-445/645 (Spring 2025)

PUSH VS. PULL

Approach #1: Push Query to Data

→ Send the query (or a portion of it) to the node that
contains the data.

→ Perform as much filtering and processing as possible where
data resides before transmitting over network.

Approach #2: Pull Data to Query

→ Bring the data to the node that is executing a query that
needs it for processing.

→ This is necessary when there is no compute resources
available where database files are located.

16

15-445/645 (Spring 2025)

PUSH VS. PULL

Approach #1: Push Query to Data

→ Send the query (or a portion of it) to the node that
contains the data.

→ Perform as much filtering and processing as possible where
data resides before transmitting over network.

Approach #2: Pull Data to Query

→ Bring the data to the node that is executing a query that
needs it for processing.

→ This is necessary when there is no compute resources
available where database files are located.

16

15-445/645 (Spring 2025)

PUSH VS. PULL

Approach #1: Push Query to Data

→ Send the query (or a portion of it) to the node that
contains the data.

→ Perform as much filtering and processing as possible where
data resides before transmitting over network.

Approach #2: Pull Data to Query

→ Bring the data to the node that is executing a query that
needs it for processing.

→ This is necessary when there is no compute resources
available where database files are located.

16

15-445/645 (Spring 2025)

PUSH QUERY TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

39

15-445/645 (Spring 2025)

PUSH QUERY TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

40

15-445/645 (Spring 2025)

PUSH QUERY TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

R ⨝ S

IDs [101,200]

41

15-445/645 (Spring 2025)

PUSH QUERY TO DATA

Node

Application
Server Node

P1→R.id:1-100
P1→S.id:1-100

P2→R.id:101-200
P2→S.id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

R ⨝ S

IDs [101,200] Result: R ⨝ S

42

15-445/645 (Spring 2025)

Storage

PULL DATA TO QUERY

Node

Application
Server Node

P1→ID:1-100

P2→ID:101-200

43

15-445/645 (Spring 2025)

Storage

PULL DATA TO QUERY

Node

Application
Server Node

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

44

15-445/645 (Spring 2025)

Storage

PULL DATA TO QUERY

Node

Application
Server Node

R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

45

15-445/645 (Spring 2025)

Storage

PULL DATA TO QUERY

Node

Application
Server Node

Page ABC

Page XYZ

R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

46

15-445/645 (Spring 2025)

Storage

PULL DATA TO QUERY

Node

Application
Server Node

Page ABC

Page XYZ

R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

47

15-445/645 (Spring 2025)

Storage

PULL DATA TO QUERY

Node

Application
Server Node

R ⨝ S

IDs [101,200]

P1→ID:1-100

P2→ID:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

Result: R ⨝ S

48

15-445/645 (Spring 2025)

OBSERVATION

The data that a node receives from remote sources
are cached in the buffer pool.
→ This allows the DBMS to support intermediate results that

are large than the amount of memory available.
→ Ephemeral pages are not persisted after a restart.

What happens to a long-running OLAP query if a
node crashes during execution?

49

15-445/645 (Spring 2025)

QUERY FAULT TOLERANCE

Most shared-nothing distributed OLAP DBMSs are
designed to assume that nodes do not fail during
query execution.
→ If one node fails during query execution, then the whole

query fails.

The DBMS could take a snapshot of the
intermediate results for a query during execution to
allow it to recover if nodes fail.

50

15-445/645 (Spring 2025)

Storage

QUERY FAULT TOLERANCE

Node

Application
Server Node

SELECT * FROM R JOIN S
 ON R.id = S.id

51

15-445/645 (Spring 2025)

Storage

QUERY FAULT TOLERANCE

Node

Application
Server Node

SELECT * FROM R JOIN S
 ON R.id = S.id

52

15-445/645 (Spring 2025)

Storage

QUERY FAULT TOLERANCE

Node

Application
Server Node

R ⨝ S

SELECT * FROM R JOIN S
 ON R.id = S.id

53

15-445/645 (Spring 2025)

