Carnegie Mellon University

Database
Systems

Final Review &
Systems Potpourri

15-445/645 SPRING 2025)) PROF. JIGNESH PATEL

ADMINISTRIVIA
Final Exam is on Monday, April 28, 2025, from 5:30pm- 8:30pm.

— Early exam will not be offered. Do not make travel plans.
— Material: Lecture 12 — Lecture 24.
— You can use the full 3 hours, though the exam is meant to be done in ~2 hours.

Last day to submit P4 (with late days and penalty) is April 30
@ 11:59 pm

Course Evals: Would like your feedback.

— https://cmu.smartevals.com
— https://www.ugrad.cs.cmu.edu/ta/S25/feedback/

$ZCMU-DB

15-445/645 (Spring 2025)

https://cmu.smartevals.com/
https://www.ugrad.cs.cmu.edu/ta/S25/feedback/

£CMU-DB

15-445/645 (Spring 2025)

OFFICE HOURS

Jignesh:
— Thursday April 24" @ noon-2:00pm (GHC 9103)

All other TAs will have their office hours up to and
including Saturday April 26

$ZCMU-DB

15-445/645 (Spring 2025)

FINAL EXAM

Where: Scaife Hall 105 and Scaife Hall 234.
When: Monday, April 28, 2025, 5:30pm- 8:30pm.

Come to Scaife Hall 105 first.

Then, look at your seating assignment, which may
assign you to Scaife Hall 234.

https://15445.courses.cs.cmu.edu/spring2025/final-guide.html

£CMU-DB

15-445/645 (Spring 2025)

FINAL EXAM

What to bring:

— CMU ID

— Pencil + Eraser (1!!)

— Calculator (cellphone is okay)

— One 8.5x11" page of handwritten notes (double-sided)

STUFF BEFORE MID-TERM

SQL

Bufter Pool Management

Data Structures (Hash Tables, B+Trees)
Storage Models

Query Processing Models

Inter-Query Parallelism

Basic Understanding of BusTub Internals

£CMU-DB

15-445/645 (Spring 2025)

JOIN ALGORITHMS

Join Algorithms

— Naive Nested Loops

— Block Nested Loops

— Index Nested Loops

— Sort-Merge

— Hash Join: Simple, Partitioned, Hybrid Hash
— Optimization using Bloom Filters

— Cost functions

£CMU-DB

15-445/645 (Spring 2025)

QUERY EXECUTION

Execution Models
— [terator

— Materialized
— Vector / Batch

Plan Processing: Push vs. Pull

Access Methods

— Sequential Scan and various optimization
— Index Scan, including multi-index scan
— Issues with update queries

Expression Evaluation

£CMU-DB

15-445/645 (Spring 2025)

QUERY EXECUTION
Process Model

Parallel Execution

— Inter Query Parallelism

— Intra Query Parallelism: Intra-Operator: horizontal, vertical, and bushy
Parallel hash join, Exchange operator

— Intra Query Parallelism: Inter-Operator, aka. pipelined parallelism

IO Parallelism

£CMU-DB

15-445/645 (Spring 2025)

QUERY OPTIMIZATION

Heuristics

— Predicate Pushdown

— Projection Pushdown

— Nested Sub-Queries: Rewrite and Decompose

Statistics

— Cardinality Estimation
— Histograms

Cost-based search
— Bottom-up vs. Top-Down

£CMU-DB

15-445/645 (Spring 2025)

£CMU-DB

15-445/645 (Spring 2025)

TRANSACTIONS

ACID

Conflict Serializability:
— How to check for correctness?
— How to check for equivalence?

View Serializability
— Difference with conflict serializability

I[solation Levels / Anomalies

TRANSACTIONS

Two-Phase Locking
— Strong Strict 2PL

— (Cascading Aborts Problem
— Deadlock Detection & Prevention

Multiple Granularity Locking

— Intention Locks

— Understanding performance trade-offs
— Lock Escalation (i.e., when is it allowed)

£CMU-DB

15-445/645 (Spring 2025)

TRANSACTIONS

Optimistic Concurrency Control
— Read Phase

— Validation Phase (Backwards vs. Forwards)
— Write Phase

Multi-Version Concurrency Control
— Version Storage / Ordering

— Garbage Collection

— Index Maintenance

£CMU-DB

15-445/645 (Spring 2025)

CRASH RECOVERY

Buffer Pool Policies:
— STEAL vs. NO-STEAL
— FORCE vs. NO-FORCE

Shadow Paging

Write-Ahead Logging
— How it relates to buffer pool management
— Logging Schemes (Physical vs. Logical)

£CMU-DB

15-445/645 (Spring 2025)

CRASH RECOVERY

Checkpoints

— Non-Fuzzy vs. Fuzzy

ARIES Recovery

— Dirty Page Table (DPT)

— Active Transaction Table (ATT)
— Analyze, Redo, Undo phases

— Log Sequence Numbers

— CLRs

£CMU-DB

15-445/645 (Spring 2025)

DISTRIBUTED DATABASES

System Architectures
Replication Schemes
Partitioning Schemes
Two-Phase Commit

Paxos

Distributed Query Execution
Distributed Join Algorithms
Semi-Join Optimization
Cloud Architectures

£CMU-DB

15-445/645 (Spring 2025)

TOPICS NOT ON EXAM!

