Carnegie Mellon .University:
‘Database
Systems
15-445/645 SPRING 2026 .

ANDY PAVLO
JIGNESH PATEL

Lectu‘re #01

Relational Model &
Algebra W on

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/

WAITLIST

We do not control the waitlist. Admins will move
students off the waitlist as spots become available.

— See FAQ #2

To improve your chances of enrolling (though not a
guarantee), stay in the class and complete Project #0.

We do not know whether this course will be
offered in Fall 2026 yet.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026/faq.html#q2
https://15445.courses.cs.cmu.edu/spring2026/project0/

ClickHouse DATASTAX

Y dbt FIREBOLT

MotherDuck RelationalAl

& SingleStore § Spiral

m TiDB Yellowbrickeg
‘7 yugabyteDB

\W//

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

COURSE OVERVIEW

This course is about the design/implementation of
database management systems (DBMSs).

This is not a course about how to use a DBMS to build

applications or how to administer a DBMS.
— See CMU 95-703 (Heinz College)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.heinz.cmu.edu/current-students/courses/95-703
https://www.heinz.cmu.edu/current-students/courses/95-703
https://www.heinz.cmu.edu/current-students/courses/95-703

COURSE LOGISTICS

Course Syllabus + Schedule: Course Web Page

Discussion + Announcements: Piazza

Homework + Projects: Gradescope

Final Grades: Canvas

Non-CMU students can complete assignments using
Gradescope (Code: 5R4XPZ).
— See FAQ #7

— Do not post your solutions on Github.

— Do not email instructors / T As for help.
— Discord Channel: https://discord.gg/YF7dMCg

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026/
https://piazza.com/cmu/spring2026/15445645
https://www.gradescope.com/courses/1208613
https://canvas.cmu.edu/courses/51670
https://15445.courses.cs.cmu.edu/spring2026/faq.html#q7
https://discord.gg/YF7dMCg

LECTURE RULES

Do interrupt us for the following reasons:

— [am speaking too fast.
— You don't understand what I am talking about.
— You have a database-related question.

Do not interrupt for the following reasons:
— Whether you can use the bathroom.
— Questions about blockchains.

[will not answer questions about the lecture
immediately after class.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PROJECTS

All projects will use the CMU DB
Group BusTub academic DBMS.

— Each project builds on the previous one.

— We will not teach you how to
write/debug C++20.

— See the 15-445/645 Bootcamp.

Total of four late days the entire
semester for projects only.

BusTub

We will hold an online recitation for
each project after it is released.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://github.com/cmu-db/bustub
https://github.com/cmu-db/15445-bootcamp
https://github.com/cmu-db/15445-bootcamp
https://github.com/cmu-db/15445-bootcamp
https://github.com/cmu-db/bustub

PROJECT O

Get you started on C++, so you are not surprised later.
Get you thinking about algorithms and concurrency.

Project #0 is released today: Count-min Sketch
— Due on Sunday January 25% @ 11:59pm
— No late days are allowed!

Each student must score 100% on this project
before the deadline or you will be asked to drop
the course.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026/project0/

@ PLAGIARISM WARNING @@

The homework and projects must be your own original

work. They are not group assignments.
— You may not copy source code from other people or the web.
— You are allowed to use generative Al tools.

Plagiarism is not tolerated. You will get lit up.
— Please ask instructors (not T'As!) if you are unsure.

See CMU's Policy on Academic Integrity for additional
information.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

DB FLASH TALKS

Quick 10-minute talks from CMU-DB
[AP partners about their DBMSs at

end of every Wednesday lecture. ClickHouse

X dbt

. . o MotherDuck
[t is late in the hiring season, but we S

; : . . s SingleStore
will post internship + full-time
openings on Piazza. m TiDB

10

DATASTAX
FIREBOLT

<> RelationalAI

S spiral

Yellowbrick ¢g

g yugabyteDB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

sss

Preston Thorpe is a
software engineer ata
gan Francisco startup —

he’s also serving his 11th
year in prison

8:48 AM PDT - July 24,2025

N

https://techcrunch.com/2025/07/24/preston-thorpe-is-a-software-engineer-at-a-san-francisco-startup-hes-also-serving-his-11th-year-in-prison/

ee

) Working -
Preston Thorpe I from prison: How s sy

software engine Rere, part’s
San Francisco §

he’s also servin

year in prison ,‘*;
l ;,

ﬂ

https://techcrunch.com/2025/07/24/preston-thorpe-is-a-software-engineer-at-a-san-francisco-startup-hes-also-serving-his-11th-year-in-prison/
https://turso.tech/blog/working-on-databases-from-prison

Events
le Security Al Apps
Latest Startups Venture APpPP! 0O X o Login Sign Up

T TechCrunch

2

- Wor king oh databases

Preston Thorpe I from prison: How I got

ere, part 2.

software € ngin_e_ L

Helping build Limbo quickly became my new obsession. | split my time between
my job and diving deep into SQLite source code, academic papers on database

internals, and Andy Pavlo's CMU lectures. | was active on the Turso Discord but |

don't think | considered whether anyone was aware that one of the top
contributors was doing so from a prison cell. My story and information are linked

on my GitHub, but it's subtle enough where you could miss it if you didn't read the

i S—

https://techcrunch.com/2025/07/24/preston-thorpe-is-a-software-engineer-at-a-san-francisco-startup-hes-also-serving-his-11th-year-in-prison/
https://turso.tech/blog/working-on-databases-from-prison
https://turso.tech/blog/working-on-databases-from-prison#finding-turso--hacking-on-project-limbo

DATABASE PRISON PROGRAM

CMU's Intro to Database Systems course available to
people locked on the inside at no cost.

[f you are in prison or know somebody in prison that
wants to learn about databases, please contact:
db-prison@cs.cmu.edu

Sponsored By: () convex

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/
mailto:db-prison@cs.cmu.edu
mailto:db-prison@cs.cmu.edu
mailto:db-prison@cs.cmu.edu
https://www.convex.dev/

Databases

TODAY’S AGENDA

Database Systems Background
Relational Model

Relational Algebra
Alternative Data Models

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATABASE

Organized collection of inter-related data that models
some aspect of the real-world.

Databases are the core component of most computer
applications.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATABASE EXAMPLE

Create a database that models a digital music store to
keep track of artists and albums.