Storage

QUERY FAULT TOLERANCE

Node

Application
Server Node

R ⨝ S

SELECT * FROM R JOIN S
 ON R.id = S.id

Result: R ⨝ S

54

15-445/645 (Spring 2025)

Storage

QUERY FAULT TOLERANCE

Node

Application
Server Node

SELECT * FROM R JOIN S
 ON R.id = S.id

55

15-445/645 (Spring 2025)

Storage

QUERY FAULT TOLERANCE

Node

Application
Server Node

SELECT * FROM R JOIN S
 ON R.id = S.id

Result: R ⨝ S

56

15-445/645 (Spring 2025)

QUERY PLANNING

All the optimizations that we talked about before
are still applicable in a distributed environment.
→ Predicate Pushdown
→ Projection Pushdown
→ Optimal Join Orderings

Distributed query optimization is even harder
because it must consider the physical location of
data and network transfer costs.

57

15-445/645 (Spring 2025)

QUERY PLAN FRAGMENTS

Approach #1: Physical Operators

→ Generate a single query plan and then break it up into
partition-specific fragments.

→ Most systems implement this approach.

Approach #2: SQL

→ Rewrite original query into partition-specific queries.
→ Allows for local optimization at each node.
→ SingleStore + Vitess are the only systems we know that use

this approach.

58

https://www.singlestore.com/
https://vitess.io/

15-445/645 (Spring 2025)

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
 ON R.id = S.id

id:1-100 id:101-200 id:201-300

59

15-445/645 (Spring 2025)

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
 ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300

60

15-445/645 (Spring 2025)

QUERY PLAN FRAGMENTS

SELECT * FROM R JOIN S
 ON R.id = S.id

id:1-100

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 1 AND 100

id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 101 AND 200

id:201-300

SELECT * FROM R JOIN S
 ON R.id = S.id
 WHERE R.id BETWEEN 201 AND 300

Union the output of

each join to produce

final result.

61

15-445/645 (Spring 2025)

OBSERVATION

The efficiency of a distributed join depends on the
target tables' partitioning schemes.

One approach is to put entire tables on a single
node and then perform the join.
→ You lose the parallelism of a distributed DBMS.
→ Costly data transfer over the network.

62

15-445/645 (Spring 2025)

DISTRIBUTED JOIN ALGORITHMS

To join tables R and S, the DBMS needs to get the
proper tuples on the same node.

Once the data is at the node, the DBMS then
executes the same join algorithms that we discussed
earlier in the semester.
→ Need to produce the correct answer as if all the data is

located in a single node system.

63

15-445/645 (Spring 2025)

SCENARIO #1

The entire copy of one data set is
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

R{Id}

S

SELECT * FROM R JOIN S
 ON R.id = S.id

64

15-445/645 (Spring 2025)

SCENARIO #1

The entire copy of one data set is
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

65

15-445/645 (Spring 2025)

SCENARIO #1

The entire copy of one data set is
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

66

Partition Key

15-445/645 (Spring 2025)

SCENARIO #1

The entire copy of one data set is
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

P1:R⨝S P2:R⨝S

67

Partition Key

15-445/645 (Spring 2025)

SCENARIO #1

The entire copy of one data set is
replicated at every node.
→ Think of it as a small dimension table.

Each node joins its local data in
parallel and then sends their results to
a coordinating node.

R{Id}

S

id:1-100

Replicated

R{Id}

S

id:101-200

Replicated

SELECT * FROM R JOIN S
 ON R.id = S.id

P1:R⨝S
P2:R⨝S

R⨝S

68

Partition Key

15-445/645 (Spring 2025)

SCENARIO #2

Both data sets are partitioned on the
join attribute. Each node performs the
join on local data and then sends to a
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

69

15-445/645 (Spring 2025)

SCENARIO #2

Both data sets are partitioned on the
join attribute. Each node performs the
join on local data and then sends to a
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

70

15-445/645 (Spring 2025)

SCENARIO #2

Both data sets are partitioned on the
join attribute. Each node performs the
join on local data and then sends to a
coordinator node for coalescing.