Flash Talks
Seminar Talks
Details of specific database systems (e.g., Postgres)

£CMU-DB

15-445/645 (Spring 2025)

GOOGLE SPANNER

Google’s geo-replicated DBMS (>2011)
Schematized, semi-relational data model.
Decentralized shared-disk architecture.
Log-structured on-disk storage.

Concurrency Control:

— Strict 2PL + MVCC + Multi-Paxos + 2PC

— Externally consistent global write-transactions with
synchronous replication.

— Lock-free read-only transactions.

£CMU-DB

15-445/645 (Spring 2025)

SPANNER: CONCURRENCY CONTROL
MV CC + Strict 2PL with Wound-Wait Deadlock Prevention

DBMS ensures ordering through globally unique timestamps
generated from atomic clocks and GPS devices.

Buffer writes in the client, and these are sent to the server at
commit time.

Database is broken up into tablets (partitions):

— Use Paxos to elect leader in tablet group.
— Use 2PC for txns that span tablets.

£CMU-DB

15-445/645 (Spring 2025)

SPANNER TABLETS

Tablet A Tablet A Tablet A

S B B

Data Center 1 Data Center 2 Data Center 3

Paxos Group

$ZCMU-DB

15-445/645 (Spring 2025)

SPANNER TABLETS

§" Tablet A Tablet A Tablet A
-
O
m
S
S
R
Data Center 1 Data Center 2 Data Center 3
Leader

$ZCMU-DB

15-445/645 (Spring 2025)

SPANNER TABLETS

Writes + Reads

¥

§" Tablet A Tablet A Tablet A
-
O
m
S
S
R
Data Center 1 Data Center 2 Data Center 3
Leader

$ZCMU-DB

15-445/645 (Spring 2025)

SPANNER TABLETS

Writes + Reads

¥

§" Tablet A Tablet A Tablet A
-
O
m
S
S
R
Data Center 1 Data Center 2 Data Center 3
Leader

$ZCMU-DB

15-445/645 (Spring 2025)

SPANNER TABLETS

Snapshot Reads Writes + Reads Snapshot Reads

‘

¥

§" Tablet A Tablet A Tablet A
-
O
m
S
S
R
Data Center 1 Data Center 2 Data Center 3
Leader

$ZCMU-DB

15-445/645 (Spring 2025)

SPANNER TABLETS

Tablet B-Z
2PC Paxos Groups

*

Snapshot Reads Writes + Reads Snapshot Reads

¥

Tablet A Tablet A Tablet A

Q
S
G
»
S
S
Ry
Data Center 1 Data Center 2 Data Center 3
Leader

$ZCMU-DB

15-445/645 (Spring 2025)

SPANNER: TRANSACTION ORDERING

DBMS orders transactions based on physical "wall-

clock" time.
— This is necessary to guarantee strict serializability.
— If T, finishes before T,, then T, should see the result of T,.

Each Paxos group decides in what order
transactions should be committed according to the

timestamps.
— If T, commits at time, and T, starts at time, > time,, then
T,'s timestamp should be less than T,'s.

£CMU-DB

15-445/645 (Spring 2025)

SPANNER TRUETIME

The DBMS maintains a global wall-clock time
across all data centers with bounded uncertainty.

Timestamps are intervals, not single values

| TT.now() |

earliest latest

$ZCMU-DB

15-445/645 (Spring 2025)

SPANNER TRUETIME

The DBMS maintains a global wall-clock time
across all data centers with bounded uncertainty.

Timestamps are intervals, not single values

| TT.now() |

earliest latest
>

<<
2%

$ZCMU-DB

15-445/645 (Spring 2025)

SPANNER: TRUETIME

Each data center has GPS and atomic clocks

— These two provide fine-grained clock synchronization
down to a few milliseconds.

— Every 30 seconds, there is a maximum 7 ms difference.

Multiple sync daemons per data center

— GPS and atomic clocks can fail in various conditions.

— Sync daemons talk to each other within a data center as
well as across data centers.

£CMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

GOOGLE BIGQUERY (2011)

Originally developed as "Dremel" in 2006 as a side-
project for analyzing data artifacts generated from

other tools.

— The "interactive" goal means that they want to support ad
hoc queries on in-situ data files.
— Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk
architecture built on top of GFS.

Released as public commercial product (BigQuery)
in 2012.

