Lecture #03: Database Storage (Part I)

15-445/645 Database Systems (Spring 2026)
https://15445.courses.cs.cmu.edu/spring2026/
Carnegie Mellon University
Andy Pavlo

1 Storage

In this class, we focus on a “disk-oriented” DBMS architecture that assumes that the primary storage
location of the database is on non-volatile disk(s). This is in contrast to “memory-oriented” DBMS, where
tables are stored in DRAM.

1.1 Storage Hierarchy

We illustrate the storage hierarchy for “disk-oriented” DBMS. devices that are closest to the CPU are at
the top of the storage hierarchy. This is the fastest storage, but it is also the smallest and most expensive.
The further you get away from the CPU, the larger but slower the storage devices get. These devices also
get cheaper per GB. There’s also a demarcation line in the middle of the hierarchy that separates volatile
devices from non-volatile devices.

in_cpu{ 14

L 2
Bl emry (a5
SSD

m Disk HDD
1

| Network Storage

Volatile Devices

« Volatile means that the device does not retain its state after power loss. Therefore, the data that is
stored in such devices can be lost.

« Volatile storage supports fast random access with byte-addressable locations. This means that the
program can jump to any byte address and get the data that is there (e.g. in DRAM).

« For our purposes, we will always refer to this volatile storage class as “memory.”

Non-Volatile Devices

» Non-volatile devices do retain their state even when the machine/computer is off or power loss
occurs. Therefore, the data that these devices store can be retrieved even after the machine/computer
shuts down and restarts (e.g. disk).

« Non-Volatile devices are block/page addressable. This means that in order to read a value at a par-
ticular offset (byte), the program first has to load the 4 KB page into memory that holds the value
that the program wants to read.

« Non-volatile storage is traditionally better at sequential access (reading contiguous blocks of data
because of its architecture e.g. magnetic hard drive).

« We will refer to this as “disk.” We will not make a (major) distinction between solid-state storage
(SSD) and spinning hard drives (HDD).

https://15445.courses.cs.cmu.edu/spring2026/
https://15445.courses.cs.cmu.edu/spring2026/
https://www.cs.cmu.edu/~pavlo/

£ 15-445/645 Database Systems (Spring 2026) #03: Database Storage (Part I)

2 Access Time and Access Pattern

There is a large contrast between latencies accessing volatile vs. non-volatile devices.

As an example to illustrate: suppose that reading data from the L1 cache reference took one second, then
reading from an SSD would take 4.4 hours, and reading from an HDD would take 3.3 weeks.

There are two major access patterns, random access and sequential access. As a general rule, this differ-
entiation does not contribute to latency when accessing volatile memory, but plays a significant role in
non-volatile memory accesses.

On real-world hardwares the differences between their access latencies are significant. Random access on
non-volatile storage is almost always slower than sequential access. The DBMS will always target max-
imizing sequential access. Some systems will avoid blocking on random writes by writing sequentially
into a buffer and later perform random disk writes in the background.

3 Disk-Oriented DBMS Overview

System Design Goals A design goal of the disk-oriented DBMS is to allow it to manage databases that
exceeds the amount of memory available. As this requires frequent data movement between memory and
disk, the DBMS should manage disk read and write carefully to avoid long stalls on disk I/O and maximize

sequential access when possible.

The database is stored on disk, and the data within the database files are organized into pages, with the
first page being the directory page.

To operate on the data, the DBMS needs to bring the data into memory. It does this by having a buffer pool
that manages the data movement back and forth between disk and memory.

The DBMS also has an execution engine that will execute queries. The execution engine will ask the buffer
pool for a specific page, and the buffer pool will take care of bringing that page into memory and giving
the execution engine a pointer to that page in memory. The buffer pool manager will ensure that the page
is there while the execution engine operates on that part of memory.

4 File Storage

In its most basic form, a DBMS stores a database as files on disk. Some may use a file hierarchy, others
may use a single file (e.g. SQLite).

File Format. The DBMS traditionally store files in a proprietary format that are specific to the DBMS,
therefore only the specific DBMS knows how to decipher their contents. More recently there are also
portable file formats that are open specs which allow all DBMSs to read and write from them. For either
approach, the OS does not know anything about the contents of these files.

File System. The DBMS typically runs on off-the-shelf file system provided by the OS. There are some
high-end enterprise systems that could inject a custom file system into the OS specific for the DBMS (e.g.
Oracle ASM)

File Storage Manager. The DBMS’s storage manager is responsible for managing a database’s files. It
represents the files as a collection of pages. It also keeps track of what data has been read and written to
pages as well how much free space there is in these pages.