R{id}

S{id}

id:1-100 R{id}

S{id}

id:101-200

id:1-100 id:101-200

P1:R⨝S
P2:R⨝S

R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

71

15-445/645 (Spring 2025)

SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

SELECT * FROM R JOIN S
 ON R.id = S.id

72

15-445/645 (Spring 2025)

SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S

SELECT * FROM R JOIN S
 ON R.id = S.id

73

15-445/645 (Spring 2025)

SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

SELECT * FROM R JOIN S
 ON R.id = S.id

74

15-445/645 (Spring 2025)

SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

SELECT * FROM R JOIN S
 ON R.id = S.id

75

15-445/645 (Spring 2025)

SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S P2:R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

76

15-445/645 (Spring 2025)

SCENARIO #3 – BROADCAST JOIN

Both data sets are partitioned on
different keys. If one of the data sets is
small, then the DBMS "broadcasts"
that data to all nodes.

R{id}

S{val}

id:1-100 R{id}

S{val}

id:101-200

val:1-50 val:51-100

S S

P1:R⨝S
P2:R⨝S

R⨝S

SELECT * FROM R JOIN S
 ON R.id = S.id

77

15-445/645 (Spring 2025)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

SELECT * FROM R JOIN S
 ON R.id = S.id

78

15-445/645 (Spring 2025)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

79

15-445/645 (Spring 2025)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

80

15-445/645 (Spring 2025)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

81

15-445/645 (Spring 2025)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

82

15-445/645 (Spring 2025)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

83

15-445/645 (Spring 2025)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S P2:R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

84

15-445/645 (Spring 2025)

SCENARIO #4 – SHUFFLE JOIN

Both data sets are not partitioned on the
join key. The DBMS copies/re-partitions
the data on-the-fly across nodes.
→ The repartitioned data copy is generally

deleted when the query is done.

R{name}

S{val}

name:A-M R{name}

S{val}

name:N-Z

val:1-50 val:51-100

id:1-100 S{id} id:101-200S{id}

P1:R⨝S
P2:R⨝S

R⨝S

R{id}id:1-100 R{id} id:101-200

SELECT * FROM R JOIN S
 ON R.id = S.id

85

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

86

Fact Dim

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

87

Fact Dim

Dim
semi

 = Π
id

 (σ
zip = 15213

 Dim)

Dimsemi

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

88

Fact Dim

Dim
semi

 = Π
id

 (σ
zip = 15213

 Dim)

Dimsemi

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

89

Fact Dim

Dim
semi

 = Π
id

 (σ
zip = 15213

 Dim)

Dimsemi

F-small = Fact ⋈ Dim
semi

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

90

Fact Dim

Dim
semi

 = Π
id

 (σ
zip = 15213

 Dim)

Dimsemi

F-small = Fact ⋈ Dim
semi

Factsmall

15-445/645 (Spring 2025)

SEMI-JOIN OPTIMIZATION

Before pulling data from another node,
send a semi-join filter to reduce data
movement.
→ Perform a join on the bare minimum data

needed to avoid unnecessary transfers.
→ Could use an approximate filter (Bloom Join).

SELECT Fact.price, Dim.*
 FROM Fact JOIN Dim
 ON Fact.id = Dim.id
 WHERE Dim.zip = 15213

91

Fact Dim
Factsmall

Result = Π
price

(Dim ⋈ Fact
small

)

15-445/645 (Spring 2025)

OBSERVATION

Direct communication between compute nodes
means the DBMS knows which nodes will
participate in query execution ahead of time.
But data skew can cause imbalances…

A better approach is to dynamically adjust compute
resources on the fly as a query executes.

32

15-445/645 (Spring 2025)

SHUFFLE PHASE

Redistribute of intermediate data
across nodes between query plan
pipelines.
→ Can repartition / rebalance data based on

observed data characteristics.