£CMU-DB

15-445/645 (Spring 2025)

https://cloud.google.com/bigquery

Qoogle
Big Query

BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage
Vectorized Query Processing
Shuftle-based Distributed Query Execution

Columnar Storage

— Zone Maps / Filters
— Dictionary + RLE Compression
— Only Allows "Search" Inverted Indexes

Hash Joins Only
Heuristic Optimizer + Adaptive Optimizations

£CMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage
Vectorized Query Processing
Shuftle-based Distributed Query Execution

Columnar Storage

— Zone Maps / Filters
— Dictionary + RLE Compression
— Only Allows "Search" Inverted Indexes

Hash Joins Only
Heuristic Optimizer + Adaptive Optimizations

£CMU-DB

15-445/645 (Spring 2025)

Google

BIGQUERY: IN-MEMORY SHUFFLE

The shuffle phases represent checkpoints in a
query's lifecycle where that the coordinator makes
sure that all tasks are completed.

Fault Tolerance / Straggler Avoidance:

— If a worker does not produce a task's results within a
deadline, the coordinator speculatively executes a
redundant task.

Dynamic Resource Allocation:

— Scale up / down the number of workers for the next stage
depending size of a stage's output.

£CMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

BIGQUERY: IN-MEMORY SHUFFLE

In-Memory

i—

H
$

@ @ Stagen+1

Distributed
File System

$ZCMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

BIGQUERY: IN-MEMORY SHUFFLE

In-Memory

@ @ Stagen+1

Distributed

File System
£2CMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

BIGQUERY: IN-MEMORY SHUFFLE

In-Memory

@ @ Stagen+1

Distributed

File System
£2CMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

BIGQUERY: IN-MEMORY SHUFFLE

In-Memory

i—

H
$

@ @ Stagen+1

Distributed
File System

$ZCMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

BIGQUERY: IN-MEMORY SHUFFLE

In-Memory

i—

H
$

@ @ Stagen+1

Distributed
File System

$ZCMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

BIGQUERY: IN-MEMORY SHUFFLE

In-Memory

i—

H
$

@ @ Stagen+1

Distributed
File System

$ZCMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

BIGQUERY: IN-MEMORY SHUFFLE

In-Memory
g E: % i Statistics

H
$

@ @ Stagen+1

Distributed
File System

$ZCMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

BIGQUERY: IN-MEMORY SHUFFLE

In-Memory
g E: % i Statistics

H 3 H

:] :

. -

%i iR > I
N s B

:E :

N S ol

‘ o : Worker :
:] 3 :

: 3 4 :

@ @ Stagem.]

Distributed
File System

$ZCMU-DB

15-445/645 (Spring 2025)

Qoogle
Big Query

BIGQUERY: IN-MEMORY SHUFFLE

In-Memory
g E: % i Statistics

B B
A i Worker : &5
\E
‘ N ¢ Worker : &5

@ @ Stagem.]

Distributed
File System

1 i Worker :

$ZCMU-DB

15-445/645 (Spring 2025)

@<= BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew. erition st Partiion 2

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their

partitioning scheme.

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

) Google
@ BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew. erition st Partiion 2

DBMS detects whether shuffle
partition gets too full and then hash,(key)
instructs workers to adjust their
partitioning scheme.

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

@<= BIGQUERY: DYNAMIC REPARTITIONING
i

Statistics

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then hash,(key)
instructs workers to adjust their
partitioning scheme.

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

@<= BIGQUERY: DYNAMIC REPARTITIONING
i

Statistics

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew. Parsivionst

Partition #2 Partition #3 Partition #4

DBMS detects whether shuffle
partition gets too full and then hash,(key)
instructs workers to adjust their
partitioning scheme.

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

@<= BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances Coordinator ‘m
and adjusts intermediate result Mt
partitioning to adapt to data skew. Y T —

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

hash,

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

@ BIGQUERY: DYNAMIC REPARTITIONING
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning to adapt to data SkeW. Partition# Partition#2 Partition#3 Partition #4

DBMS detects whether shuffle D i

partition gets too full and then hash(key) hash,(key)
instructs workers to adjust their
partitioning scheme.

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

@ BIGQUERY: DYNAMIC REPARTITIONING
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning to adapt to data SkeW. Partition# Partition#2 Partition#3 Partition #4

DBMS detects whether shuffle i i

partition gets too full and then hash(key) hash,(key)
instructs workers to adjust their
partitioning scheme.

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

@ BIGQUERY: DYNAMIC REPARTITIONING
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning tO adapt tO data SkeW. Partition#1 Partition#2 Partition#3 Partition #4

DBMS detects whether shuffle i i
partition gets too full and then hash,(key) hash(key)
instructs workers to adjust their

partitioning scheme.

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

@ BIGQUERY: DYNAMIC REPARTITIONING
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning tO adapt tO data SkeW. Partition#1 Partition#2 Partition#3 Partition #4

DBMS detects whether shuffle i

partition gets too full and then hash,(key)
instructs workers to adjust their

partitioning scheme.