Information we need to keep track of in our store:
— Information about Artists
— The Albums those Artists released

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

FLAT FILE STRAWMAN

Store our database as comma-separated value (CSV)
files that we manage ourselves in application code.

— Use a separate file per entity.

— The application must parse the files each time they want to

read/update records.

Artist(name, year, country)

"Wu-Tang Clan", 1992, "USA"
"Notorious BIG", 1992, "USA"

"GZA",1990, "USA"

Album(name, artist, year)

"Enter the Wu-Tang", "Wu-Tang Clan",1993

"St.Ides Mix Tape","Wu-Tang Clan", 1994

"Liquid Swords","GZA",1990

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

FLAT FILE STRAWMAN

Example: Get the year that GZA went solo.

Artist(name, year, country)

"Wu-Tang Clan", 1992, "USA"
"Notorious BIG",1992, "USA"
"GZA" ,1990, "USA"

»

for line in file.readlines():

record = parse(line)
if record[0] == "GZA":
print(int(record[11]))

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

FLAT FILES: DATA INTEGRITY

How to ensure that the artist's name is consistent for all
their album entries?
— Example: "Wu-Tang Clan" vs. "WuTang Clan"

What if somebody overwrites the album year with an
invalid string?

What if there are multiple artists on an album?

What happens if we delete an artist that has albums?

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

FLAT FILES: IMPLEMENTATION

How do you find a particular record?

What if we now want to create a new application that
uses the same database? What if that application is
running on a different machine?

What if two threads try to write to the same file at the
same time’

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

FLAT FILES: DURABILITY

What if the computer crashes while our program is
updating a record?

What if we want to replicate the database on multiple
machines for high availability?

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATABASE MANAGEMENT SYSTEM

A database management system (DBMYS) is software
that allows applications to store and analyze
information in a database.

A general-purpose DBMS supports the definition,
creation, querying, update, and administration of
databases in accordance with some data model.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

23

DATA MODELS

A data model is a collection of concepts for describing

the data in a database.

— Rules that define the types of things that could exist and how
they relate.

A schema is a description of a particular collection of

data, using a given data model.
— This defines the structure of database for a data model.
— Otherwise, you have random bits with no meaning.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

23

DATA MODELS

A data model is a collection of concepts for describing

the data in a database.

— Rules that define the types of things that could exist and how
they relate.

A schema is a description of a particular collection of

data, using a given data model.
— This defines the structure of database for a data model.
— Otherwise, you have random bits with no meaning.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATA MODELS

< Most DBMSs

Key/Value

Graph

Document / JSON / XML / Object
Wide-Column / Column-family
Array (Vector, Matrix, Tensor)
Hierarchical

Network

Semantic

Entity-Relationship

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATA MODELS

Relational
< Simple Apps / Caching
Graph
Document / JSON / XML / Object
Wide-Column / Column-family
Array (Vector, Matrix, Tensor)
Hierarchical
Network
Semantic
Entity-Relationship

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATA MODELS

Relational

Key/Value

Graph

Document / JSON / XML / Object | € NoSQL

Wide-Column / Column-family

Array (Vector, Matrix, Tensor)
Hierarchical

Network

Semantic

Entity-Relationship

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATA MODELS

Relational

Key/Value

Graph

Document / JSON / XML / Object

Wide-Column / Column-family

Array (Vector, Matrix, Tensor) | < ML / Science
Hierarchical

Network

Semantic

Entity-Relationship

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATA MODELS

Relational

Key/Value

Graph

Document / JSON / XML / Object
Wide-Column / Column-family
Array (Vector, Matrix, Tensor)
Hierarchical

Network

Semantic

< Obsolete / Legacy / Rare

Entity-Relationship

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATA MODELS

© This Course

Key/Value

Graph

Document / JSON / XML / Object
Wide-Column / Column-family
Array (Vector, Matrix, Tensor)
Hierarchical

Network

Semantic

Entity-Relationship

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EARLY DATABASE SYSTEMS

In the late 1960s, early DBMSs
required developers to write queries

using procedural code.
— Examples: IDS, IMS, CODASYL

The developer had to choose access
paths and execution ordering based

on the current database contents.
— If the database changes, then the
developer must rewrite the query code.

1973 ACM Turing
Award Lecture

o citatior read by Richard G Cannirg, chair.
wion of the 1973 Turing Award Canmitice, at the presemation of
shis fecture oo Awgusi 28 at i ACM Awnsal Conference in
Atlata:

A significant change in the computer fiekd In the last five 1o
cight years has been mads in the way we ireat and handle daia.
In the carly days of our field, data was intimately tied 10 the ap-
plication programs that uscd it. Now we se¢ that we want
that tie, We wani data ihat is independent of the application
programs that use it than i, data that is oegunized and strctured
Yo serve many applications and many wsers. What we seek is the
data buse.

This movement woward the data base s in its infancy. Fven
50, it appears thal here are now between 1,000 and 2000 true
data base munagement systens mstalled woeldwide. Tn ten years
wery likely, there will be tens of thousands of such systems. Just
from the quantities of installed systems, the impact of data bases
promises 10 be huge

This year's recigrent of b AM. Turing Award is ané of the
real pioncers of data base technology. No other individual has
bad the influcnes that he has had upon this aspect of our fickd. |

Single owt three prime cxamples of what he has done. He was the
ereatoe and principal architect of the fint commercially available
system—the Integrated Data Store—orig-
inally develoged from 1961 10 1964+ 1-D-5 is today one of the
thee most widely used data base management sysiems, Also, he
was ome of the founding members of the conasvt. Data Base Task
Group, and served on that task group from 1966 1o 1968, The
specifications of that Lask group are being implemenicd by many
suppliees in various parts of the world " Indeed, eoreemtly these
specifications represean the oaly progosal of stature for a commen
architecture for database management systems. It is ta his eredit
thur these specifications, afier extended debate and discussion,
cmbody much of the original thinking of the Integrated Data
Store. Thirdly, he was the creator of a powerful method fer dis-
playing data relationships—a 100l for data base designers as well
i apglcation system designers
His eontributions have thus represented the wnion of imagin-
ation and practicalty. The richness of his work has already had,
and will comtinue fo have, & substandial influence upon ous feld.
1 am very pleased to present the 1973 AM. Turing Award 10
Charles W. Bachman

