Lecture #02: Modern SQL

15-445/645 Database Systems (Spring 2026)
https://15445.courses.cs.cmu.edu/fall2026/
Carnegie Mellon University
Andy Pavlo

1 SQL History

SQL is a declarative query language for relational databases. As oposed to imperative languages, in a
declarative language the programmer/user only declares what needs to be done as oposed to how the
operations should be done (e.g. Join these two tables). SQL was originally developed in the 1970s as part
of the IBM System R project. IBM originally called it “SEQUEL” (Structured English Query Language).
The name changed in the 1980s to just “SQL” (Structured Query Language).

Despite SQL being an old language, it is still being actively updated with new features every couple of
years. Some of the major updates released with each new edition of the SQL standard are shown below:

+ SQL:1999 Regular Expressions, Triggers, Object-Oriented features
« SQL:2003 XML, Windows, Sequences, Auto-Gen IDs

+ SQL:2008 Truncation, Fancy Sorting

+ SQL:2011 Temporal DBs, Pipelined DML

« SQL:2016 JSON, Polymorphic tables

+ SQL:2023 Property Graph Queries, Multi-Dimensional Arrays

The minimum language syntax a system needs to support in order to claim that it supports SQL is SQL-92.
Each vendor follows the standard to a certain degree and there are many proprietary extensions.

2 Relational Languages

The language is comprised of different classes of commands:

1. Data Manipulation Language (DML): SELECT, INSERT, UPDATE, and DELETE statements.

2. Data Definition Language (DDL): Schema definitions for tables, indexes, views, and other objects.
3. Data Control Language (DCL): Security and access controls.

4. Tt also includes view definition, integrity and referential constraints, and transactions.

Relational algebra (which is the algebra that SQL is based on) uses sets (unordered collections which do
not allow duplicates). However, SQL is based on bags (unordered collections which allow duplicates) to
avoid the extra work of removing duplicates by default. Duplicates can still be removed via features like
the DISTINCT keyword.


https://15445.courses.cs.cmu.edu/fall2026/
https://15445.courses.cs.cmu.edu/fall2026/
https://www.cs.cmu.edu/~pavlo/

Spring 2026 — Lecture #02 Modern SQL

3 Example Database

Here is the schema of a database we will use in our examples:

CREATE TABLE student (
sid INT PRIMARY KEY,
name VARCHAR(16),
login VARCHAR(32) UNIQUE,
age  SMALLINT,
gpa FLOAT

s

CREATE TABLE course (
cid VARCHAR(32) PRIMARY KEY,
name VARCHAR(32) NOT NULL

s

CREATE TABLE enrolled (
sid INT REFERENCES student (sid),
cid VARCHAR(32) REFERENCES course (cid),
grade CHAR(1)

s

Figure 1: Example database used for lecture

4 Aggregates

An aggregation function takes in a bag of tuples as its input and then produces a single scalar value as its
output. Aggregate functions can (almost) only be used in a SELECT output list.

« AVG(COL): The average of the values in COL

« MIN(COL): The minimum value in COL

o MAX(COL): The maximum value in COL

o SUM(COL): The sum of the values in COL

« COUNT(COL): The number of tuples in the relation

Example: Get # of students with a ‘@cs’ login.

The following three queries are equivalent:

SELECT COUNT(*) FROM student WHERE login LIKE '%@cs';

SELECT COUNT(login) FROM student WHERE login LIKE '%@cs';

SELECT COUNT(1) FROM student WHERE login LIKE '%@cs';

Some aggregate functions (e.g. COUNT, SUM, AVG) support the DISTINCT keyword:

Example: Get # of unique students and their average GPA with a ‘@cs’ login.

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs';

15-445/645 Database Systems
Page 2 of 9



https://15445.courses.cs.cmu.edu/fall2026/

Spring 2026 — Lecture #02 Modern SQL

A single SELECT statement can contain multiple aggregates:

Example: Get # of students and their average GPA with a ‘@cs’ login.

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs';

Output of other columns outside of an aggregate is undefined (e. cid is undefined below).

Example: Get the average GPA of students in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid;

Most real-world database systems will error in this case, but some systems such as SQLite will allow it
by picking an arbitrary value. The SQL: 2023 standard now supports the ANY_VALUE aggregation function
which does the same thing.

Example: Get the average GPA of students in each course.

SELECT AVG(s.gpa), ANY_VALUE(e.cid)
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid;

Non-aggregated values in SELECT output clause must appear in the GROUP BY clause. This will partition
the tuples based off of the value and calculate the aggregates for each subset. In this case there will be a
canonical value for each group.

Example: Get the average GPA of students in each course.

SELECT AVG(s.gpa), e.cid

FROM enrolled AS e JOIN student AS s
WHERE e.sid = s.sid

GROUP BY e.cid;

Grouping sets can be used to specify multiple groupings in a single query rather than using UNION on
multiple queries. This results in the DBMS needing to only scan through the data once rather than multiple
times.

Example: Get the count of students by each course and grade, the count of students by course, and the total
student count.