Repartition

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

@ BIGQUERY: DYNAMIC REPARTITIONING
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning tO adapt tO data SkeW. Partition#1 Partition#2 Partition#3 Partition #4

DBMS detects whether shuffle i

partition gets too full and then hash,(key)
instructs workers to adjust their

partitioning scheme.

Repartition

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

@ BIGQUERY: DYNAMIC REPARTITIONING
BigQuery dynamically load balances m

and adjusts intermediate result Statistics
partitioning to adapt to data skew. Dot e

DBMS detects whether shuffle i

partition gets too full and then hash,(key)
instructs workers to adjust their

partitioning scheme.

Repartition

Source: H.Ahmadi + A.Surna

$ZCMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Zk5_RcRg3nA

snow flake

o

~

)
¢

SNOWFLAKE (2013)

Managed OLAP DBMS written in C++.

— Shared-disk architecture with aggressive compute-side
local caching.

— Written from scratch. Did not borrow components from
existing systems.

— Custom SQL dialect and client-server network protocols.

The OG cloud-native data warehouse.

=== | THE SNOWFLAKE ELASTIC DATA
WAREHOUSE
SIGMOD 2016

£CMU-DB

15-445/645 (Spring 2025)

WAREHOUSE
SIGMOD 2016

$ZCMU-DB

15-445/645 (Spring 2025)

“== | THE SNOWFLAKE ELASTIC DATA

SNOWFLAKE (

Managed OLAP DBMS written i :

— Shared-disk architecture with aggre:s
local caching.

— Written from scratch. Did not borry
existing systems.

— Custom SQL dialect and client-serv

The OG cloud-native data ware

%‘o‘& snowflake

) SNOWFLAKE: OVERVIEW

Cloud-native OLAP DBMS written in C++
Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing
Precompiled Operator Primitives

Separate Table Data from Meta-Data

No Buffer Pool

PAX Columnar Storage

£CMU-DB

15-445/645 (Spring 2025)

'

Seesnowflake SNOWFLAKE: QUERY PROCESSING

Snowflake is a push-based vectorized engine that

uses precompiled primitives for operator kernels.
— Pre-compile variants using C++ templates for different

vector data types.
— Only uses codegen (via LLVM) for tuple
serialization/deserialization between workers.

Does not support partial query retries
— If a worker fails, then the entire query has to restart.

£CMU-DB

15-445/645 (Spring 2025)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen

$ZCMU-DB

15-445/645 (Spring 2025)

Aggregation

TableScan(a)

TableScan(b)

https://www.linkedin.com/in/bowei-chen-9a2b54126/

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen

$ZCMU-DB

15-445/645 (Spring 2025)

Aggregation

TableScan(a)

TableScan(b)

https://www.linkedin.com/in/bowei-chen-9a2b54126/

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen

$ZCMU-DB

15-445/645 (Spring 2025)

Aggregation

TableScan(a)

AggChild

TableScan(b)

https://www.linkedin.com/in/bowei-chen-9a2b54126/

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

Source: Bowei Chen

$ZCMU-DB

15-445/645 (Spring 2025)

AggParent

TableScan(a)

AggChild

TableScan(b)

https://www.linkedin.com/in/bowei-chen-9a2b54126/

[1] Medium < (4 write

Aggregation Placement — An
After determining join order| Adantive Query Optimization
Snowflake's optimizer identif for Snowflake

aggregation operators to pusl e.

into the plan below joins. B

SNOWFLAKE: Ad

Bowei Chen - Follow
AN Published in Snowflake - 8minread - Aug 10,2023

Snowflake’s Data Cloud is backed by a data platform designed from the

The Optimizer addS the dOW]{ ground up to leverage cloud computing technology. The platform is delivered

as a fully managed service, providing a user-friendly experience to run

agg re g ati ons but then the DI complex analytical workloads easily and efficiently without the burden of

. managing on-premise infrastructure. Snowflake’s architecture separates the
enables them at runtlme dCC(compute layer from the storage layer. Compute workloads on the same

. . dataset can scale independently and run in isolation without interfering with
StatiStICS Observed durlng €X each other, and compute resources could be allocated and scaled on demand
within seconds. The cloud-native architecture makes Snowflake 2 powerful
platform for data warehousing, data engineering, data science, and many
other types of applications. More about Snowflake architecture can be found
in Key Concepts & Architecture documentation and the Snowflake Elastic
Source: Bowei Chen Data Warehouse research paper.

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.linkedin.com/in/bowei-chen-9a2b54126/

db

et SNOWEFLAKE: FLEXIBLE COMPUTE

HashJoinProbe

[f a query plan fragment will process a
large amount of data, then the DBMS HoshJoinBuild CTOES
can temporarily deploy additional
worker nodes to accelerate its

performance. TableScan

TableScan

Flexible compute worker nodes write
results to storage as if it was a table.