The Programmer
as Navigator

by Charles W. Bachman

This year the whole world celcbrates the five-hun
dredth birthday of Nicolaus Copernicus, the famous
Polish astronomer and mathematician. In 1543, Coper-
nicus published his book, Concerning tie Revolutions of
Celestial Spheres, which described a new theory about
the relative physical movements of the carth, the plan-
ets, and the sun. 1t was in direel contradiction with
the earth-centered theorics which had been established
by Prolemy 1400 years earlier

Copernicus proposed the heliocentric theory, that
planets revolve in & circular orbit around the sun. This
theory was subjected to tremendous and persistent
criticism. Nearly 100 years later, G:
pyright (1) 1973, Assocition for Computing Machinery, Tnc.

rmissi rofid, all or par
yright aotice
is given and hat reference is made 1o Lhe publication, Lo its dute
of issuc, and 10 the fact that reprinting privileges were pramed
by permission of the Association for Computing Machinery.

Auther's address: Homeywell Tnformation Systems, Inc.. 00
Smith Strees, Woltham, MA 02154

The nbstract, key words, ete., are on puge 654,

+ Footnotes re on page 655,

683

10 appear before the Inquisition in Rome and forced
to state that he had given up his belief in the Copernican
theory. Even this did not placate his inquisitors, and
he was sentenced to an indefinite prison term, while
Copernicus's book was placed upon the Index of Pro-
hibited Books, where it remained for another 200 years.

1 raise the example of Copernicus today to illustrate
a parallel that | bel s in the computing or, more
properly, the information systems world, We have
spent the last 50 years with almost Prolemaic informa-
tion systems. These systems, and most of the thinking
about systems, were based on & *‘computer centercd”
concept. (I choose ta speak of 50 years of history rather
than 25, for | see today's information systems as dating
from the beginning of effective punched card equip-
ment rather than from the beginning of the stored
program computer.)

Just as the ancients viewed the carth with the sun
revolving around it, so have the ancients of our in-
formation systems viewed a tab machine or computer
with a sequential file Rowing through it. Each wes an

Communications November 1973
of Valume 16
the ACM Number 11

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf

EARLY DATABA

In the late 1960s, early DBMSS |
required developers to write queries

i de.
using procedural co
— Examples: IDS, IMS, CODASYL

The developer had to choose access
paths and execution ordering based

on the current database contents.

— [f the database changes, then the
developer must rewrite the query code.

In order to focus the role of programmer as navi-
gator, let us enumerate his opportunities for record
access. These represent the commands that he
can give to the database system——singly, multiply or in
combination with each other.. as he picks his way
through the data 1o resolve an inquiry or to complete
an update.

1. He can start at the beginning of the database, or at
any known record, and sequentially access the ““pext”
record in the database unti] he reaches a record of
interest or reaches the end.

2. He can enter the database with a database key that
provides direct access to the physical location of a
record. (A database key is the permanent virtual
memory address assigned to a record at the time that it
was created.)

3. He can enter the database in accordance with the
value of a primary data key. (Either the indexed se-
quential or randomized access techniques will yield the
same result.)
4. He can enter the database with a secondary data key
value and sequentially access all records having that
particular data value for the field.
5. He can start from the owner of a set and sequentially
access all the member records, (This is equivalent tg
converting a primary data key into a secondary data
key.)
6. He can start with any member record of a set and
access either the next or prior member of that set.

. He can start from any member of a set and access
the owner of the set, thus converting a secondary data
key into a primary data key.

Gonc. He was the

ihe union of imagin-
Jork has alceady had,

rison term,
In the Index of
br another 200 years.
bis today to illustrate
computing or, more
s world, We have

fating
ipunched card equip-
inning of the stored
he carth with the sun
ke ancients of our in-
machine or computer
ough it. Each was an
Inber 1973

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf

EARLY

DATABA

In order to focus the role of programmer as navi-

--- gator,]et us enumerate hlS Opportunities for record

access. These represent the commands that he
can give to the database System-—singly, multiply or in
combination with each other.. as he picks his way

IIl the late 1 9608, early DBMSS through the data 1o resolve an inquiry or to complete

i . 5 1. He can start at the eginning of the data ase, or a
I'eqUII'ed developers tO erte querles any known :ectt)rci,iandbsiquent%allgﬂ;ccis; 316 “’next’f

an update.

record gn tha das

using procedural cod
— Examples: IDS, IMS, (

The developer had to
paths and execution ¢

=

" Each of these access methods is int_eresting in 1t§el_f,
and all are very useful. However, i.t is the synergistic
usage of the entire collection which gives the c;lz:ro-
grammer great and expanded powers to come and go
within a large database while accessing only those rec-
ords of interest in responding to inqu.lrles.a.nd updating
the database in anticipation of future inquiries.

eI ATy TAceess all Tecords having that

on the current databaSe TOMTETITS. T srieur i v e

5. He can start from the owner of a set and sequentially

. If the database Changes, then the access all the member records, (This is equivalent tg

developer must rewrite the query code] k)

converting a primary data key into a secondary data

6. He can start with any member record of a set and
access either the next or prior member of that set.

. He can start from any member of a set and access
the owner of the set, thus converting a secondary data
key into a primary data key.

[done. He was the

ihe union of imagin-
Jork has alceady had,

rison term,
In the Index of
br another 200 years.
bis today to illustrate
computing or, more
s world, We have

fating
ipunched card equip-
inning of the stored
he carth with the sun
ke ancients of our in-
machine or computer
ough it. Each was an

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf
https://people.csail.mit.edu/tdanford/6830papers/bachman-programmer-as-navigator.pdf

EARLY DATABASE SYSTEMS

In the late 1960s, early DBMSs
required developers to write queries

using procedural code.
— Examples: IDS, IMS, CODASYL

The developer had to choose access
paths and execution ordering based

on the current database contents.
— [f the database changes, then the
developer must rewrite the query code.

Retrieve the names of artists that appear
on the D] Mooshoo Tribute mixtape.