A DBMS typically does not maintain multiple copies of a page on disk. Replication is not handled on
storage manager level. Typically they are handled either in the file system below the storage manager (e.g.

Page 2 of 6

https://15445.courses.cs.cmu.edu/spring2026/

£ 15-445/645 Database Systems (Spring 2026) #03: Database Storage (Part I)

RAID), or above the storage manager where there could be logical copies of tuples.

5 Database Pages

The DBMS organizes the database across one or more files in fixed-size blocks of data called pages. Pages
can contain different kinds of data (tuples, indexes, etc). Most systems will not mix these types within
pages. Some systems will require that pages are self-contained, meaning that all the information needed to
read each page is on the page itself.

Each page is given a unique identifier (page ID). If the database is a single file, then the page id can just
be the file offset. A page ID could be unique per DBMS instance, per database, or per table. Most DBMSs
have an indirection layer that maps a page id to a file path and offset. The upper levels of the system will
ask for a specific page number. Then, the storage manager will have to turn that page number into a file
and an offset to find the page.

Most DBMSs use fixed-size pages to avoid the engineering overhead needed to support variable-sized
pages. For example, with variable-size pages, deleting a page could create a hole in files that the DBMS
cannot easily fill with new pages.

There are three concepts of pages in DBMS:

1. Hardware page (usually 4 KB).
2. OS page (4 KB).
3. Database page (1-16 KB).

Optimal database page size depends on the environment, database contents, and expected workload. DBMSs
that specialize in read-only workloads tend to have larger page sizes (;= 1MB), while those that specialize
in write-heavy workloads tent to have smaller pages (4-16KB).

The storage device guarantees an atomic write of the size of the hardware page. If the hardware page
is 4 KB and the system tries to write 4 KB to the disk, either all 4 KB will be written, or none of it will.
This means that if our database page is larger than our hardware page, the DBMS will have to take extra
measures to ensure that the data gets written out safely since the program can get partway through writing
a database page to disk when the system crashes.

6 Database Heap

There are a couple of ways to manage pages in files on the disk (e.g. {Tree, ISAM, Hashing} File Organi-
zation), and Heap File Organization is one of those ways. A heap file is an unordered collection of pages
where tuples are stored in random order.

A common architecture for the DBMS to locate a page on disk given a page_id is page directory, which
are special pages that contain one location entry for each logical database objects (e.g. data pages, index
pages). The page directory has to be synchronized with the actual pages. The DBMS also tracks metadata
about pages’ contents, include the amount of free space on each page, a list of free/empty pages, and the

page types.

7 Page Layout

Every page includes a header that records meta-data about the page’s contents:

« Page size.
o Checksum.

Page 3 of 6

https://15445.courses.cs.cmu.edu/spring2026/

£ 15-445/645 Database Systems (Spring 2026) #03: Database Storage (Part I)

« DBMS version.
« Transaction visibility.
« Self-containment. (Some systems like Oracle require this.)

There are three main approaches to laying out data in pages: (1) tuple-oriented, (2) log-structured, and (3)
index-oriented.

Tuple-Oriented

In tuple-oriented storage, the entire tuple is stored in the page. A strawman approach to laying out tuples
in a page is to keep track of how many tuples the DBMS has stored in the page and then append to the end
every time a new tuple is added. However, problems arise when tuples are deleted or when tuples have
variable-length attributes. A common layout scheme that solves this is slotted pages.

Slotted Pages: Page maps slots to offsets.

« Most common approach used in DBMSs today.

+ Header keeps track of the number of used slots, the offset of the starting location of the last used
slot, and a slot array, which keeps track of the location of the start of each tuple.

+ To add a tuple, the slot array will grow from the beginning to the end, and the data of the tuples will
grow from end to the beginning. The page is considered full when the slot array and the tuple data
meet.

Slot Array Slot Array
|1I2I3|4I567 1 2 3 45 6 17
eader_|olololel | | | ”eade’|||||||||
! i

y 7

|Tup1e #4| Tuple #3 ‘l Tuple #4| Tuple #3
Tuple #2 Tuple #1 Tuple #2 | Tuple #1

1 - Y J v ¥ J
Fixed%z;;le ‘[/;l:t-iength Fixed%z:;le ‘I/;l:t-iength

Log-structured and index-oriented storage are covered in lecture 05.

8 Record IDs

The DBMS assigns each logical tuple a unique record identifier that represents its physical location in the
database (e.g. file id, page id, slot number). Most DBMSs do not store ids in the tuple. Common record id
size varies from 4 bytes to 10 bytes. Since these are physical locations within the DBMS, the application
cannot rely on these IDs.