Source: Libo Wang
=CMU-DB

15-445/645 (Spring 2025)

https://youtu.be/xnuv6vr8USE

db

et SNOWEFLAKE: FLEXIBLE COMPUTE

HashJoinProbe

[f a query plan fragment will process a
large amount of data, then the DBMS HoshJoinBuild Groupsy [
can temporarily deploy additional
worker nodes to accelerate its
performance.

Large
Scan

TableScan

TableScan j

Flexible compute worker nodes write
results to storage as if it was a table.

Source: Libo Wang
=CMU-DB

15-445/645 (Spring 2025)

https://youtu.be/xnuv6vr8USE

db

et SNOWEFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a HashjoinProbe

large amount of data, then the DBMS HashjoinBuild

can temporarily deploy additional Filter UnionAll
worker nodes to accelerate its *

TableScan
performance.

Flexible compute worker nodes write
results to storage as if it was a table.

TableScan

TableScan

Source: Libo Wang
=CMU-DB

15-445/645 (Spring 2025)

https://youtu.be/xnuv6vr8USE

db

et SNOWEFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a HashjoinProbe

large amount of data, then the DBMS HashjoinBuild

can temporarily deploy additional Filter UnionAll
worker nodes to accelerate its *

TableScan
performance.

Flexible compute worker nodes write
results to storage as if it was a table.

TableScan

Scale Out on
Flexible Compute »

TableScan

Source: Libo Wang
=CMU-DB

15-445/645 (Spring 2025)

https://youtu.be/xnuv6vr8USE

db

segsnowflake
B SNOWFLAKE: FLEXIBLE COMPUTE

HashJoinProbe

[f a query plan fragment will process a
large amount of data, then the DBMS HashJoinBuild

can temporarily deploy additional Filter UnionAll
worker nodes to accelerate its *

TableScan TableScan
performance. N nlize

*, Result to Storage

Insert

Flexible compute worker nodes write “
results to storage as if it was a table.

Scale Out on
Flexible Compute »

GroupBy

TableScan

Source: Libo Wang
=CMU-DB

15-445/645 (Spring 2025)

https://youtu.be/xnuv6vr8USE

amazon
REDSHIFT

-
15-445/645 (Spring 2025)

o AMAZON REDSHIFT (2014)

Amazon's flagship OLAP DBaaS.

— Based on ParAccel's original shared-nothing architecture.
— Switched to support disaggregated storage (S3) in 2017.
— Added serverless deployments in 2022.

Redshift is a more traditional data warehouse
compared to BigQuery/Spark where it wants to
control all the data.

Overarching design goal is to remove as much
administration + configuration choices from users.

AMAZON REDSHIFT RE-INVENTED
SIGMOD 2022

£CMU-DB

15-445/645 (Spring 2025)

https://aws.amazon.com/about-aws/whats-new/2022/07/amazon-redshift-serverless-generally-available/

i e REDSHIFT: OVERVIEW

Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing
Transpilation Query Codegen (C++)
Precompiled Primitives

Compute-side Caching

PAX Columnar Storage

Sort-Merge + Hash Joins

Hardware Acceleration (AQUA)

Stratified Query Optimizer

£CMU-DB

15-445/645 (Spring 2025)

i e REDSHIFT: OVERVIEW

Shared-Disk / Disaggregated Storage
Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Precompiled Primitives

Compute-side Caching

PAX Columnar Storage
Sort-Merge + Hash Joins
Hardware Acceleration (AQUA)

Stratified Query Optimizer

$ZCMU-DB

15-445/645 (Spring 2025)

O REDSHIFT: COMPILATION SERVICE

Separate nodes to compile query plans using GCC

and aggressive caching.
— DBMS checks whether a compiled version of each

templated fragment already exists in customer's local cache.
— If fragment does not exist in the local cache, then it checks
a global cache for the entire fleet of Redshift customers.

Background workers proactively recompile plans
when new version of DBMS is released.

£CMU-DB

15-445/645 (Spring 2025)

W= REDSHIFT: HARDWARE ACCELERATION

AWS introduced the AQUA S o B =
(Advanced Query Accelerator) for § #%ﬂ § ﬁ_%ﬂ
Redshift (Spectrum?) in 2021.