PROCEDURE GET_ARTISTS_FOR_ALBUM;
BEGIN
/* Declare variables */
DECLARE ARTIST_RECORD ARTIST;
DECLARE APPEARS_RECORD APPEARS;
DECLARE ALBUM_RECORD ALBUM;

/* Start navigation */
FIND ALBUM USING ALBUM.NAME = "Mooshoo Tribute"
ON ERROR DISPLAY "Album not found" AND EXIT;

/* For each appearance on the album */
FIND FIRST APPEARS WITHIN APPEARS_ALBUM OF ALBUM_RECORD

/* Loop through the set of APPEARS #/
REPEAT
/* Navigate to the corresponding artist */
FIND OWNER WITHIN ARTIST_APPEARS OF APPEARS_RECORD
ON ERROR DISPLAY "Error finding artist";
/* Display artist name */
DISPLAY ARTIST_RECORD.NAME;
/* Move to the next APPEARS record in the set */
FIND NEXT APPEARS WITHIN APPEARS_ALBUM OF ALBUM_RECORD
ON ERROR EXIT;
END REPEAT;
END PROCEDURE;

ON ERROR DISPLAY "No artists found for this album" AND EXIT;

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL

EARLY DATABASE SYSTEMS

In the late 1960s, early DBMSs
required developers to write queries

using procedural code.
— Examples: IDS, IMS, CODASYL

The developer had to choose access
paths and execution ordering based

on the current database contents.
— [f the database changes, then the
developer must rewrite the query code.

Retrieve the names of artists that appear
on the D] Mooshoo Tribute mixtape.

PROCEDURE GET_ARTISTS_FOR_ALBUM;
BEGIN
/* Declarg variables */

/* Start
FIND ALBUM

/* For each 3
FIND FIRST A CORD
ON ERROR AY "No artX pund for thi pum" AND EXIT;

/* Loop thro
REPEAT
/* Naviga
FIND OWNER

)

END PROCEDURE;

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL

EARLY DATABASE SYSTEMS

In the late 1960s, early DBMSs
required developers to write queries

using procedural code.
— Examples: IDS, IMS, CODASYL

The developer had to choose access
paths and execution ordering based

on the current database contents.
— If the database changes, then the
developer must rewrite the query code.

Retrieve the names of artists that appear
on the D] Mooshoo Tribute mixtape.

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Mooshoo Tribute"

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL

EARLY DATABASE SYSTEMS

The Differences and Similarities
Between the Data Base Set and

Relational Views of Data.
— ACM SIGFIDET Workshop on Data

Description, Access, and Control in Ann
Arbor, Michigan (May 1974)

Stonebraker

Next

Aclosed chain of records in a navigational database model (e.g. CODASYL), with
next pointers, prior pointers and direct pointers provided by keys in the various records.

Next

Expanded diagram Bachman diagram
(longhand representation) (shorthand representation]

lliustration of a set type using a Bachman diagram

The record set, basic structure of navigational (e.g. CODASYL) databse model. A set consists

of one parent record (also called "the owner”), and n child records (also called members records)

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

EARLY DATABASE SYSTEMS

The Differences and Similarities
Between the Data Base Set and

Relational Views of Data.
— ACM SIGFIDET Workshop on Data

Description, Access, and Control in Ann
Arbor, Michigan (May 1974)

Stonebraker

COBOL/CODASYL camp:

1. The relational model is too mathematical. No
mere mortal programmer will be able to under-
stand your newfangled languages.

2. Even if you can get programmers to learn your
new languages, you won’t be able to build an
efficient implementation of them.

3. On-line transaction!processing applications want
to do record-oriented operations.

Relational camp:

1. Nothing as complicated as the DBTG proposal can
possibly be the right way to do data management.

2. Any set-oriented query is too hard to program
using the DBTG data manipulation language.

3. The CODASYL model has no formal underpin-
ning with which to define the semantics of the
complex operations in the model.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

RELATIONAL MODEL

Structure: The definition of the
database's relations and their contents
are independent of their physical
representation.

Integrity: Ensure the database’s
contents satisfy constraints.

Manipulation: Declarative API for
accessing and modifying a database's
contents via relations (sets

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Coon
IBM Research Laboratory, San Jose, California

Future users of large data banks must be profected from
having to know how the data is organized in the machine (the
intemnal representation). A prompting service which supplies
such information is not a satisfactory solution, Activities of users
at terminals and most application progroms should remain
wnaffected when the intemal representation of data is changed
and even when some aspects of the external

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for trest.mg derivability, redundancy,
and i of rel di ed in Section
2. The network model, on the other hand, has spawned a
number of cunfumom, not. the least of which is mistaking

are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.
Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, o normal
form for data base relations, and the concept of @ universal
data sublanguage are infroduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user's model.
KEY WORDS AND PHRASES: dota bonk, dota bese, doto structure, data
organization, hierarchies of data, networks of date, relations, derivability,
redundancy, consistency, composition, foin, retrieval language, predicate
calculus, security, dato integrity
CR CATEGORES: 370, 3.73, 375, 420, 422, 429

1. Relational Model and Normal Form

L1 INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data. Except for a paper
by Childs [1], the principal application of relations to data.
systems has been to deductive question-answering systems.
Levein and Maron [2] provide numerous references to work
in this area.

In contrast, t.he pmblems treated here are those of data

of ion programs

and terminal activities from growth in data types and
changes in data representation—and certain kinds of data
nconsistency which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

the for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).
Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
) of ions of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.
1.2. Dara DEPENDENCIES IN PRESENT SystEMS
The provision of data description tables in recently de-
veloped information systems represents & major advance
toward the goll of data mdepmdenee [a, 6, 7]. Such tables
facilitate ch: ng certain i of the data repre-
sentation slomd in a data bank. However, the variety of
dam repreaentauon characteristics which can be chnnged
without logically impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another.
12.1. Ordering Dependence. Elements of data in a
data bank may be stored in a variety of ways, some involv-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely i with the hard: ined ordering
of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
http://dl.acm.org/citation.cfm?id=362685

DATA INDEPENDENCE

[solate the user/application from low-
level data representation.

28

— The user only worries about high-level [External Schema] [External Schem a]
application logic. Logical Data]
Independence
DBMS optimizes the layout according [L,,gical sChema]
to operating environment, database Physical Data Schema, Constraints...
contents, and workload. Independence » o
— Re-optimize if/when these factors [Physical Schema]
changes. Pages, Files, Extents...

