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1 Database Workloads
OLTP: Online Transaction Processing
An OLTP workload is characterized by fast, short running operations, repetitive operations and simple
queries that operate on single entity at a time. OLTP workloads typically handle more writes than reads,
and only read/update a small amount of data each time.
An example of an OLTP workload is the Amazon storefront. Users can add things to their cart and make
purchases, but the actions only affect their account. If you’re a startup, this is usually what you build first
(Postgres is usually the right choice).

OLAP: Online Analytical Processing
An OLAP workload is characterized by long running, complex queries (which often involves computing
aggregates) and reads on large portions of the database. In OLAP workloads, the database system is often
analyzing and deriving new data from existing data collected on the OLTP side.
An example of an OLAP workload that analyzes data collected on the OLTP side is personalized Amazon
shopping ads. The website analyzes all of data collected from users’ carts and purchases, and then selects
different ads for different users.

HTAP: Hybrid Transaction + Analytical Processing
A new type of workload (which has become popular recently) is HTAP, where OLTP and OLAP workloads
are present together on the same database instance. For example, SingleStore claims that they are HTAP.
Workload Focus:

• OLTP - SimpleQueries, Write Heavy
• OLAP - ComplexQueries, Read Heavy
• HTAP - A mix of both the above

2 Storage Models
There are different ways to store tuples in pages. The storage model of a database specifies how it physi-
cally organizes tuples on disk and in-memory. The storage model impacts the performance characteristics
for different workloads and influences the design choices for the rest of the DBMS.

N-Ary Storage Model (NSM)
In the n-ary storage model, the DBMS stores all of the attributes for a single tuple (row) contiguously in
a single page. Thus, it is also known as a row store. This approach is ideal for OLTP workloads where
requests are write-heavy and accesses are mostly individal entities. It is ideal because it takes only one
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fetch to be able to get all of the attributes for a single tuple. NSM pages are typically some constant multiple
of 4KB hardware pages. The DBMS identifies a physical tuple using its record ID (page # + slot #).
Advantages:

• Fast inserts, updates, and deletes.
• Good for queries that need the entire tuple (OLTP).
• Can use index-oriented physical storage for clustering.

Disadvantages:

• Inefficient for scanning large portions of the table and/or a subset of the attributes.
• Poor memory locality in access patterns.
• Difficult to apply compression because of multiple value domains within a single page.

Decomposition Storage Model (DSM)
In the decomposition storagemodel, the DBMS stores a single attribute (column) for all tuples contiguously
in a block of data. Thus, it is also known as a column store. This model is ideal for OLAP workloads with
many read-only queries that perform large scans over a subset of the table’s attributes.
Advantages:

• Reduces the amount of I/O wasted per query because the DBMS only reads the attributes that it
needs for a given query.

• Better (faster) query processing because of increased locality and cached data reuse.
• Better data compression.

Disadvantages:

• Slow for point queries, inserts, updates, and deletes because of tuple splitting/stitching.
To put the tuples back together when using a column store, there are two common approaches:

• The most commonly used approach is fixed-length offsets. Here, the value in a given column will
belong to the same tuple as the value in another column at the same offset. Therefore, every single
value within the column will have to be the same length. To deal with variable length fields, we can
use padding (wasteful space) or dictionary compression.

• A less common approach is to use embedded tuple ids. Here, for every attribute in the columns,
the DBMS stores a tuple id (ex: a primary key) with it. Then, the system would also store a mapping
to tell it how to jump to every attribute that has that id. Note that this method has a large storage
overhead because it needs to store a tuple id for every attribute entry (this is a bad idea!).

Partition Attributes Across (PAX)
In the hybrid Partition Attributes Across storage model, the DBMS vertically partitions attributes within
a database page. The goal of doing so is to get the benefit of faster processing on columnar storage while
retaining the spatial locality benefits of row storage.
In PAX, the rows are horizontally partitioned into groups of rows. Within each row group, the attributes
are vertically partitioned into columns. Each row group is similar to a column store for its subset of the
rows. Examples of PAX file formats are Parquet, ORC, and Arrow. Note that when DBMS say they are a
column store, they are most likely using PAX.
A PAX file has a global header containing a directory with offsets to the file’s row groups, and each row
group maintains its own header with meta-data about its contents.
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3 Database Compression
Compression is widely used in disk-based DBMSs as disk I/O is (almost) always the main bottleneck. It
is especially popular in systems that have read-only analytical workloads. The DBMS can fetch more
useful tuples, if they have been compressed beforehand at the cost of greater computational overhead for
compression and decompression.
In-memory DBMSs are more complicated since they do not have to fetch data from disk to execute a
query. Memory is much faster than disks, but compressing the database reduces DRAM requirements
and processing. They have to strike a balance between speed vs. compression ratio. Compressing the
database reduces DRAM requirements and may decrease CPU costs during query execution.
Given this, we want a database compression scheme to have the following properties:

• Must produce fixed-length values. The only exception is variable length data stored in separate pools.
This is because the DBMS should follow word-alignment and be able to access data using offsets.

• Allow the DBMS to postpone decompression as long as possible during query execution (late ma-
terialization).

• Must be a lossless scheme because people do not like losing data. Any kind of lossy compression
has to be performed at the application level.

Compression Granularity
The kind of data we want to compress greatly affects which compression schemes can be used. There are
four levels of compression granularity:

• Block Level: Compress a block of tuples for the same table.
• Tuple Level: Compress the contents of the entire tuple (NSM only).
• Attribute Level: Compress a single attribute value within one tuple. Can target multiple attributes
for the same tuple.