Separate compute/cache nodes that § ------ = ey
use FPGAs to evaluate predicates. S| E’ EES E’ 20

AQUA was phased out and replaced

with Nitro cards on compute nodes o
JEISISISIS
A

$ZCMU-DB

15-445/645 (Spring 2025)

W= REDSHIFT: HARDWARE ACCELERATION

AWS introduced the AQUA § ------ § ------
(Advanced Query Accelerator) for § § #%ﬂ
Redshift (Spectrum?) in 2021. \vHERE M
Separate compute/cache nodes that S p e g
use FPGAs to evaluate predicates. 9,:’ E i E’ e

AQUA was phased out and replaced
with Nitro cards on compute nodes

$ZCMU-DB

15-445/645 (Spring 2025)

W= REDSHIFT: HARDWARE ACCELERATION

AWS introduced the AQUA § ------ § ------
(Advanced Query Accelerator) for § § #%ﬂ
Redshift (Spectrum?) in 2021. \vHERE M
Separate compute/cache nodes that S p e g
use FPGAs to evaluate predicates. 9,:’ E i E’ e

AQUA was phased out and replaced
with Nitro cards on compute nodes

$ZCMU-DB

15-445/645 (Spring 2025)

< databricks

$CMU-DB

15-445/645 (Spring 2025)

& databricks DATABRICKS PHOTON (2022)

Single-threaded C++ execution engine embedded
into Databricks Runtime (DBR) via JNI.

— Overrides existing engine when appropriate.

— Support both Spark’s earlier SQL engine and Spark's
DataFrame API.

— Seamlessly handle impedance mismatch between row-
oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

PHOTON: A FAST QUERY ENGINE FOR
LAKEHOUSE SYSTEMS
SIGMOD 2022

£CMU-DB

15-445/645 (Spring 2025)

https://en.wikipedia.org/wiki/Java_Native_Interface

< databricks DATABRICKS PHOTON (2022)

Photon: A Fast Query Engine for Lakehouse Systems

Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cashman, Ankur
Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Krishnan, Paul Leventis, Ala
Luszczak, Prashanth Menon, Mostafa Mokhtar, Gene Pang, Sameer Paranjpye, Greg Rahn, Bart

Samwel, Tom van Bussel, Herman van Hovell, Maryann Xue, Reynold Xin, Matei Zaharia
photon-paper-authors@databricks.com
Databricks Inc.

ABSTRACT from SQL to machine learning. Traditionally, for the most demand-
Many organizations are shifting to a data management paradigm ing SQL workloads, enterprises have also moved a curated subset
called the “Lakehouse,” which implements the functionality of struc- of their data into data warehouses to get high performance, gov-
tnred data wareholices An tan _of 1inetr: wetured data lakec Thig ernance and ConcurrenCV~ HOWeVer, thlS tWO'tier arChiteCture iS

PHOTON: A FAST QUERY ENGINE FOR
LAKEHOUSE SYSTEMS
SIGMOD 2022

£2CMU-DB

15-445/645 (Spring 2025)

https://en.wikipedia.org/wiki/Java_Native_Interface

< databricks

PHOTON: OVERVIEW

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing
Precompiled Primitives + Expression Fusion
Shuftle-based Distributed Query Execution
Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

£CMU-DB

15-445/645 (Spring 2025)

< databricks

PHOTON: OVERVIEW

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion
Shuftle-based Distributed Query Execution
Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

$ZCMU-DB

15-445/645 (Spring 2025)

< databricks PHOTON: VECTORIZED PROCESSING

Photon is a pull-based vectorized engine that uses

precompiled operator kernels (primitives).
— Converts physical plan into a list of pointers to functions
that perform low-level operations on column batches.

Databricks: It is easier to build/maintain a

vectorized engine than a JIT engine.

— Engineers spend more time creating specialized codepaths
to get closer to JIT performance.

— With codegen, engineers write tooling and observability
hooks instead of writing the engine.

£CMU-DB

15-445/645 (Spring 2025)

< databricks PHOTON: EXPRESSION FUSION

SELECT * FROM foo
WHERE cdate BETWEEN '2024-01-01' AND '2024-04-01';

$ZCMU-DB

15-445/645 (Spring 2025)

< databricks PHOTON: EXPRESSION FUSION

SELECT * FROM foo
WHERE cdate >= '2024-01-01'
AND cdate <= '2024-04-01';

£CMU-DB

15-445/645 (Spring 2025)

< databricks

PHOTON: EXPRESSION FUSION

SELECT * FROM foo
WHERE cdate >= '2024-01-01'
AND cdate <= '2024-04-01';

cdate >= '2024-01-01'
AND

I cdate <= '2024-04-01'

foo

$ZCMU-DB

15-445/645 (Spring 2025)

45
< databricks -

PHOTON: EXPRESSION FUSION

SELECT * FROM foo vec<offset> sel_geq_date(vec<date> batch, date val) {
WHERE cdate >= '2024-01-01" vec<offset> positions;
AND cdate <= '2024-04-01"'; for (offset i = 0; i < batch.size(); i++)

if (batch[i] >= val) positions.append(i);
return (positions);

3
cdate >= '2024-01-01"
AND
cdate <= '2024-04-01'

vec<offset> sel_leq_date(vec<date> batch, date val) {
vec<offset> positions;

f for (offset i = 0; i < batch.size(); i++)
oo if (batch[i] <= val) positions.append(i);
return (positions);
3

$ZCMU-DB

15-445/645 (Spring 2025)