Database
Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL

29

A relation is an unordered set that
contain the relationship of attributes
that represent entities.

A tuple is a set of attribute values

(aka its domain) in the relation.

— Values are (normally) atomic/scalar.

— The special value NULL is a member of
every domain (if allowed).

Artist(name, year, country)

name year country
Wu-Tang Clan 1992 USA
Notorious BIG 1992 |USA
GZA 1990 |USA

n-ary Relation

Table Witl;n columns

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL MODEL:

A relation's primary key uniquely
identifies a single tuple.

Some DBMSs automatically create an
internal primary key if a table does
not define one.

DBMS can auto-generation unique

primary keys via an identity column:
— IDENTITY (SQL Standard)

— SEQUENCE (PostgreSQL / Oracle)

— AUTO_INCREMENT (MYSQL)

PRIMARY KEYS

Artist(name, year, country)

name year country
Wu-Tang Clan 1992 USA
Notorious BIG 1992 |USA
GZA 1990 |USA

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Identity_column

30

RELATIONAL MODEL: PRIMARY KEYS

A relation's primary key uniquely

identifies a single tuple. Artist(id, name, year, country)
Some DBMSs automatically create an | year country
internal primary key if a table does 101 |Wu-Tang Clan 1992 |USA
not define one 102 |Notorious BIG 1992 |USA

103 |GZA 1990 |USA

DBMS can auto-generation unique

primary keys via an identity column:
— IDENTITY (SQL Standard)

— SEQUENCE (PostgreSQL / Oracle)

— AUTO_INCREMENT (MYSQL)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Identity_column

RELATIONAL MODEL: PRIMARY KEYS

30

A relation's primary key uniquely
identifies a single tuple.

Some DBMSs automatically create an
internal primary key if a table does
not define one.

DBMS can auto-generation unique

primary keys via an identity column:
— IDENTITY (SQL Standard)

— SEQUENCE (PostgreSQL / Oracle)

— AUTO_INCREMENT (MYSQL)

Artist(id, name, year, country)

country

101 fWu-Tang Clan 1992 USA
102 INotorious BIG 1992 USA
103 §GZA 1990 USA

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Identity_column

RELATIONAL MODEL: FOREIGN KEYS

A foreign key specifies that an
attribute from one relation maps to a
tuple in another relation.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL MODEL: FOREIGN KEYS

Artist(id, name, year, country)

id name year country
101 [Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA

Album(id, name, artist, year)

id name artist year
11 |Enter the Wu-Tang 101 1993
22 |St.Ides Mix Tape 7777 1994
33 |Liquid Swords 103 1995

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

RELATIONAL MODEL: FOREIGN KEYS

ArtistAlbum(artist_id, album_id)

artist_id album_id

101 11
101 22
103 22
102 22

Artist(id, name, year, country)

id name year country
101 [Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA

Album(id, name, artist, year)

id name artist
11 |Enter the Wu-Tang 101
22 |St.Ides Mix Tape 7777
33 |Liquid Swords 103

year
1993
1994
1995

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

RELATIONAL MODEL: FOREIGN KEYS

ArtistAlbum(artist_id, album_id)

artist_id album_id

101 11
101 22
103 22
102 22

31

Artist(id, name, year, country)

id name year country
101 [Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA

Album(id, name, year)

id name year
11 [Enter the Wu-Tang 1993
22 |St.Ides Mix Tape 1994
33 |Liquid Swords 1995

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

RELATIONAL MODEL: CONSTRAINTS

User-defined conditions that must ~ Artist(id, name, year, country)

hold for any instance of the database. BFRIGELE year country
— Can validate data within a single tuple 101 |Wu-Tang Clan 1992 |USA
or across entire relation(s). 102 |Notorious BIG 1992 |USA

— DBMS prevents modifications that

: . 103 |GZA 1990 |USA
VlOlate any constraint.

. . CREATE TABLE Artist
Unique key and referential (fkey) name VARCHAR NO; NUEL

constraints are the most common. year INT,

SQL:92 supports global asserts but Eﬁ;@,ﬁr{yggﬁ%ﬁ?gé@)

these are rarely supported (too slow). s

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL MODEL: CONSTRAINTS

User-defined conditions that must ~ Artist(id, name, year, country)

hold for any instance of the database. BFRIGELE year country
— Can validate data within a single tuple 101 |Wu-Tang Clan 1992 |USA
or across entire relation(s). 102 |Notorious BIG 1992 |USA

— DBMS prevents modifications that
violate any constraint.

103 |GZA 1990 USA

. . CREATE TABLE Artist
Unique key and referential (fkey) name VARCHAR NO; NUEL

constraints are the most common. year INT,
country CHAR(60),
CHECK (year > 1900)

CREATE ASSERTION myAssert
CHECK (<SQL>);

SQL:92 supports global asserts but
these are rarely supported (too slow).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATA MANIPULATION LANGUAGES (DML)

The API that a DBMS exposes to applications to store
and retrieve information from a database.

Procedural: :
— The query specifies the (high-level) strategy to find | < Relational
the desired result based on sets / bags. Algebra

Non-Procedural (Declarative): Relational

Calculus

— The query specifies only what data is wanted and
not how to find it.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATA MANIPULATION LANGUAGES (DML)

The API that a DBMS exposes to applications to store
and retrieve information from a database.

Procedural;]
— The query specifies the (high-level) strategy to find | < Relational
the desired result based on sets / bags. Algebra

Non-Procedural (Declarative):

— The query specifies only what data is wanted and
not how to find it.

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL ALGEBRA

Fundamental operations to retrieve

and manipulate tuples in a relation.
— Based on set algebra (unordered lists with
no duplicates).

Each operator takes one or more
relations as its inputs and outputs a

new relation.
— We can "chain" operators together to
create more complex operations.

