Lecture #05: Database Storage (Part II)

15-445/645 Database Systems (Spring 2026)
https://15445.courses.cs.cmu.edu/spring2026/

Carnegie Mellon University
Andy Pavlo

1 Tuple-Oriented Storage

The most common way to store tuples on disk is the Tuple-Oriented Storage architecture, using the slotted-
page scheme described in previous lectures. Tuples are retrieved using its record ID:

+ Check the page directory to find the page position on disk.
« Fetch the page from disk into memory (into the buffer pool).
« Use the slot array to find the tuple’s offset within the page.

Inserting a new tuple is simple:

« Check the page directory to find a page with a free slot.

« Fetch the page from disk into memory.

« Use the slot array to check if there is enough free space in the page.
« If not, find another page with a free slot or create a new page.

+ Insert the tuple into the page and update the slot array.

However, updating tuples can become expensive:

« Navigate to the tuple using the record ID with the same steps as retrieval.
« If the new value fits in the same space, update in place.
+ Otherwise, mark the old value as deleted and insert the new value as if it were a new tuple.

Therefore, while tuple-oriented storage is great for reads, there are several problems associated with it:

« Fragmentation: Deletion of tuples can leave gaps in the pages, making them not fully utilized.

« Useless Disk I/0: Due to the block-oriented nature of non-volatile storage, the whole block needs
to be fetched to update a tuple.

+ Random Disk I/O: The disk reader could have to jump to 20 different places to update 20 different
tuples, which can be very slow.

What if we were working on a system which only allows creation of new pages and no in-place updates
(e.g. HDFS, Google Colossus, certain object stores)? The log-structured storage model works with this
assumption and addresses some of the problems listed above.

2 Log-Structured Storage

Instead of storing tuples in pages and updating them in-place, Log-Structured Storage maintains a log that
records changes to tuples. This idea is based on log-structured file systems (LSFS) ! and log-structured
merge trees (LSM Tree)?.

The DBMS applies changes to an in-memory data structure (MemTable) and writes out the changes se-
quentially to disk (SSTable). The records stored in these structures contain the tuple’s unique identifier,

'https://doi.org/10.1145/146941.146943
2https://doi.org/10.1007/5002360050048


https://15445.courses.cs.cmu.edu/spring2026/
https://15445.courses.cs.cmu.edu/spring2026/
https://www.cs.cmu.edu/~pavlo/
https://doi.org/10.1145/146941.146943
https://doi.org/10.1007/s002360050048

£ 15-445/645 Database Systems (Spring 2026) #05: Database Storage (Part IT)

the type of operation (PUT/DELETE), and for a PUT operation, the contents of the tuple. Effectively, you care
about the latest values for each key (most recent PUT/DELETE).

Logs are first stored in MemTable through fast, in-memory operations. Once MemTable fills up, the
DBMS serializes the logs it stores and writes them to disk as an SSTable. The DBMS also sorts each SSTable
by key before writing it to disk. Since the SSTables are immutable and written to disk sequentially, this
results in less random disk I/O. This workload also maps nicely to append-only storage like many cloud
storage options, etc.

To read a record, the DBMS first checks MemTable to see whether it exists there. If the key does not
exist in MemTable, then the DBMS has to check the SSTables at each level. A brute force solution is to
scan down the SSTables from newest to oldest and perform binary search within each SSTable to find the
most recent contents of the tuple, which can be slow. To avoid this, the DBMS can maintain an in-memory
SummaryTable to track additional metadata like min/max key per SSTable and a key filter (e.g., Bloom
filter) per level.

Compaction

In a write-heavy workload, the DBMS will accumulate a large number of SSTables on disk. Thus, the
DBMS can periodically use a sort-merge algorithm to combine SSTables by taking only the most recent
change for each tuple. This reduces wasted space and speeds up reads.

There are many ways to compact log files. In Universal Compaction, SSTables reside in a single "uni-
versal” level. DBMS will trigger compaction when size thresholds are met or too many SSTables overlap
in key ranges. This approach works better for insert-heavy workloads and time-oriented queries. In Level
Compaction, the smallest files are level 0. Level 0 files can be compacted to create a bigger level 1 file, level
1 files can be compacted to a level 2 file, etc. SSTables in the same level are managed with sorted and non-
overlapping key ranges (except for level 0, which may have overlapping key ranges). Level Compaction
works well with read-heavy workloads.

Tradeoffs
The tradeoffs of using Log-Structured Storage are summarized below:

« Fast sequential writes, good for append only storage.

+ Reads may be slow.

+ Compaction is expensive.

« Write amplification (for each logical write, there could be multiple physical writes during the com-
paction process).

3 Index-Organized Storage

Both slotted-page storage and log-structured storage rely on an additional index to find individual tuples
because the tables are inherently unsorted. In the index-organized storage scheme, the DBMS directly
stores a table’s tuples as the value of an index data structure (e.g. B+ tree, skip list, trie). The DBMS uses a
page layout similar to a slotted page, and tuples are typically sorted in the page based on key.

4 System Catalogs

In order for the DBMS to decipher the contents of tuples, it maintains an internal catalog containing
metadata about its databases.

Page 2 of 3


https://15445.courses.cs.cmu.edu/spring2026/

£ 15-445/645 Database Systems (Spring 2026) #05: Database Storage (Part IT)

Metadata Contents:

« The tables, views, columns and procedures the database has as well as any indexes on those tables.
« Users of the database and what permissions they have.
« Internal statistics about tables (i.e., max value of an attribute).

Most DBMSs store their catalog inside of themselves as tables. They use special code to “bootstrap” these
catalog tables.

Page 3 of 3


https://15445.courses.cs.cmu.edu/spring2026/

	Tuple-Oriented Storage
	Log-Structured Storage
	Index-Organized Storage
	System Catalogs