Some DBMSs support standalone
fault-tolerant shuffle services.
→ Example: You can replace Spark's built-in

in-memory shuffle implementation or
replace it with a separate service.

33

15-445/645 (Spring 2025)

SHUFFLE PHASE
34

Stage n

Shared-Disk

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Shuffle Nodes

15-445/645 (Spring 2025)

SHUFFLE PHASE
34

Stage n

Shared-Disk

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Shuffle Nodes

15-445/645 (Spring 2025)

SHUFFLE PHASE
34

Stage n

Shared-Disk

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Shuffle Nodes

hash
1
(key) % n

15-445/645 (Spring 2025)

SHUFFLE PHASE
34

Stage n

Shared-Disk

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Shuffle Nodes

hash
1
(key) % n

15-445/645 (Spring 2025)

SHUFFLE PHASE
34

Stage n

Shared-Disk

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Shuffle Nodes

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

hash
1
(key) % n

15-445/645 (Spring 2025)

SHUFFLE PHASE
34

Stage n

Shared-Disk

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Shuffle Nodes

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

hash
1
(key) % n

15-445/645 (Spring 2025)

SHUFFLE PHASE
34

Stage n

Shared-Disk

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Shuffle Nodes

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

hash
1
(key) % n

15-445/645 (Spring 2025)

SHUFFLE PHASE
34

Stage n

Shared-Disk

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Shuffle Nodes

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

hash
1
(key) % n

15-445/645 (Spring 2025)

SHUFFLE PHASE
34

Stage n

Shared-Disk

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Shuffle Nodes

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

hash
1
(key) % n

15-445/645 (Spring 2025)

CLOUD SYSTEMS

Vendors provide database-as-a-service (DBaaS)
offerings that are managed DBMS environments.

Newer systems are starting to blur the lines
between shared-nothing and shared-disk.
→ Example: You can do simple filtering on Amazon S3 before

copying data to compute nodes.

103

15-445/645 (Spring 2025)

CLOUD SYSTEMS

Approach #1: Managed DBMSs

→ No significant modification to the DBMS to be "aware"
that it is running in a cloud environment.

→ Examples: Most vendors

Approach #2: Cloud-Native DBMS

→ System designed explicitly to run in a cloud environment.
→ Usually based on a shared-disk architecture.
→ Examples: Snowflake, Google BigQuery

104

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

105

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

106

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

107

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

108

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage

109

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage

110

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage

111

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage
Buffer Pool

Page Table

112

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Storage

113

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Storage

114

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage

115

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage

Buffer Pool

Page Table

116

15-445/645 (Spring 2025)

SERVERLESS DATABASES

Rather than always maintaining compute resources
for each customer, a "serverless" DBMS evicts
tenants when they become idle.

Application
Server

Node

Storage

Buffer Pool

Page Table

117

15-445/645 (Spring 2025)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

118

15-445/645 (Spring 2025)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

119

15-445/645 (Spring 2025)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

CREATE TABLE foo (...);

120

15-445/645 (Spring 2025)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);

121

15-445/645 (Spring 2025)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);

122

15-445/645 (Spring 2025)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

INSERT INTO foo VALUES (...);

CREATE TABLE foo (...);

123

15-445/645 (Spring 2025)

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats.

Storage

Node

SELECT * FROM foo

124

15-445/645 (Spring 2025)

Data Lake

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats. Node

SELECT * FROM foo

125

15-445/645 (Spring 2025)

Data Lake

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats. Node

SELECT * FROM foo

126

15-445/645 (Spring 2025)

Data Lake

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats. Node

SELECT * FROM foo

127

15-445/645 (Spring 2025)

Data Lake

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats. Node

SELECT * FROM foo

128

15-445/645 (Spring 2025)

Data Lake

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats. Node

SELECT * FROM foo

129

15-445/645 (Spring 2025)

Data Lake

DATA LAKES

Repository for storing large amounts
of structured, semi-structured, and
unstructured data without having to
define a schema or ingest the data into
proprietary internal formats. Node

SELECT * FROM foo

130

15-445/645 (Spring 2025)

OLAP DBMS COMPONENTS

One recent trend of the last decade is the breakout
of OLAP DBMS components into standalone
services and libraries:
→ System Catalogs
→ Intermediate Representation
→ Query Optimizers
→ File Format / Access Libraries
→ Execution Engines / Fabrics

Lots of engineering challenges to make these
components interoperable + performant.