9 Tuple Layout

A tuple is essentially a sequence of bytes (these bytes do not have to be contiguous). It is the DBMS’s job
to interpret those bytes into attribute types and values.

Tuple Header: Contains meta-data about the tuple.

« Visibility information for the DBMS’s concurrency control protocol (i.e., information about which
transaction created/modified that tuple, will be covered later in the semester).
« Bit Map for NULL values.

Page 4 of 6

https://15445.courses.cs.cmu.edu/spring2026/

£ 15-445/645 Database Systems (Spring 2026) #03: Database Storage (Part I)

« Note that the DBMS does not need to store meta-data about the schema of the database here.
Tuple Data: Actual data for attributes.

« Attributes are typically stored in the order that you specify them when you create the table.
« Attributes must be word aligned.
+ Most DBMSs do not allow a tuple to exceed the size of a page.

10 Data Representation

Data representation defines the attribute storage format. Storage formats for common data types are de-
scribed below.

INTEGER / BIGINT / SMALLINT / TINYINT

Storage layout follows native format in C/C++.

FLOAT / REAL vs. NUMERIC / DECIMAL

Storage layout follows IEEE-754 Standard or Fixed-point Decimals.

« Variable precision numbers
Are “native” C/C++ types stored as specified by IEEE-754. They are inexact but typically faster
than fixed precision numbers due to CPU ISA’s instruction and register support.

+ Fixed precision numbers
Allows arbitrary precision and scale. One of many possible implementations is storing in exact,
variable-length binary.

VARCHAR / VARBINARY / TEXT / BLOB
Stored as header with length with data bytes or pointer to data page and offset.

« Overflow Pages
When the value cannot fit in a single page, separate overflow pages are used and record id to the tuple
is stored inline. Optimizations are possible to compress the overflow page; or to store the prefix of
the value inline to reduce indirection when scanning.

+ External Value Storage
Some system allow large value to be stored in external file and treated as BLOB type. DBMS cannot
manipulate the content of external file, therefore has no durability and transaction guarantees on it.

TIME / DATE / TIMESTAMP / INTERVAL
Stored as 32/64-bit integer of micro or milli-seconds since Unix epoch.
Null Data Types

There are several approaches to storing null data types.

« Null Column Bitmap Header
Store bitmap in centralized header, bit is set when the corresponding attribute is NULL. Most com-
mon approach in row-stores.
+ Special Values
Use a special placeholder for NULL for a data type (e.g. INT32_MIN). Most common in column-stores.
« Per-Attribute Null Flag
Stores a flag per-attribute that marks a value is null. Undesirable because the extra bit per-attribute
would need to be padded for alignment.

Page 5 of 6

https://15445.courses.cs.cmu.edu/spring2026/

£ 15-445/645 Database Systems (Spring 2026) #03: Database Storage (Part I)

11 DBMS vs. OS

A high-level design goal of the DBMS is to support databases that exceed the amount of available memory.
Since reading/writing to disk is expensive, disk use must be carefully managed. We do not want large stalls
from fetching something from disk to slow down everything else. We want the DBMS to be able to process
other queries while it is waiting to get the data from disk.

This high-level design goal is like virtual memory, where there is a large address space and a place for the
OS to bring in pages from disk.

One way to achieve this virtual memory is by using mmap to map the contents of a file in a process’ ad-
dress space, which makes the OS responsible for moving pages back and forth between disk and memory.
Unfortunately, this means that if mmap hits a page fault, the process will be blocked.

+ You never want to use mmap in your DBMS if you need to write.

« The DBMS (almost) always wants to control things itself and can do a better job at it since it knows
more about the data being accessed and the queries being processed.

+ The operating system is not your friend.

It is possible to use the OS by using:

« madvise: Tells the OS know when you are planning on reading certain pages.
« mlock: Tells the OS to not swap memory ranges out to disk.
« msync: Tells the OS to flush memory ranges out to disk.

We do not advise using mmap in a DBMS for correctness and performance reasons.

Even though the system will have functionalities that seem like something the OS can provide, having the
DBMS implement these procedures itself gives it better control and performance.

Page 6 of 6

https://15445.courses.cs.cmu.edu/spring2026/

	Storage
	Storage Hierarchy

	Access Time and Access Pattern
	Disk-Oriented DBMS Overview
	File Storage
	Database Pages
	Database Heap
	Page Layout
	Record IDs
	Tuple Layout
	Data Representation
	DBMS vs. OS

