
Database
Systems

15-445/645 SPRING 2025  PROF. JIGNESH PATEL

Final Review &
Systems Potpourri



15-445/645 (Spring 2025)

ADMINISTRIVIA
Final Exam is on Monday, April 28, 2025, from 5:30pm- 8:30pm. 
→ Early exam will not be offered. Do not make travel plans.
→ Material: Lecture 12 – Lecture 24.
→ You can use the full 3 hours, though the exam is meant to be done in ~2 hours.

Last day to submit P4 (with late days and penalty) is April 30 

@ 11:59 pm

Course Evals: Would like your feedback. 
→ https://cmu.smartevals.com 
→ https://www.ugrad.cs.cmu.edu/ta/S25/feedback/

2

https://cmu.smartevals.com/
https://www.ugrad.cs.cmu.edu/ta/S25/feedback/


15-445/645 (Spring 2025)

OFFICE HOURS

Jignesh:

→ Thursday April 24th @ noon-2:00pm (GHC 9103)

All other TAs will have their office hours up to and 
including Saturday April 26th 

3



15-445/645 (Spring 2025)

FINAL EXAM

Where: Scaife Hall 105 and Scaife Hall 234. 
When: Monday, April 28, 2025, 5:30pm- 8:30pm. 

Come to Scaife Hall 105 first. 
Then, look at your seating assignment, which may 
assign you to Scaife Hall 234.

https://15445.courses.cs.cmu.edu/spring2025/final-guide.html

4

https://15445.courses.cs.cmu.edu/spring2025/final-guide.html


15-445/645 (Spring 2025)

FINAL EXAM

What to bring:

→ CMU ID
→ Pencil + Eraser (!!!)
→ Calculator (cellphone is okay)
→ One 8.5x11" page of handwritten notes (double-sided)

5



15-445/645 (Spring 2025)

STUFF BEFORE MID-TERM

SQL
Buffer Pool Management
Data Structures (Hash Tables, B+Trees)
Storage Models
Query Processing Models
Inter-Query Parallelism
Basic Understanding of BusTub Internals

6



15-445/645 (Spring 2025)

JOIN ALGORITHMS

Join Algorithms
→ Naïve Nested Loops 
→ Block Nested Loops
→ Index Nested Loops
→ Sort-Merge 
→ Hash Join: Simple, Partitioned, Hybrid Hash
→ Optimization using Bloom Filters
→ Cost functions 

7



15-445/645 (Spring 2025)

QUERY EXECUTION
Execution Models
→ Iterator
→ Materialized
→ Vector / Batch

Plan Processing: Push vs. Pull

Access Methods
→ Sequential Scan and various optimization
→ Index Scan, including multi-index scan
→ Issues with update queries

Expression Evaluation

8



15-445/645 (Spring 2025)

QUERY EXECUTION
Process Model

Parallel Execution
→ Inter Query Parallelism
→ Intra Query Parallelism: Intra-Operator: horizontal, vertical, and bushy

Parallel hash join, Exchange operator
→ Intra Query Parallelism: Inter-Operator, aka. pipelined parallelism

IO Parallelism

9



15-445/645 (Spring 2025)

QUERY OPTIMIZATION

Heuristics
→ Predicate Pushdown
→ Projection Pushdown
→ Nested Sub-Queries: Rewrite and Decompose

Statistics
→ Cardinality Estimation
→ Histograms

Cost-based search
→ Bottom-up vs. Top-Down

10



15-445/645 (Spring 2025)

TRANSACTIONS

ACID
Conflict Serializability:
→ How to check for correctness?
→ How to check for equivalence?