< databricks

PHOTON: EXPRESSION FUSION

SELECT * FROM foo
WHERE cdate >= '2024-01-01'
AND cdate <= '2024-04-01';

vec<offset> sel_between_dates(vec<date> batch,
date low, date high) {

cdate >= '2024-01-01' vec<offset> positions;
AND —— for (offset i = 0; i < batch.size(); i++)
cdate == TozmeaTol if (batch[i] >= low & batch[i] <= high)

positions.append(i);
return (positions);

3

foo

$ZCMU-DB

15-445/645 (Spring 2025)

< databricks

PHOTON: EXPRESSION FUSION

SELECT * FROM foo
WHERE cdate >= '2024-01-01'
AND cdate <= '2024-04-01';

vec<offset> sel_between_dates(vec<date> batch,
date low, date high)|{

cdate >= '2024-01-01" vec<offset> pOSitiOﬂS;
AND —— for (offset i = 0; i < batch.size(); i++)
cdate == zozmeaTol if (batch[i] >= low & batch[i] <= high)

positions.append(i);
return (positions);

3

foo

$ZCMU-DB

15-445/645 (Spring 2025)

< databricks SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue
£CMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Xb2zm4-F1HI

< databricks SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Worker

Source: Maryann Xue
£CMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Xb2zm4-F1HI

< databricks SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue
=CMU-DB

15-445/645 (Spring 2025)

Partition #1

Partition #2

Partition #3

Partition #4

Partition #5

https://youtu.be/Xb2zm4-F1HI

< databricks SPARK: PARTITION COALESCING

Spark (over-)allocates a large number

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue
=CMU-DB

15-445/645 (Spring 2025)

Partition #1

Partition #1

Partition #2

Partition #3

Partition #4

Partition #5

https://youtu.be/Xb2zm4-F1HI

< databricks SPARK: PARTITION COALESCING

Spark (over-)allocates a large number .

of shuffle partitions for each stage.
— Number needs to be large enough to avoid
one partitioning from filling up too much.

Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue
=CMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Xb2zm4-F1HI

< databricks SPARK: PARTITION COALESCING

Spark (over-)allocates a large number T —

of shuffle partitions for each stage. . I

— Number needs to be large enough to avoid
Partition #1 Partition #2 Partition #3 Partition #4 Partition #5

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

Source: Maryann Xue
=CMU-DB

15-445/645 (Spring 2025)

https://youtu.be/Xb2zm4-F1HI

@ buckos DUCKDB (2019)

Multi-threaded embedded (in-process, serverless)

DBMS that executes SQL over disparate data files.

— PostgreSQL-like dialect with quality-of-life enhancements.
— "SQLite for Analytics"

Provides zero-copy access to query results via
Arrow to client code running in same process.

The core DBMS is nearly all custom C++ code with

little to no third-party dependencies.
— Relies on extensions ecosystem to expand capabilities.

£CMU-DB

15-445/645 (Spring 2025)

$ZCMU-DB

15-445/645 (Spring 2025)

Multi-threaded em}

DBMS that execute

— PostgreSQL-like dig

— "SQLite for Analyticll ° oo
: W Snowflake

Query Fraction
<)
)

Provides zero-copy
Arrow to client cod

The core DBMS is
little to no third-pj Data Scanned

| as

— Relies on extensio iR YRy IIyi

i DUCKDB: OVERVIEW

Shared-Everything

Push-based Vectorized Query Processing
Precompiled Primitives

Multi-Version Concurrency Control
Morsel Parallelism + Scheduling

PAX Columnar Storage

Sort-Merge + Hash Joins

Stratified Query Optimizer

£CMU-DB

15-445/645 (Spring 2025)

i DUCKDB: OVERVIEW

Shared-Everything
Push-based Vectorized Query Processing

Precompiled Primitives
Multi-Version Concurrency Control
Morsel Parallelism + Scheduling
PAX Columnar Storage

Sort-Merge + Hash Joins

Stratified Query Optimizer

$ZCMU-DB

15-445/645 (Spring 2025)

@™ DUCKDB: PUSH-BASED PROCESSING

System originally used pull-based vectorized query
processing but found it unwieldly to expand to

support more complex parallelism.
— Cannot invoke multiple pipelines simultaneously.

Switched to a push-based query processing model in
2021. Each operator determines whether it will
execute in parallel on its own instead of a
centralized executor.

£CMU-DB

15-445/645 (Spring 2025)

O puckos DUCKDB: PUSH-BASED E '.

Switch to Push-Based Execution Mode] #2 <> code ~

% Merged €« i

This PR implements

SllppOI't more Complex P foim

and switches to a Push-based execution model. A summary of the

$CMU-DB

15-445/645 (Spring 2025)

execute in parallel on its
centralized executor.

t:
mostly kept as-is. See below for more detail.