Select
Projection
Union
Intersection
Difference
Product
Join

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL ALGEBRA: SELECT -

R(a_id,b_id)

Choose a subset of the tuples in a
relation satisfying selection predicate. al |01
— Predicate acts as a filter to retain only a2 |102
tuples that fulfill its qualifying a2 |1e3
requirement. a3 |le4
— Can combine multiple predicates using O, id='a2' (R) O, id='a2'A b_id>102(R)
conjunctions / disjunctions. a_id b_id
a2 102 a2 103
a2 |103

SyntaX: Gp redicate (R)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL ALGEBRA: SELECT

35

R(a_id,b_id)

Choose a subset of the tuples in a
relation satisfying selection predicate. al |01
— Predicate acts as a filter to retain only a2 |102
tuples that fulfill its qualifying a2 |1e3
requirement. a3 |le4
— Can combine multiple predicates using O, id='a2' (R) O, id='a2'A b_id>102(R)
conjunctions / disjunctions. a_id b_id
a2 102 a2 103
a2 |103

SyntaX: Gp redicate (R)

SELECT * FROM R

WHERE a_id="'a2' AND b_id>102;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL ALGEBRA: SELECT

35

R(a_id,b_id)

Choose a subset of the tuples in a

relation satisfying selection predicate.

— Predicate acts as a filter to retain only
tuples that fulfill its qualifying
requirement.

— Can combine multiple predicates using
conjunctions / disjunctions.

SyntaX: Gp redicate (R)

o'a_id='a2' (R)

a2

102

a2

103

al 101
a2 102
a2 103
a3 104

Ca id='a2'A b_id>102(R)™

a_id b_id

a2 103

SELECT * FROM R

WHERE a_id="'a2' AND b_id>102;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL ALGEBRA: PROJECTION

Generate a relation with tuples that

contains only the specified attributes.

— Rearrange attributes’ ordering.

— Remove unwanted attributes.

— Manipulate values to create derived
attributes.

Syntax: Iy, 4, . an(R)

36

R(a_id,b_id)

al 101
a2 102
a2 103
a3 104

nb_id—100,a_id(oa_id='a2' (R))

b_id-100 a_id

2 a2
3 a2

SELECT b_id-100, a_id
FROM R WHERE a_id = 'a2';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL ALGEBRA: UNION >

R(a_id,b_id) S(a_id,b_id)

Generate a relation that contains all
tuples that appear in either only one al__[101 a3 |103
: - 0 - . a2 102 a4 104
or both input relations, eliminating
. a3 103 ab 105
duplicates.
— Both relations must have the same (RUS)
attributes (based on names).
al 101
- a2 102
Syntax: (R U S) (SELECT * FROM R) 23 e
UNION a4 |104
(SELECT * FROM S); a5 |105

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL ALGEBRA: INTERSECTION

R(a_id,b_id)

S(a_id,b_id)

Generate a relation that contains only
the tuples that appear in both input al__|101 a3 |103
relations. 2l ot

5 a a
— Both relations must have the same

attributes (based on names). (R N S)
a_id b_id

Syntax: (R N S) a3 |103

(SELECT * FROM R)
INTERSECT
(SELECT * FROM S):

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL ALGEBRA: DIFFERENCE

R(a_id,b_id) S(a_id,b_id)

Generate a relation that contains only
the tuples that appear in the first and al__|101 a3 |103
not the second of the input relations. G L G

. a3 103 ad 105
— Both relations must have the same

attributes (based on names). R - S)
Syntax: (R - S) al |10
a2 102

(SELECT * FROM R)
EXCEPT
(SELECT * FROM S);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL ALGEBRA: PRODUCT

R(a_id,b_id) S(a_id,b_id)

Generate a relation that contains all
possible combinations of tuples from al__|101 a3 103
the input relations. G L G
) a3 103 ab 105
— Input relations do not have to have the
same attributes. (R x S)
— Output includes all the attributes from the R ey
input relations. > e ” 04
al 101 ab 105
a2 102 a3 103
Syntax: (R xS) a2 102 a4 104
a2 102 ab 105
SELECT * FROM R CROSS JOIN S; as 103 a3 102
a3 103 a4 104
a3 103 ab 105
SELECT * FROM R, S;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

41

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id,val)
tuples that are a combination of two

: s al 101 a3 |103 |XXX
tuples (one from each input relation)

a2 102 a4 |104 |YYY

with a common value(s) for one or 23 |103 a5 105 |z222

-

more attributes. (R X S)

R.a_id R.b_id S.a_id S.b_id S.val a_id b_id val

a3 103 a3 103 XXX a3 |103 [XXX

Syntax: (R ¥ S)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

41

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id,val)
tuples that are a combination of two

: s al 101 a3 103 | XXX
tuples (one from each input relation)

a2 102 a4 |104 |YYY

with a common value(s) for one or 23 |103 a5 105 |z222

-

more attributes. (R X S)

R.a_id R.b_id s a<.d S Y .d S.val a_id b_id val

a3 |103 [XXX

Syntax: (R ¥ S)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

41

RELATIONAL ALGEBRA: JOIN

Generate a relation that contains all R(a_id,b_id) S(a_id,b_id,val)

tuples that are a combination of two

t 1 (f 11 . t 1 t.) al 101 a3 103 [XXX
uples (one from each input relation — 100 — Tioa Tyvy

with a common value(s) for one or a3 |103 a5 105 |z222

more attributes.

(R @ S)

a_id b_id val

a3 |103 [XXX

Syntax: (R ¥ S)

SELECT *#* FROM R NATURAL JOIN S;

SELECT * FROM R JOIN S USING (a_id, b_id);

SELECT * FROM R JOIN S
ON R.a_id = S.a_id AND R.b_id = S.b_id;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL ALGEBRA: EXTRA OPERATORS ~

Rename (p)

Assignment (R¢S)
Duplicate Elimination (3)
Aggregation (y)

Sorting (T)

Division (R=S)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OBSERVATION

Relational algebra defines an ordering of the high-level

steps of how to compute a query.
— Example: 0, ;4-19,(RXS) vs. (RX(0, ;4-19,(S))

A better approach is to state the high-level answer that

you want the DBMS to compute.
— Example: Retrieve the joined tuples from R and S where
S.b_id equals 102.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RELATIONAL MODEL: QUERIES

The relational model is independent of any query
language implementation.

SQL is the de facto standard (many dialects).

for line in file.readlines():
record = parse(line)
if record[0] == "GZA":

SELECT year FROM artists
WHERE name = 'GZA';

print(int(record[1]))

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATA MODELS

© This Course

Key/Value
Graph

Document / JSON / XML / Object | < Leading Alternative

Wide-Column / Column-family

Array MatriX, Tensor) € New Hotness
Hierarchical

Network

Semantic

Entity-Relationship

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

46

DOCUMENT DATA MODEL

A collection of record documents containing a

hierarchy of named field/value pairs.