View Serializability
→ Difference with conflict serializability

Isolation Levels / Anomalies

11



15-445/645 (Spring 2025)

TRANSACTIONS

Two-Phase Locking
→ Strong Strict 2PL
→ Cascading Aborts Problem
→ Deadlock Detection & Prevention

Multiple Granularity Locking
→ Intention Locks
→ Understanding performance trade-offs
→ Lock Escalation (i.e., when is it allowed)

12



15-445/645 (Spring 2025)

TRANSACTIONS

Optimistic Concurrency Control
→ Read Phase
→ Validation Phase (Backwards vs. Forwards)
→ Write Phase

Multi-Version Concurrency Control
→ Version Storage / Ordering
→ Garbage Collection
→ Index Maintenance

13



15-445/645 (Spring 2025)

CRASH RECOVERY

Buffer Pool Policies:
→ STEAL vs. NO-STEAL
→ FORCE vs. NO-FORCE

Shadow Paging

Write-Ahead Logging
→ How it relates to buffer pool management
→ Logging Schemes (Physical vs. Logical)

14



15-445/645 (Spring 2025)

CRASH RECOVERY

Checkpoints
→ Non-Fuzzy vs. Fuzzy

ARIES Recovery
→ Dirty Page Table (DPT)
→ Active Transaction Table (ATT)
→ Analyze, Redo, Undo phases
→ Log Sequence Numbers
→ CLRs

15



15-445/645 (Spring 2025)

DISTRIBUTED DATABASES

System Architectures
Replication Schemes
Partitioning Schemes
Two-Phase Commit
Paxos
Distributed Query Execution
Distributed Join Algorithms
Semi-Join Optimization
Cloud Architectures

16



15-445/645 (Spring 2025)

TOPICS NOT ON EXAM!

Flash Talks
Seminar Talks
Details of specific database systems (e.g., Postgres)

17



15-445/645 (Spring 2025)

GOOGLE SPANNER

Google’s geo-replicated DBMS (>2011)
Schematized, semi-relational data model.
Decentralized shared-disk architecture.
Log-structured on-disk storage.
Concurrency Control:
→ Strict 2PL + MVCC + Multi-Paxos + 2PC
→ Externally consistent global write-transactions with 

synchronous replication.
→ Lock-free read-only transactions.

18



15-445/645 (Spring 2025)

SPANNER: CONCURRENCY CONTROL

MVCC + Strict 2PL with Wound-Wait Deadlock Prevention

DBMS ensures ordering through globally unique timestamps 
generated from atomic clocks and GPS devices.

Buffer writes in the client, and these are sent to the server at 
commit time.

Database is broken up into tablets (partitions):
→ Use Paxos to elect leader in tablet group.
→ Use 2PC for txns that span tablets.

19



15-445/645 (Spring 2025)

SPANNER TABLETS
P

a
x

o
s
 
G

r
o

u
p Tablet A 

Data Center 1

Tablet A

Data Center 2

Tablet A

Data Center 3

20



15-445/645 (Spring 2025)

SPANNER TABLETS
P

a
x

o
s
 
G

r
o

u
p Tablet A 

Data Center 1

Tablet A

Data Center 2

Tablet A

Data Center 3
Leader

21



15-445/645 (Spring 2025)

SPANNER TABLETS
P

a
x

o
s
 
G

r
o

u
p Tablet A 

Data Center 1

Tablet A

Data Center 2

Tablet A

Data Center 3
Leader

Writes + Reads

22



15-445/645 (Spring 2025)

SPANNER TABLETS
P

a
x

o
s
 
G

r
o

u
p Tablet A 

Data Center 1

Tablet A

Data Center 2

Tablet A

Data Center 3
Leader

Paxos Paxos

Writes + Reads

23



15-445/645 (Spring 2025)

SPANNER TABLETS
P

a
x

o
s
 
G

r
o

u
p Tablet A 

Data Center 1

Tablet A

Data Center 2

Tablet A

Data Center 3
Leader

Paxos Paxos

Writes + ReadsSnapshot Reads Snapshot Reads

24



15-445/645 (Spring 2025)

SPANNER TABLETS
P

a
x

o
s
 
G

r
o

u
p Tablet A 

Data Center 1

Tablet A

Data Center 2

Tablet A

Data Center 3
Leader

Paxos Paxos

Writes + ReadsSnapshot Reads Snapshot Reads

Tablet B-Z
Paxos Groups2PC

25



15-445/645 (Spring 2025)

SPANNER: TRANSACTION ORDERING

DBMS orders transactions based on physical "wall-
clock" time.
→ This is necessary to guarantee strict serializability.
→ If T1 finishes before T2, then T2 should see the result of T1.