* Pipelines are no longer scheduled as-is. Instead, pipelines are s
are scheduled. See below for more detail.

* By default DuckDB will default to usin

plit up into "events" and events

g all available cores (i.e. 'PRAGMA threads=x is no longer

necessary unless you want to reduce the number of threads DuckDB uses).
* Several bugs related to parallelism are fixed (p
cases with the Python GIL).

rimarily relating to recursive CTEs and some edge

* UNION nodes now support parallelism
¢ FULL/RIGHT OUTER join probes now support parallelism
¢ Duplicate eliminated joins now support parallelism
* Whether or not an operator su
than centrally in the executor,

Pipelines can now be pretty-printed as we|
EXPLAIN output as well)

* Simplification for the Arrow scan - since parallel init js always called in the main thread the
extra lockfng/thread»checks are no longer required.

Custom internal vector layout for intermediate

results that is compatible with Velox.

Supports multiple vector types:

Flat Constant Dictionary
Uncompressed array All rows have the same value Map of indexes to dictionary
1 ol R
3 1 0 Dict a
1 0 a
4 1 b
5 1 | i
L — SelectionVector
Physical & Logical Physical LOgical Physical Logical

Source: Mark Raasveldt

$ZCMU-DB

15-445/645 (Spring 2025)

DUCKDB: VECTORS

Sequence
Base and increment

vs)
2
EEXIE

Increment

Physical Logical

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

i DUCKDB: VECTORS

DuckDB uses a unified format to process all vector

types without needing to decompress them first.
— Reduce # of specialized primitives per vector type

Source: Mark Raasveldt

£CMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

i DUCKDB: VECTORS

DuckDB uses a unified format to process all vector

types without needing to decompress them first.
— Reduce # of specialized primitives per vector type

Flat
Uncompressed array

apbwON =

Physical & Logical

Source: Mark Raasveldt

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

i DUCKDB: VECTORS

DuckDB uses a unified format to process all vector

types without needing to decompress them first.
— Reduce # of specialized primitives per vector type

Flat
Uncompressed array

apbwON =

Physical & Logical

¥

AL wON=

Source: Mark Raasveldt

$ZCMU-DB

15-445/645 (Spring 2025)

Data Selection

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

i DUCKDB: VECTORS

DuckDB uses a unified format to process all vector

types without needing to decompress them first.
— Reduce # of specialized primitives per vector type

Flat Constant
Uncompressed array All rows have the same value
1 i
2
3
4
5

Physical & Logical

¥

Physical Logical

AL wON=

Source: Mark Raasveldt

$ZCMU-DB

15-445/645 (Spring 2025)

Data Selection

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

i DUCKDB: VECTORS

DuckDB uses a unified format to process all vector

types without needing to decompress them first.
— Reduce # of specialized primitives per vector type

Flat Constant
Uncompressed array All rows have the same value
1 i
2
3
4
5

Physical & Logical

¥

Physical Logical

]

AL wON=
[eNeloNeNa)

Source: Mark Raasveldt

$ZCMU-DB

15-445/645 (Spring 2025)

Data Selection Data Selection

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

i DUCKDB: VECTORS

DuckDB uses a unified format to process all vector

types without needing to decompress them first.
— Reduce # of specialized primitives per vector type

Flat Constant Dictionary
Uncompressed array All rows have the same value Map of indexes to dictionary
1 7 BERNE
2 1 b
3 0 Dict a
4 0 a
1 b
5

SelectionVector
Physical & Logical

¥

Physical Logical Physical Logical

]

AL wON=
[eNeloNeNa)

Source: Mark Raasveldt

$ZCMU-DB

15-445/645 (Spring 2025)

Data Selection Data Selection

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

i DUCKDB: VECTORS

DuckDB uses a unified format to process all vector

types without needing to decompress them first.
— Reduce # of specialized primitives per vector type

Flat Constant Dictionary
Uncompressed array All rows have the same value Map of indexes to dictionary
1 7 BERNE
2 1 b
3 0 Dict a
4 0 a
1 b
5

SelectionVector
Physical & Logical

¥

Physical Logical Physical Logical

]

[eNeloNeNa)
(o]

AL wON=

Source: Mark Raasveldt

$ZCMU-DB

15-445/645 (Spring 2025)

Data Selection Data Selection Data Selection

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

i DUCKDB: VECTORS

DuckDB uses a unified format to process all vector

types without needing to decompress them first.
— Reduce # of specialized primitives per vector type

Flat Constant Dictionary
Uncompressed array All rows have the same value Map of indexes to dictionary

1 " BERNE

1 b
2

0 Dict a
3
4 0 a

1 b
5

SelectionVect
Physical & Logical Physical Logical R -

2 i 0 @ | Unified
3 o . VVector
: 0 Format
Source: Mark Raasveldt
Data Selection Data Selection Data Selectio

$ZCMU-DB

15-445/645 (Spring 2025)

https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