SELECT c.name AS c_name, e.grade,
COUNT(*) AS num_students
FROM enrolled AS e
JOIN course AS c ON e.cid = c.cid
GROUP BY GROUPING SETS (
(c.name, e.grade),
(c.name),

O,
F

15-445/645 Database Systems
Page 3 of 9



https://15445.courses.cs.cmu.edu/fall2026/

Spring 2026 — Lecture #02 Modern SQL

The FILTER clause filters results *before* aggregation computation (i.e. filter out rows going into the
aggregate function). This allows computing multiple aggregates on the same raw data but with different
conditions. It is helpful for pivoting rows to columns, among other things.

Example: Get the avg course grade of students enrolled in 15-445 and 15-721.

SELECT
AVG(s.gpa) FILTER(WHERE e.cid = '15-445') AS intro_db_avg_gpa,
AVG(s.gpa) FILTER(WHERE e.cid = '15-721') AS adv_db_avg_gpa
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

The HAVING clause filters output results based on aggregation computation (i.e. filters out groups as oposed
to filtering rows which is what the WHERE clause does). This makes HAVING behave like a WHERE clause for
a GROUP BY.

Example: Get the set of courses in which the average student GPA is greater than 3.9.

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid

GROUP BY e.cid

HAVING avg_gpa > 3.9;

Note: this example uses a legacy implicit join syntax (here the DBMS can deduce that a join is required to
handle the WHERE clause). You should always write out explicit joins in your queries.

The above query syntax is supported by many major database systems, but is not compliant with the SQL
standard. To make the query standard compliant, we must repeat use of AVG(S.GPA) in the body of the
HAVING clause.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;

5 String Operations

The SQL standard says that strings are case sensitive and single-quotes only. Real-world systems will
vary in how loose they are about both points (e.g. MySQL).

There are functions to manipulate strings that can be used in any part of a query.
Pattern Matching: The LIKE keyword is used for string matching in predicates.

« “%” matches any substrings (including empty).

«

_” matches any one character.

SIMILAR TO allows for regular expression matching but it is not supported across all systems as many
have their own syntax instead.

String Functions SQL-92 defines string functions. Many database systems implement other functions in
addition to those in the standard. Examples of standard string functions include SUBSTRING(S, B, E) and

15-445/645 Database Systems
Page 4 of 9



https://15445.courses.cs.cmu.edu/fall2026/

Spring 2026 — Lecture #02 Modern SQL

UPPER(S).

Concatenation: Two vertical bars (“| | ”) will concatenate two or more strings together into a single string
(but different systems might use a different symbol or implement it as a function).

6 Date and Time

Databases generally want to keep track of dates and time, so SQL supports operations to manipulate DATE
and TIME attributes. These can be used as either outputs or predicates.

Specific syntax for date and time operations can vary wildly across systems.

7 Output Control

Since results SQL are unordered, we must use the ORDER BY clause to impose a sort on tuples:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade;

The default sort order is ascending (ASC). We can manually specify DESC to reverse the order:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade DESC;

We can use multiple ORDER BY clauses to break ties or do more complex sorting:

SELECT sid, grade FROM enrolled WHERE cid = '15-721"
ORDER BY grade DESC, sid ASC;

We can also use any arbitrary expression in the ORDER BY clause:

SELECT sid FROM enrolled WHERE cid = '15-721'
ORDER BY UPPER(grade) DESC, sid + 1 ASC;

By default, the DBMS will return all of the tuples produced by the query. Many systems provide their own
syntax for specifying how to get a set number of the first results from the output, but a common one is the
LIMIT clause:

SELECT sid, name FROM student WHERE login LIKE '%@cs'
LIMIT 10;

We can also provide an offset to return a range in the results:

SELECT sid, name FROM student WHERE login LIKE '%@cs'
LIMIT 20 OFFSET 10;

Unless we use an ORDER BY clause with a LIMIT, the DBMS may produce different tuples in the result on
each invocation of the query because the relational model does not impose an ordering.

SQL also allows you to store query results into a different table with the INTO keyword (some systems
even allow redirection into a temporary table with INTO TEMPORARY).

15-445/645 Database Systems
Page 5 of 9



https://15445.courses.cs.cmu.edu/fall2026/

Spring 2026 — Lecture #02 Modern SQL

8 Output Redirection

Instead of having the result a query returned to the client (e.g., terminal), you can tell the DBMS to store
the results into another table. You can then access this data in subsequent queries.

« New Table: Store the output of the query into a new (permanent) table.

SELECT DISTINCT cid INTO Courselds FROM enrolled;

« Existing Table: Store the output of the query into a table that already exists in the database. The
target table must have the same number of columns with the same types as the target table, but the
names of the columns in the output query do not have to match.

INSERT INTO Courselds (SELECT DISTINCT cid FROM enrolled);

« Temporary Table: Store the output of the query into a temporary table created during the insertion.
This table can then be used until the client disconnects.

SELECT DISTINCT cid INTO TEMPORARY Courselds FROM enrolled;

9 Nested Queries

Nested queries invoke queries inside of other queries to execute more complex logic within a single query.
Nested queries are often difficult to optimize.