Each Paxos group decides in what order 
transactions should be committed according to the 
timestamps.
→ If T1 commits at time1 and T2 starts at time2 > time1, then 

T1's timestamp should be less than T2's.

26



15-445/645 (Spring 2025)

TIME

SPANNER TRUETIME

The DBMS maintains a global wall-clock time 
across all data centers with bounded uncertainty.
Timestamps are intervals, not single values

22

earliest latest

TT.now()



15-445/645 (Spring 2025)

TIME

SPANNER TRUETIME

The DBMS maintains a global wall-clock time 
across all data centers with bounded uncertainty.
Timestamps are intervals, not single values

22

earliest latest

TT.now()

2*ε



15-445/645 (Spring 2025)

SPANNER: TRUETIME

Each data center has GPS and atomic clocks
→ These two provide fine-grained clock synchronization 

down to a few milliseconds.
→ Every 30 seconds, there is a maximum 7 ms difference.

Multiple sync daemons per data center
→ GPS and atomic clocks can fail in various conditions.
→ Sync daemons talk to each other within a data center as 

well as across data centers.

23



15-445/645 (Spring 2025)



15-445/645 (Spring 2025)

GOOGLE BIGQUERY (2011)

Originally developed as "Dremel" in 2006 as a side-
project for analyzing data artifacts generated from 
other tools.
→ The "interactive" goal means that they want to support ad 

hoc queries on in-situ data files.
→ Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk 
architecture built on top of GFS.
Released as public commercial product (BigQuery) 
in 2012.

25

https://cloud.google.com/bigquery


15-445/645 (Spring 2025)

BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage
Vectorized Query Processing
Shuffle-based Distributed Query Execution
Columnar Storage
→ Zone Maps / Filters
→ Dictionary + RLE Compression
→ Only Allows "Search" Inverted Indexes

Hash Joins Only
Heuristic Optimizer + Adaptive Optimizations

26



15-445/645 (Spring 2025)

BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage
Vectorized Query Processing
Shuffle-based Distributed Query Execution
Columnar Storage
→ Zone Maps / Filters
→ Dictionary + RLE Compression
→ Only Allows "Search" Inverted Indexes

Hash Joins Only
Heuristic Optimizer + Adaptive Optimizations

26



15-445/645 (Spring 2025)

BIGQUERY: IN-MEMORY SHUFFLE

The shuffle phases represent checkpoints in a 
query's lifecycle where that the coordinator makes 
sure that all tasks are completed.

Fault Tolerance / Straggler Avoidance:

→ If a worker does not produce a task's results within a 
deadline, the coordinator speculatively executes a 
redundant task.

Dynamic Resource Allocation:

→ Scale up / down the number of workers for the next stage 
depending size of a stage's output.

27



15-445/645 (Spring 2025)

BIGQUERY: IN-MEMORY SHUFFLE
28

Stage n

Distributed

File System

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

In-Memory

Storage

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r



15-445/645 (Spring 2025)

BIGQUERY: IN-MEMORY SHUFFLE
28

Stage n

Distributed

File System

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

In-Memory

Storage

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r



15-445/645 (Spring 2025)

BIGQUERY: IN-MEMORY SHUFFLE
28

Stage n

Distributed

File System

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

In-Memory

Storage

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r



15-445/645 (Spring 2025)

BIGQUERY: IN-MEMORY SHUFFLE
28

Stage n

Distributed

File System

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

In-Memory

Storage

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r



15-445/645 (Spring 2025)