• Columnar Level: Compress multiple values for one or more attributes stored for multiple tuples
(DSM only). This allows for more complicated compression schemes.

4 Naive Compression
The DBMS compresses data using a general purpose algorithm (e.g., Deflate, LZO, LZ4, Snappy, Oracle
OZIP, Zstd, Lizard). Although there are several compression algorithms that the DBMS could use, en-
gineers often choose ones that often provides lower compression ratio in exchange for faster compres-
sion/decompression.
The DBMS compresses disk pages, pads them to a power of 2KBs and stores them into the buffer pool.
However, every time the DBMS tries to read/update data, the compressed data in the buffer pool must first
be decompressed. For blind writes, no decompression required.
Optionally, some DBMS attach a mod log to each compressed page. When a DBMS writes to the page,
it writes to the mod log without decompressing the page. Similarly, when the DBMS reads, if the data is
found in the mod log, no decompressing is necessary. When there are spare cycles or the mod log is full,
the DBMS decompresses the page, applies the updates from the mod log, then compresses again.
Since accessing data requires decompression of compressed data, this limits the scope of the compression
scheme. If the goal is to compress the entire table into one giant block, using naive compression schemes
would be impossible since the whole table needs to be compressed/decompressed for every access. There-
fore, MySQL breaks the table into smaller chunks since the compression scope is limited.
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Another problem is that these naive schemes also do not consider the high-level meaning or semantics
of the data. The algorithm is oblivious to both the structure of the data, and how the query is planning
to access the data. Thus, this eliminates the opportunity to utilize late materialization, since the DBMS
cannot tell when it can delay the decompression of data.

5 Columnar Compression
We now introduce built-in compression schemes that allow DBMSs to read tuples without having to de-
compress them to their original form. Note that some of these compression schemes can be composed for
even greater performance and compression.

Run-Length Encoding (RLE)
RLE compresses runs (consecutive instances) of the same value in a single column into triplets:

• The value of the attribute
• The start position in the column segment (offset)
• The number of elements in the run (length)

The DBMS should sort the columns intelligently beforehand to maximize compression opportunities. This
clusters duplicate attributes, thereby increasing the compression ratio. Note that the effectiveness of RLE
greatly depends on the underlying data characteristics (e.g. number and frequency of attributes in each
data).

Bit-Packing Encoding
When all values for an attribute are less than the value’s declared largest size, store them with fewer bits.

Patching / Mostly Encoding
Bit-packing variant that uses a special marker to indicate when a value exceeds the largest size and then
maintains a look-up table to store them. Use when values are ”mostly” less than the largest size.

Bitmap Encoding
The DBMS stores a separate bitmap for each unique value of a particular attribute where an offset in the
vector corresponds to a tuple. The ith position in the bitmap corresponds to the ith tuple in the table and
indicates whether that value is present in the attribute of that tuple. The bitmap is typically segmented
into chunks to avoid allocating large blocks of contiguous memory.
This approach is only practical if the value cardinality is low, since the size of the bitmap is linearly pro-
portional to the cardinality of the attribute value. If the cardinality of the value is high, then the bitmap
can become larger than the original data set.
There are compressed data structures for sparse data sets. For example, Roaring Bitmaps store dense
chunks using uncompressed bitmaps, whereas sparse chunks are stored using bitpacked arrays of 16-bit
integers.

Delta Encoding
Instead of storing exact values, record the difference between values that follow each other in the same
column. The base value can be stored in-line or in a separate look-up table. We can also use RLE on the
stored deltas to get even better compression ratios.
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Dictionary Compression
The most common database compression scheme is dictionary encoding. The DBMS replaces frequent
patterns in values with smaller codes. It then stores only these codes and a data structure (i.e. the dictio-
nary) that maps these codes to their original value. A dictionary compression scheme needs to support
fast encoding/decoding, and needs to be order-preserving if it needs to work with range queries.

Encoding and Decoding: The dictionary needs to decide how to encode (convert uncompressed value
into its compressed form) and decode (convert compressed value back into its original form) data. As
such, it is not possible to use hash functions.
The encoded values also need to support sorting in the same order as original values (i.e. order-preserving
encodings). This ensures that the compressed queries run on compressed data return results that are
consistent with uncompressed queries run on the original data. This order-preserving property allows
operations to be performed directly on the codes.
On certain queries (such as string match), queries can be executed faster.

6 Bifurcated Environment
Since an OLAP DBMS is superior for analytical queries than an OLTP DBMS, we should always use an
OLAP DBMS for them. But if new data arrives at an OLTP DBMS, then we need to transfer data from
the OLTP DBMS to the OLAP DBMS (typically called the data warehouse/lakehouse). The technique we
use is called ETL: Extract, Transform, Load. This allows us to clean and normalize data across different
schemas stored in the OLTP DBMSes.
Alternatively, an HTAP combines both OLTP and OLAP into one system. There are two main approaches.
In fractured mirrors, all updates are first entered into the NSM, then eventually converted into a column
store and copied into the DSM mirror. Analytical queries can now run on the DSM mirror. In delta store,
all updates are entered into the delta store (NSM). A background thread migrates updates from the delta
store and applies them to the DSM data. Note that a tuple can only exist in either NSM or DSM, not both
(unlike fractured mirrors).
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