The scope of the outer query is included in an inner query (i.e. the inner query can access attributes from
outer query). The opposite is not true.

Inner queries can appear in almost any part of a query:

1. SELECT Output Targets:

SELECT (SELECT 1) AS one FROM student;

2. FROM Clause:

SELECT name
FROM student AS s, (SELECT sid FROM enrolled) AS e
WHERE s.sid = e.sid;

3. WHERE Clause:

SELECT name FROM student
WHERE sid IN ( SELECT sid FROM enrolled );

Example: Get the names of students that are enrolled in ‘15-445’.

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445"'

Pk

Note that sid has a different scope depending on where it appears in the query.

Example: Find student record with the highest id that is enrolled in at least one course.

15-445/645 Database Systems
Page 6 of 9


https://15445.courses.cs.cmu.edu/fall2026/

Spring 2026 — Lecture #02 Modern SQL

SELECT student.sid, name
FROM student
JOIN (SELECT MAX(sid) AS sid
FROM enrolled) AS max_e
ON student.sid = max_e.sid;

Nested Query Results Expressions:

+ ALL: Must satisfy expression for all rows in sub-query.

« ANY: Must satisfy expression for at least one row in sub-query.
« IN: Equivalent to =ANY ().

« EXISTS: At least one row is returned.

Example: Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

10 Lateral Joins

The LATERAL operator allows a nested query to reference attributes in other nested queries that precede it.
You can think of lateral joins like a for loop that allows you to invoke another query for each tuple in a
table.

Example: Calculate the number of students enrolled in each course and the average GPA. Sort by enrollment

count in descending order..

Once we have gotten the course records, we can think of this query like below. For each course:

« Compute the number of enrolled students in this course
« Compute the average GPA of the enrolled students in this course

SELECT * FROM course AS c
LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2;

11 Common Table Expressions

Common Table Expressions (CTEs) are an alternative to windows or nested queries when writing more
complex queries. They provide a way to write auxiliary statements for use in a larger query. A CTE can
be thought of as a temporary table that is scoped to a single query.

The WITH clause binds the output of the inner query to a temporary table with the same name.

15-445/645 Database Systems
Page 7 of 9


https://15445.courses.cs.cmu.edu/fall2026/

Spring 2026 — Lecture #02 Modern SQL

Example: Generate a CTE called cteName that contains a single tuple with a single attribute set to “1”. Select
all attributes from cteName.

WITH cteName AS (
SELECT 1

)
SELECT * FROM cteName;

We can bind output columns to names before the AS:

WITH cteName (coll, col2) AS (
SELECT 1, 2

)
SELECT coll + col2 FROM cteName;

A single query may contain multiple CTE declarations:

WITH ctel (coll) AS (SELECT 1), cte2 (col2) AS (SELECT 2)
SELECT * FROM ctel, cte2;

Adding the RECURSIVE keyword after WITH allows a CTE to reference itself. This enables the implementa-
tion of recursion in SQL queries. With recursive CTEs, SQL is provably Turing-complete, implying that it
is as computationally expressive as more general purpose programming languages (ignoring the fact that
it is a bit more cumbersome).

Example: Print the sequence of numbers from 1 to 10.

WITH RECURSIVE cteSource (counter) AS (
( SELECT 1 )
UNION
( SELECT counter + 1 FROM cteSource
WHERE counter < 10 )

)
SELECT * FROM cteSource;

12 Window Functions

A window function performs “sliding” calculation across a set of tuples that are related. Window functions
are similar to aggregations, but tuples are not collapsed into a singular output tuple.

The conceptual execution for window functions can be imagined as such (note that not all window functions
will behave like this):

1. The table is partitioned

2. Each partition is sorted (if there is an ORDER BY clause)

3. For each record, it creates a window spanning multiple records
4. Finally the output is computed for each window

Functions: The window function can be any of the aggregation functions that we discussed above. There
are also also special window functions:

1. ROW_NUMBER: The number of the current row.

15-445/645 Database Systems
Page 8 of 9



https://15445.courses.cs.cmu.edu/fall2026/

Spring 2026 — Lecture #02 Modern SQL

2. RANK: The order position of the current row.

Grouping: The OVER clause specifies how to group together tuples when computing the window function.
Use PARTITION BY to specify group.

SELECT cid, sid, ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled ORDER BY cid;

We can also put an ORDER BY within OVER to ensure a deterministic ordering of results even if database
changes internally.

SELECT *, ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled ORDER BY cid;

IMPORTANT: The DBMS computes RANK after the window function sorting, whereas it computes ROW_NUMBER
before the sorting.

Example: Find the student with the second highest grade for each course.

SELECT * FROM (
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking
WHERE ranking.rank = 2;

Note that we order by ASC because the grades are A, B, C instead of number grades.

15-445/645 Database Systems
Page 9 of 9


https://15445.courses.cs.cmu.edu/fall2026/

	SQL History
	Relational Languages
	Example Database
	Aggregates
	String Operations
	Date and Time
	Output Control
	Output Redirection
	Nested Queries
	Lateral Joins
	Common Table Expressions
	Window Functions