BIGQUERY: IN-MEMORY SHUFFLE
28

Stage n

Distributed

File System

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

In-Memory

Storage

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r



15-445/645 (Spring 2025)

BIGQUERY: IN-MEMORY SHUFFLE
28

Stage n

Distributed

File System

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

In-Memory

Storage

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r



15-445/645 (Spring 2025)

BIGQUERY: IN-MEMORY SHUFFLE
28

Stage n

Distributed

File System

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

In-Memory

Storage

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Statistics



15-445/645 (Spring 2025)

BIGQUERY: IN-MEMORY SHUFFLE
28

Stage n

Distributed

File System

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

In-Memory

Storage

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Statistics



15-445/645 (Spring 2025)

BIGQUERY: IN-MEMORY SHUFFLE
28

Stage n

Distributed

File System

Stage n+1

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

In-Memory

Storage

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker
C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Worker

C
o
n
s
u
m
e
r

P
r
o
d
u
c
e
r

Statistics



15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker

Partition #1

Coordinator

Source: H.Ahmadi + A.Surna

Partition #2

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker

Partition #1

Coordinator

Source: H.Ahmadi + A.Surna

Partition #2

hash
1
(key)

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker

Partition #1

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash
1
(key)

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash
1
(key)

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash
1
(key)

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash
1
(key) hash

2
(key)

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash
1
(key) hash

2
(key)

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash
1
(key) hash

2
(key)

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash
1
(key) hash

2
(key)

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

Partition #2

hash
1
(key) hash

2
(key)

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

29

WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

Source: H.Ahmadi + A.Surna

Statistics

hash
1
(key) hash

2
(key)

https://youtu.be/Zk5_RcRg3nA


15-445/645 (Spring 2025)



15-445/645 (Spring 2025)

SNOWFLAKE (2013)

Managed OLAP DBMS written in C++.
→ Shared-disk architecture with aggressive compute-side 

local caching.
→ Written from scratch. Did not borrow components from 

existing systems.
→ Custom SQL dialect and client-server network protocols.

The OG cloud-native data warehouse.

31

THE SNOWFLAKE ELASTIC DATA 
WAREHOUSE
SIGMOD 2016



15-445/645 (Spring 2025)

SNOWFLAKE (2013)

Managed OLAP DBMS written in C++.
→ Shared-disk architecture with aggressive compute-side 

local caching.
→ Written from scratch. Did not borrow components from 

existing systems.
→ Custom SQL dialect and client-server network protocols.

The OG cloud-native data warehouse.

31

THE SNOWFLAKE ELASTIC DATA 
WAREHOUSE
SIGMOD 2016



15-445/645 (Spring 2025)

SNOWFLAKE: OVERVIEW

Cloud-native OLAP DBMS written in C++
Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing
Precompiled Operator Primitives
Separate Table Data from Meta-Data
No Buffer Pool
PAX Columnar Storage

32



15-445/645 (Spring 2025)

SNOWFLAKE: QUERY PROCESSING

Snowflake is a push-based vectorized engine that 
uses precompiled primitives for operator kernels.
→ Pre-compile variants using C++ templates for different 

vector data types.
→ Only uses codegen (via LLVM) for tuple 

serialization/deserialization between workers.

Does not support partial query retries
→ If a worker fails, then the entire query has to restart.

33



15-445/645 (Spring 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering, 
Snowflake's optimizer identifies 
aggregation operators to push down 
into the plan below joins.

The optimizer adds the downstream 
aggregations but then the DBMS only 
enables them at runtime according to 
statistics observed during execution.

34

Source: Bowei Chen

Aggregation

TableScan(b)TableScan(a)

Join

https://www.linkedin.com/in/bowei-chen-9a2b54126/


15-445/645 (Spring 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering, 
Snowflake's optimizer identifies 
aggregation operators to push down 
into the plan below joins.