39

15-445/645 (Spring 2025)

SYSTEM CATALOGS

A DBMS tracks a database's schema (table, columns)
and data files in its catalog.
→ If the DBMS is on the data ingestion path, then it can

maintain the catalog incrementally.
→ If an external process adds data files, then it also needs to

update the catalog so that the DBMS is aware of them.

Notable implementations:
→ HCatalog
→ Google Data Catalog
→ Amazon Glue Data Catalog
→ Databricks Unity
→ Apache Iceberg

40

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/

15-445/645 (Spring 2025)

SYSTEM CATALOGS

A DBMS tracks a database's schema (table, columns)
and data files in its catalog.
→ If the DBMS is on the data ingestion path, then it can

maintain the catalog incrementally.
→ If an external process adds data files, then it also needs to

update the catalog so that the DBMS is aware of them.

Notable implementations:
→ HCatalog
→ Google Data Catalog
→ Amazon Glue Data Catalog
→ Databricks Unity
→ Apache Iceberg

40

https://cwiki.apache.org/confluence/display/Hive/HCatalog
https://cloud.google.com/data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/tables-described.html
https://www.databricks.com/product/unity-catalog
https://iceberg.apache.org/concepts/catalog/

15-445/645 (Spring 2025)

DATA FILE FORMATS

Most DBMSs use a proprietary on-disk binary file
format for their databases.
→ Think of the BusTub page types…

The only way to share data between systems is to
convert data into a common text-based format
→ Examples: CSV, JSON, XML

There are new open-source binary file formats that
make it easier to access data across systems.

134

https://github.com/cmu-db/bustub/tree/master/src/include/storage/page

15-445/645 (Spring 2025)

DATA FILE FORMATS

Apache Parquet

→ Compressed columnar storage from
Cloudera/Twitter

Apache ORC

→ Compressed columnar storage from
Apache Hive.

Apache CarbonData

→ Compressed columnar storage with
indexes from Huawei.

43

Apache Iceberg

→ Flexible data format that supports
schema evolution from Netflix.

HDF5

→ Multi-dimensional arrays for
scientific workloads.

Apache Arrow

→ In-memory compressed columnar
storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

15-445/645 (Spring 2025)

DATA FILE FORMATS

Apache Parquet

→ Compressed columnar storage from
Cloudera/Twitter

Apache ORC

→ Compressed columnar storage from
Apache Hive.

Apache CarbonData

→ Compressed columnar storage with
indexes from Huawei.

43

Apache Iceberg

→ Flexible data format that supports
schema evolution from Netflix.

HDF5

→ Multi-dimensional arrays for
scientific workloads.

Apache Arrow

→ In-memory compressed columnar
storage from Pandas/Dremio.

https://parquet.apache.org/
https://orc.apache.org/
https://carbondata.apache.org/
https://iceberg.apache.org/
https://arrow.apache.org/

15-445/645 (Spring 2025)

EXECUTION ENGINES

Standalone libraries for executing vectorized query
operators on columnar data.
→ Input is a DAG of physical operators.
→ Require external scheduling and orchestration.

Notable implementations:
→ Velox
→ DataFusion
→ Intel OAP

44

https://velox-lib.io/
https://arrow.apache.org/datafusion/
https://oap-project.github.io/

15-445/645 (Spring 2025)

CONCLUSION

The cloud has made the distributed OLAP DBMS
market flourish. Lots of vendors. Lots of money.

But more money, more data, more problems…

138

15-445/645 (Spring 2025)

NEXT CLASS

Final Review

139