— A field's value can be either a scalar type, an array of values, or
another document.

— Modern implementations use JSON. Older systems use XML or
custom object representations.

Avoid object-relational impedance mismatch by tightly
coupling objects and database.

€ SurrealDB)Awadb

0 MongoDB. RAVENDB _ o0 |
DynamoDB = Firebase A Aerospike »pOUChdb

(=) Couchpp & pickeDs . o
el Q Couchbase ® MarkLogic €& FerretbB HarperDB §»

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object%E2%80%93relational_impedance_mismatch

DOCUMENT DATA MODEL

Artist =» R, (id,..)
! D
ArtistAlbum | ™ R,(artist_id,album_id)
! <

Album ®» R,(id,..)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DOCUMENT DATA MODEL

Artist ®» R,(id,..)
<
Arti bum | ®» R,(artist_id,album_id)
<

Album ®» R,(id,..)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DOCUMENT DATA MODEL

Application Code

Artist

i

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Artist

DOCUMENT DATA MODEL

47

Application Code

"name": "GZA",
"year": 1990,
"albums": [
{
"name": "Liquid Swords",
"year": 1995

3,
{

"year": 1999
}

"name": "Beneath the Surface",

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Artist

DOCUMENT DATA MODEL

47

Application Code

"name": "GZA",
"year": 1990,
"albums": [
{
"name": "Liquid Swords",
"year": 1995

3,
{

"year": 1999
}

"name": "Beneath the Surface",

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

VECTOR DATA MODEL

One-dimensional arrays used for nearest-neighbor

search (exact or approximate).

— Used for semantic search on embeddings generated by ML-
trained transformer models (think ChatGPT).

— Native integration with modern ML tools and APIs (e.g.,

LangChain, OpenAl).
At their core, these systems use specialized indexes to
perform NN searches quickly.

P

ﬁ:} Pinecone -~ Weaviate @> milvus gdrant ." nucliadb

& CloseVector .\VectorDB turbopuffer <(°0°)> BagelDB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

VECTOR DATA MODEL

One-dimensional arrays used for nearest-neighbor

search (exact or approximate).

— Used for semantic search on embeddings generated by ML-
trained transformer models (think ChatGPT).

— Native integration with modern ML tools and APIs (e.g.,

LangChain, OpenAl).
At their core, these systems use specialized indexes to
perform NN searches quickly.

P

ﬁ:} Pinecone -~ Weaviate @> milvus gdrant ." nucliadb

& CloseVector .\VectorDB turbopuffer <(°0°)> BagelDB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

VECTOR DATA MODEL

Album(id, name, year, lyrics)
id name year lyrics

Id1 |Enter the Wu-Tang 1993 | <text>

Id2 [Run the Jewels 2 2015 | <text>

Id3 |Liquid Swords 1995 | <text>

Id4 [We Got It from Here |2016 |<text>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service

VECTOR DATA MODEL

Album(id, name, year, lyrics)

id name year |lyrics
Id1 |Enter the Wu-Tang 1993 j<text>
Id2 [Run the Jewels 2 2015 [<text>
Id3 |Liquid Swords 1995 j<text>
Id4 |We Got It from Here [2016 j<text>

| BRASSaE
Query

Find albums with lyrics about
running from the police

@ OpenAl (¥ HuggingFace

o EZTETE »

Embeddings

Id1 » [0.32, 0.78, 0.30, ...
Id2 » [0.99, 0.19, 0.81, ...
Id3 » [0.01, 0.18, 0.85, ...
Id4 > [0.19, 0.82, 0.24, ...

¥

e ed d L

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service

Album(id, name, year, lyrics)

VECTOR DATA MODEL

id name year |lyrics
Id1 |Enter the Wu-Tang 1993 j<text>
Id2 [Run the Jewels 2 2015 [<text>
Id3 |Liquid Swords 1995 j<text>
Id4 |We Got It from Here [2016 j<text>

| BRASSaE
Query

Find albums with lyrics about

running from the M—’

»

[0.02, 0.10, 0.24,

Embeddings

Id1 » [0.32, 0.78, 0.30, ...
Id2 » [0.99, 0.19, 0.81, ...
Id3 » [0.01, 0.18, 0.85, ...
Id4 > [0.19, 0.82, 0.24, ...

¥

e ed d L

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service

49

VECTOR DATA MODEL

Album(id, name, year, lyrics) Embeddings
id name year lyrics @OpenAl ® ugging Face I1d1 » [0.32, 0.78, 0.30, ...
Id1 |Enter the Wu-Tang 1993 |<text> Id2 » [0.99, 0.19, 0.81, ...

e ed d L

Id2 |Run the Jewels 2 2015 j<text> »
Id3 |Liquid Swords 1995 j<text>
Id4 |We Got It from Here (2016 j<text>

Id3 » [0.01, 0.18, 0.85, ...
Id4 » [0.19, 0.82, 0.24, ...
[0.02, 0.10, 0.24, ... '

Ranked List of 1ds

Query
Find albums with lyrics about

running from the M—’

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service

VECTOR DATA MODEL

Album(id, name, year, lyrics) Embeddings

name

Id1 Enter the Wu-Tang

Id2

Id3 L1qu1d Swords <text>

<text>

3

@OpenAl %) Hugging Face I1d1 » [0.32, 0.78, 0.30, ...
Id2 » [0.99, 0.19, 0.81, ...