The optimizer adds the downstream 
aggregations but then the DBMS only 
enables them at runtime according to 
statistics observed during execution.

34

Source: Bowei Chen

Aggregation

TableScan(b)TableScan(a)

Join

https://www.linkedin.com/in/bowei-chen-9a2b54126/


15-445/645 (Spring 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering, 
Snowflake's optimizer identifies 
aggregation operators to push down 
into the plan below joins.

The optimizer adds the downstream 
aggregations but then the DBMS only 
enables them at runtime according to 
statistics observed during execution.

34

Source: Bowei Chen

Aggregation

TableScan(b)

TableScan(a)

Join

AggChild

https://www.linkedin.com/in/bowei-chen-9a2b54126/


15-445/645 (Spring 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering, 
Snowflake's optimizer identifies 
aggregation operators to push down 
into the plan below joins.

The optimizer adds the downstream 
aggregations but then the DBMS only 
enables them at runtime according to 
statistics observed during execution.

34

Source: Bowei Chen

Aggregation

TableScan(b)

TableScan(a)

Join

AggParent

AggChild

https://www.linkedin.com/in/bowei-chen-9a2b54126/


15-445/645 (Spring 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering, 
Snowflake's optimizer identifies 
aggregation operators to push down 
into the plan below joins.

The optimizer adds the downstream 
aggregations but then the DBMS only 
enables them at runtime according to 
statistics observed during execution.

34

Source: Bowei Chen

Aggregation

TableScan(b)

TableScan(a)

Join

AggParent

AggChild

https://www.linkedin.com/in/bowei-chen-9a2b54126/


15-445/645 (Spring 2025)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a 
large amount of data, then the DBMS 
can temporarily deploy additional 
worker nodes to accelerate its 
performance.

Flexible compute worker nodes write 
results to storage as if it was a table.

35

Source: Libo Wang

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

https://youtu.be/xnuv6vr8USE


15-445/645 (Spring 2025)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a 
large amount of data, then the DBMS 
can temporarily deploy additional 
worker nodes to accelerate its 
performance.

Flexible compute worker nodes write 
results to storage as if it was a table.

35

Source: Libo Wang

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

Large

Scan

https://youtu.be/xnuv6vr8USE


15-445/645 (Spring 2025)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a 
large amount of data, then the DBMS 
can temporarily deploy additional 
worker nodes to accelerate its 
performance.

Flexible compute worker nodes write 
results to storage as if it was a table.

35

Source: Libo Wang

Filter

JoinFilter

GroupBy

TableScan

Insert

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

TableScan

GroupBy

UnionAll

https://youtu.be/xnuv6vr8USE


15-445/645 (Spring 2025)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a 
large amount of data, then the DBMS 
can temporarily deploy additional 
worker nodes to accelerate its 
performance.

Flexible compute worker nodes write 
results to storage as if it was a table.

35

Source: Libo Wang

Filter

JoinFilter

GroupBy

TableScan

Insert

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

TableScan

GroupBy

UnionAll

Scale Out on

Flexible Compute

https://youtu.be/xnuv6vr8USE


15-445/645 (Spring 2025)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a 
large amount of data, then the DBMS 
can temporarily deploy additional 
worker nodes to accelerate its 
performance.

Flexible compute worker nodes write 
results to storage as if it was a table.

35

Source: Libo Wang

Filter

JoinFilter

GroupBy

TableScan

Insert

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

TableScan

GroupBy

UnionAll

Scale Out on

Flexible Compute

Materialize 

Result to Storage

https://youtu.be/xnuv6vr8USE


15-445/645 (Spring 2025)



15-445/645 (Spring 2025)

AMAZON REDSHIFT (2014)

Amazon's flagship OLAP DBaaS.
→ Based on ParAccel's original shared-nothing architecture. 
→ Switched to support disaggregated storage (S3) in 2017.
→ Added serverless deployments in 2022.

Redshift is a more traditional data warehouse  
compared to BigQuery/Spark where it wants to 
control all the data.
Overarching design goal is to remove as much 
administration + configuration choices from users.

37

AMAZON REDSHIFT RE-INVENTED
SIGMOD 2022

https://aws.amazon.com/about-aws/whats-new/2022/07/amazon-redshift-serverless-generally-available/


15-445/645 (Spring 2025)

REDSHIFT: OVERVIEW

Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing
Transpilation Query Codegen (C++)
Precompiled Primitives
Compute-side Caching
PAX Columnar Storage
Sort-Merge + Hash Joins
Hardware Acceleration (AQUA)
Stratified Query Optimizer

38



15-445/645 (Spring 2025)

REDSHIFT: OVERVIEW

Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing
Transpilation Query Codegen (C++)
Precompiled Primitives
Compute-side Caching
PAX Columnar Storage
Sort-Merge + Hash Joins
Hardware Acceleration (AQUA)
Stratified Query Optimizer

38



15-445/645 (Spring 2025)

REDSHIFT: COMPILATION SERVICE

Separate nodes to compile query plans using GCC 
and aggressive caching. 
→ DBMS checks whether a compiled version of each 

templated fragment already exists in customer's local cache.
→ If fragment does not exist in the local cache, then it checks 

a global cache for the entire fleet of Redshift customers.

Background workers proactively recompile plans 
when new version of DBMS is released.

39



15-445/645 (Spring 2025)

REDSHIFT: HARDWARE ACCELERATION

AWS introduced the AQUA 
(Advanced Query Accelerator) for 
Redshift (Spectrum?) in 2021.

Separate compute/cache nodes that 
use FPGAs to evaluate predicates.

AQUA was phased out and replaced 
with Nitro cards on compute nodes

40

S
t
o

r
a

g
e

W
o

r
k

e
r

A
Q

U
A

W
o

r
k

e
r



15-445/645 (Spring 2025)

REDSHIFT: HARDWARE ACCELERATION

AWS introduced the AQUA 
(Advanced Query Accelerator) for 
Redshift (Spectrum?) in 2021.

Separate compute/cache nodes that 
use FPGAs to evaluate predicates.

AQUA was phased out and replaced 
with Nitro cards on compute nodes

40

S
t
o

r
a

g
e

W
o

r
k

e
r

A
Q

U
A

W
o

r
k

e
r

WHERE name LIKE '%abc%'



15-445/645 (Spring 2025)

REDSHIFT: HARDWARE ACCELERATION

AWS introduced the AQUA 
(Advanced Query Accelerator) for 
Redshift (Spectrum?) in 2021.

Separate compute/cache nodes that 
use FPGAs to evaluate predicates.

AQUA was phased out and replaced 
with Nitro cards on compute nodes

40

S
t
o

r
a

g
e

W
o

r
k

e
r

A
Q

U
A

W
o

r
k

e
r

WHERE name LIKE '%abc%'

GET



15-445/645 (Spring 2025)



15-445/645 (Spring 2025)

DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded 
into Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's 

DataFrame API.
→ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw / 
uncurated" files in a data lake.

42

PHOTON: A FAST QUERY ENGINE FOR 
LAKEHOUSE SYSTEMS
SIGMOD 2022

https://en.wikipedia.org/wiki/Java_Native_Interface


15-445/645 (Spring 2025)

DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded 
into Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's 

DataFrame API.
→ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw / 
uncurated" files in a data lake.