Run the Jewels 2 2015 [<text> Trans:former Id3 » [0.01, 0.18, 0.85, ...
.. 1995 Id4 » [0.19, 0.82, 0.24, ...

e ed d L

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service

VECTOR DATA MODEL

Album(id, name, year, lyrics)
id name year lyrics

Id1 |Enter the Wu-Tang 1993 | <text>

Id4 [We Got It from Here |2016 |<text>

Query
Find albums with lyrics about

running from the M—’

and released after 2005

Id2 |Run the Jewels 2 2015 |<text> »
Id3 |Liquid Swords 1995 [<text>

»

[0.02, 0.10, 0.24,

Embeddings
Id1 » [0.32, 0.78,
Id2 » [0.99, 0.19,
Id3 » [0.01, 0.18,
Id4 » [0.19, 0.82,

¥

0.30, ...
0.81, ...
0.85, ...
0.24, ...

e ed d L

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service

VECTOR DATA MODEL

Album(id, name, year, lyrics) Embeddings

id name year lyrics

Id1 |Enter the Wu-Tang 1993 | <text>

Id2 |Run the Jewels 2 2015 | <text>

Id3 |Liquid Swords 1995 [<text>

Id4 [We Got It from Here |2016 |<text>

Query

Find albums with lyrics about

[0.02, 0.10, 0.24, ... '

year > 2005

running from the police
and released after]2005

@OpenAl %) Hugging Face I1d1 » [0.32, 0.78, 0.30, ...
Id2 » [0.99, 0.19, 0.81, ...

Id3 » [0.01, 0.18, 0.85, ...
Id4 » [0.19, 0.82, 0.24, ...

e ed d L

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://en.wikipedia.org/wiki/Run_the_Jewels_2
https://youtu.be/5qDhaWqeNMc
https://en.wikipedia.org/wiki/We_Got_It_from_Here..._Thank_You_4_Your_Service

CONCLUSION

Databases are the most important and beautiful
software in all of computer science.

Relational algebra defines the primitives for processing
queries on a relational database.

We will see relational algebra again when we talk about
query optimization + execution.

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NEXT CLASS

Modern SQL

— Make sure you understand basic SQL before the lecture.

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

	Introduction
	Slide 1: Relational Model & Algebra
	Slide 2: WAITLIST
	Slide 3
	Slide 4: COURSE OVERVIEW
	Slide 5: COURSE LOGISTICS
	Slide 6: LECTURE RULES
	Slide 7: PROJECTS
	Slide 8: PROJECT 0
	Slide 9: PLAGIARISM WARNING
	Slide 10: DB FLASH TALKS
	Slide 11
	Slide 12
	Slide 13
	Slide 14: DATABASE PRISON PROGRAM

	Databases Background
	Slide 15
	Slide 16: TODAY’S AGENDA
	Slide 17: DATABASE
	Slide 18: DATABASE EXAMPLE
	Slide 19: FLAT FILE STRAWMAN
	Slide 20: FLAT FILE STRAWMAN
	Slide 21: FLAT FILES: DATA INTEGRITY
	Slide 22: FLAT FILES: IMPLEMENTATION
	Slide 23: FLAT FILES: DURABILITY
	Slide 24: DATABASE MANAGEMENT SYSTEM
	Slide 25: DATA MODELS
	Slide 26: DATA MODELS
	Slide 27: DATA MODELS
	Slide 28: DATA MODELS
	Slide 29: DATA MODELS
	Slide 30: DATA MODELS
	Slide 31: DATA MODELS
	Slide 32: DATA MODELS
	Slide 33: EARLY DATABASE SYSTEMS
	Slide 34: EARLY DATABASE SYSTEMS
	Slide 35: EARLY DATABASE SYSTEMS
	Slide 36: EARLY DATABASE SYSTEMS
	Slide 37: EARLY DATABASE SYSTEMS
	Slide 38: EARLY DATABASE SYSTEMS
	Slide 39: EARLY DATABASE SYSTEMS
	Slide 40: EARLY DATABASE SYSTEMS

	Relational Model
	Slide 41: RELATIONAL MODEL
	Slide 42: DATA INDEPENDENCE
	Slide 43: RELATIONAL MODEL
	Slide 44: RELATIONAL MODEL: PRIMARY KEYS
	Slide 45: RELATIONAL MODEL: PRIMARY KEYS
	Slide 46: RELATIONAL MODEL: PRIMARY KEYS
	Slide 47: RELATIONAL MODEL: FOREIGN KEYS
	Slide 48: RELATIONAL MODEL: FOREIGN KEYS
	Slide 49: RELATIONAL MODEL: FOREIGN KEYS
	Slide 50: RELATIONAL MODEL: FOREIGN KEYS
	Slide 51: RELATIONAL MODEL: CONSTRAINTS
	Slide 52: RELATIONAL MODEL: CONSTRAINTS

	Relational Algebra
	Slide 53: DATA MANIPULATION LANGUAGES (DML)
	Slide 54: DATA MANIPULATION LANGUAGES (DML)
	Slide 55: RELATIONAL ALGEBRA
	Slide 56: RELATIONAL ALGEBRA: SELECT
	Slide 57: RELATIONAL ALGEBRA: SELECT
	Slide 58: RELATIONAL ALGEBRA: SELECT
	Slide 59: RELATIONAL ALGEBRA: PROJECTION
	Slide 60: RELATIONAL ALGEBRA: UNION
	Slide 61: RELATIONAL ALGEBRA: INTERSECTION
	Slide 62: RELATIONAL ALGEBRA: DIFFERENCE
	Slide 63: RELATIONAL ALGEBRA: PRODUCT
	Slide 64: RELATIONAL ALGEBRA: JOIN
	Slide 65: RELATIONAL ALGEBRA: JOIN
	Slide 66: RELATIONAL ALGEBRA: JOIN
	Slide 67: RELATIONAL ALGEBRA: EXTRA OPERATORS
	Slide 68: OBSERVATION
	Slide 69: RELATIONAL MODEL: QUERIES

	Other Data Models
	Slide 70: DATA MODELS
	Slide 71: DOCUMENT DATA MODEL
	Slide 72: DOCUMENT DATA MODEL
	Slide 73: DOCUMENT DATA MODEL
	Slide 74: DOCUMENT DATA MODEL
	Slide 75: DOCUMENT DATA MODEL
	Slide 76: DOCUMENT DATA MODEL
	Slide 77: VECTOR DATA MODEL
	Slide 78: VECTOR DATA MODEL
	Slide 79: VECTOR DATA MODEL
	Slide 80: VECTOR DATA MODEL
	Slide 81: VECTOR DATA MODEL
	Slide 82: VECTOR DATA MODEL
	Slide 83: VECTOR DATA MODEL
	Slide 84: VECTOR DATA MODEL
	Slide 85: VECTOR DATA MODEL

	Conclusion
	Slide 86: CONCLUSION
	Slide 87: NEXT CLASS