42

PHOTON: A FAST QUERY ENGINE FOR 
LAKEHOUSE SYSTEMS
SIGMOD 2022

https://en.wikipedia.org/wiki/Java_Native_Interface


15-445/645 (Spring 2025)

PHOTON: OVERVIEW

Shared-Disk / Disaggregated Storage
Pull-based Vectorized Query Processing
Precompiled Primitives + Expression Fusion
Shuffle-based Distributed Query Execution
Sort-Merge + Hash Joins
Unified Query Optimizer + Adaptive Optimizations

43



15-445/645 (Spring 2025)

PHOTON: OVERVIEW

Shared-Disk / Disaggregated Storage
Pull-based Vectorized Query Processing
Precompiled Primitives + Expression Fusion
Shuffle-based Distributed Query Execution
Sort-Merge + Hash Joins
Unified Query Optimizer + Adaptive Optimizations

43



15-445/645 (Spring 2025)

PHOTON: VECTORIZED PROCESSING

Photon is a pull-based vectorized engine that uses 
precompiled operator kernels (primitives).
→ Converts physical plan into a list of pointers to functions 

that perform low-level operations on column batches.

Databricks: It is easier to build/maintain a 
vectorized engine than a JIT engine.
→ Engineers spend more time creating specialized codepaths 

to get closer to JIT performance.
→ With codegen, engineers write tooling and observability 

hooks instead of writing the engine.

44



15-445/645 (Spring 2025)

SELECT * FROM foo
 WHERE cdate BETWEEN '2024-01-01' AND '2024-04-01';

PHOTON: EXPRESSION FUSION
45



15-445/645 (Spring 2025)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
   AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION
45



15-445/645 (Spring 2025)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
   AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION
45

foo

cdate >= '2024-01-01'
  AND
cdate <= '2024-04-01'

s



15-445/645 (Spring 2025)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
   AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION
45

foo

cdate >= '2024-01-01'
  AND
cdate <= '2024-04-01'

s

vec<offset> sel_geq_date(vec<date> batch, date val) {
  vec<offset> positions;   
  for (offset i = 0; i < batch.size(); i++)
    if (batch[i] >= val) positions.append(i);
  return (positions);
}

vec<offset> sel_leq_date(vec<date> batch, date val) {
  vec<offset> positions;   
  for (offset i = 0; i < batch.size(); i++)
    if (batch[i] <= val) positions.append(i);
  return (positions);
}



15-445/645 (Spring 2025)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
   AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION
45

foo

cdate >= '2024-01-01'
  AND
cdate <= '2024-04-01'

s
vec<offset> sel_between_dates(vec<date> batch,
                              date low, date high) {
  vec<offset> positions;   
  for (offset i = 0; i < batch.size(); i++)
    if (batch[i] >= low && batch[i] <= high)
      positions.append(i);
  return (positions);
}



15-445/645 (Spring 2025)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
   AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION
45

foo

cdate >= '2024-01-01'
  AND
cdate <= '2024-04-01'

s
vec<offset> sel_between_dates(vec<date> batch,
                              date low, date high) {
  vec<offset> positions;   
  for (offset i = 0; i < batch.size(); i++)
    if (batch[i] >= low && batch[i] <= high)
      positions.append(i);
  return (positions);
}



15-445/645 (Spring 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number 
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid 

one partitioning from filling up too much.

After the shuffle completes, the 
DBMS then combines underutilized 
partitions using heuristics.

46

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

https://youtu.be/Xb2zm4-F1HI


15-445/645 (Spring 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number 
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid 

one partitioning from filling up too much.

After the shuffle completes, the 
DBMS then combines underutilized 
partitions using heuristics.

46

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

https://youtu.be/Xb2zm4-F1HI


15-445/645 (Spring 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number 
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid 

one partitioning from filling up too much.

After the shuffle completes, the 
DBMS then combines underutilized 
partitions using heuristics.

46

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

https://youtu.be/Xb2zm4-F1HI


15-445/645 (Spring 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number 
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid 

one partitioning from filling up too much.

After the shuffle completes, the 
DBMS then combines underutilized 
partitions using heuristics.

46

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1

https://youtu.be/Xb2zm4-F1HI


15-445/645 (Spring 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number 
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid 

one partitioning from filling up too much.

After the shuffle completes, the 
DBMS then combines underutilized 
partitions using heuristics.

46

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1

https://youtu.be/Xb2zm4-F1HI


15-445/645 (Spring 2025)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number 
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid 

one partitioning from filling up too much.

After the shuffle completes, the 
DBMS then combines underutilized 
partitions using heuristics.

46

Worker

Source: Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1 Partition #2 Partition #5

https://youtu.be/Xb2zm4-F1HI


15-445/645 (Spring 2025)



15-445/645 (Spring 2025)

DUCKDB (2019)

Multi-threaded embedded (in-process, serverless) 
DBMS that executes SQL over disparate data files.
→ PostgreSQL-like dialect with quality-of-life enhancements.
→ "SQLite for Analytics"

Provides zero-copy access to query results via 
Arrow to client code running in same process.

The core DBMS is nearly all custom C++ code with 
little to no third-party dependencies.
→ Relies on extensions ecosystem to expand capabilities.

48



15-445/645 (Spring 2025)

DUCKDB (2019)

Multi-threaded embedded (in-process, serverless) 
DBMS that executes SQL over disparate data files.
→ PostgreSQL-like dialect with quality-of-life enhancements.
→ "SQLite for Analytics"

Provides zero-copy access to query results via 
Arrow to client code running in same process.

The core DBMS is nearly all custom C++ code with 
little to no third-party dependencies.
→ Relies on extensions ecosystem to expand capabilities.

48



15-445/645 (Spring 2025)

DUCKDB: OVERVIEW

Shared-Everything
Push-based Vectorized Query Processing
Precompiled Primitives
Multi-Version Concurrency Control
Morsel Parallelism + Scheduling
PAX Columnar Storage
Sort-Merge + Hash Joins
Stratified Query Optimizer

49



15-445/645 (Spring 2025)

DUCKDB: OVERVIEW

Shared-Everything
Push-based Vectorized Query Processing
Precompiled Primitives
Multi-Version Concurrency Control
Morsel Parallelism + Scheduling
PAX Columnar Storage
Sort-Merge + Hash Joins
Stratified Query Optimizer

49



15-445/645 (Spring 2025)

DUCKDB: PUSH-BASED PROCESSING

System originally used pull-based vectorized query 
processing but found it unwieldly to expand to 
support more complex parallelism.
→ Cannot invoke multiple pipelines simultaneously.

Switched to a push-based query processing model in 
2021. Each operator determines whether it will 
execute in parallel on its own instead of a 
centralized executor.

50



15-445/645 (Spring 2025)

DUCKDB: PUSH-BASED PROCESSING

System originally used pull-based vectorized query 
processing but found it unwieldly to expand to 
support more complex parallelism.
→ Cannot invoke multiple pipelines simultaneously.

Switched to a push-based query processing model in 
2021. Each operator determines whether it will 
execute in parallel on its own instead of a 
centralized executor.

50



15-445/645 (Spring 2025)

DUCKDB: VECTORS

Custom internal vector layout for intermediate 
results that is compatible with Velox.
Supports multiple vector types:

51

Source: Mark Raasveldt

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-445/645 (Spring 2025)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector 
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

52

Source: Mark Raasveldt

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-445/645 (Spring 2025)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector 
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

52

Source: Mark Raasveldt

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-445/645 (Spring 2025)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector 
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

52

Source: Mark Raasveldt

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-445/645 (Spring 2025)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector 
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

52

Source: Mark Raasveldt

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-445/645 (Spring 2025)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector 
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

52

Source: Mark Raasveldt

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-445/645 (Spring 2025)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector 
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

52

Source: Mark Raasveldt

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-445/645 (Spring 2025)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector 
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

52

Source: Mark Raasveldt

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21


15-445/645 (Spring 2025)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector 
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

52

Source: Mark Raasveldt

Unified

Vector

Format

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

