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ADMINISTRIVIA

Project #0 is due Sunday Jan 25® @ 11:59pm
Homework #1 is due Sunday Sept 25" @ 11:59pm

No in-class lecture next Wednesday Jan 21%
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LAST CLASS

We introduced the Relational Model as the superior
data model for databases.

We then showed how Relational Algebra is the
building blocks that will allow us to query and modify a
relational database.
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SQL HISTORY

In 1971, IBM created its first relational query language
called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM System R

prototype DBMS.
— Structured English Query Language

IBM releases commercial SQL-based DBMSs:
—> System/38 (1979), SQL/DS (1981), and DB2 (1983).
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SQL HISTORY

In 1971, IBM created its

E. Mappings may be composed by applying one mapping
Caued SQUAR to the result of another, as illustrated by Q3.
" Q3. Find those items sold by departments on the second floor.
[BM then created "SEQ SALES o LOC (2)
t e DBMS ITEM DEPT DEpT FLQOR
prototyp :

The floor 27 is first mapped to the departments located
there, and then to the items which they sell. The range
of the inner mapping must be compatible with the
domain of the outer mapping, but they need not be
identical, as illustrated by Q4.

— Structured English Quer

IBM releases commerci
— System/38 (1979), SQL/
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SQL HISTORY

ANSI Standard in 1986. ISO in 1987

— Structured Query Language

Current standard is SQL:2023

— SQL:2023 — Property Graph Queries, Muti-Dim. Arrays
— SQL:2016 — JSON, Polymorphic tables

— SQL:2011 » Temporal DBs, Pipelined DML

— SQL:2008 — Truncation, Fancy Sorting

— SQL:2003 —» XML, Windows, Sequences, Auto-Gen IDs.
— SQL:1999 — Regex, Triggers, OO

The minimum language syntax a system needs to say
that it supports SQL is SQL-92.
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NEWS COMPUTTING

The Rise of SQL >It’s become the

second programming language everyone
needs to know

BY RINA DIANE CABALLAR | 23 AuG 2023 | 3 MIN READ Q

ANSI Standard in

— Structured Query

ISTOCK

SHARE THIs SToRY

Current standard
— SQL:2023 — Proy
— SQL:2016 — JSO]

Eé v fin Programming @g@g@ this year, Normall

TAGS

T0P PROGRAMNING Lancuages more general-purpose language, boosted it to No, 1
SQL

So what’s behind SQLs soar to the top? The ever-increasing yse of databases, for
one. SQL has become the primary query language for accessing and managing data
stored in such databases—speciﬁcaﬂy relational databases, which represent data in
table form with rows and columns, Databases serve as the foundation of many
enterprise applications and are increasingly found in other places as well, for

— SQL:1999 — Reg

The minimum |
that it supports

of the CMU database group.
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RELATIONAL LANGUAGES

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:

— View definition

— Integrity & Referential Constraints
— Transactions

Important: SQL is based on bags (duplicates) not sets
(no duplicates).
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TODAYS AGENDA

Aggregations + Group By
String / Date / Time Operations
Output Control + Redirection
Nested Queries

Lateral Joins

Common Table Expressions

Window Functions
$DB Flash Talk: dbt
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EXAMPLE DATABASE

student(sid, name,login, gpa) enrolled(sid,cid, grade)

sid name login age gpa sid cid grade

53666 | RZA rza@cs 56 (4.0 53666 15-445 C

53688 | Taylor swift@cs 36 (3.9 53688 15-721 A

53655 | Tupac shakur@cs 25 3.5 53688 15-826 B

53655 15-445 B

course(cid, name) 53666 | 15-721 ¢

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-799 Special Topics in Databases
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AGGREGATES

Functions that return a single value from a bag of

tuples:

— AVG(col)— Return the average col value.
— MIN(col)— Return minimum col value.
— MAX(col)— Return maximum col value.
— SUM(col)— Return sum of values in col.
— COUNT(col)— Return # of values for col.

10


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

11
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AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt

SELECT COUNT(*) AS cnt
FROM student WHERE login LIKE '%@cs'

11
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AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt

SELECT COUNT(*) AS cnt

SELECT COUNT(1) AS cnt
FROM student WHERE login LIKE '%@cs'

11
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AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(logln) AS cnt

SELECT COUNT(*) AS cnt
SELECT COUNT(1) AS cnt
SELECT COUNT(1+1+1) AS cnt

FROM student WHERE login LIKE '%@cs'

11
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AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

12
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AGGREGATES

Output of other columns outside of an aggregate is

undefined.

Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

AVG(s.gpa)
3.86

e.cid
222

12
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AGGREGATES

Output of other columns outside of an aggregate is

undefined.

Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), x\‘
FROM enrolled AS J student AS s

ON e.sid = s.sid

AVG(s.gpa)
3.86

e.cid
222

12
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AGGREGATES

Output of other columns outside of an aggregate is

undefined.

Get the average GPA of students enrolled in each course.

FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

AVG(s.gpa) e.cid
SELECT AVG(s.gpa), x\‘ 3.86 22?
FROM enrolled AS@J student AS s
ON e.sid = s.sid
AVG(s.gpa) e.cid
SELECT AVG(s.gpa), ANY_VALUE(e.cid) 3.86 15-445

12
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GROUP BY

Project tuples into subsets and
calculate aggregates against
each subset.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e
JOIN student AS s

ON e.sid = s.sid
GROUP BY e.cid

13
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GROUP BY

Project tuples into subsets and SELECT AVG(s.gpa), e.cid

. FROM enrolled AS e
calculate ageregates against
581¢5 >dag > JOIN student AS s

each subset. ON e.sid = s.sid
GROUP BY e.cid

53435 53435 | 2.25 |15-721
53439 53439 | 2.70 |15-721 2 46 15-721

56023 56023 | 2.75 |15-826 # 3 39 15-826

59439 59439 3.90 15-826 1.89 15-445

53961 53961 | 3.50 |15-826

58345 58345 | 1.89  |15-445
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GROUP BY

Project tuples into subsets and SELECT AVG(s.gpa), e.cid

. FROM enrolled AS e
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581¢5 >dag > JOIN student AS s

each subset. ON e.sid = s.sid
GROUP BY e.cid

53435 53435 | 2.25 |15-721
53439 53439 | 2.70 |15-721 2 46 15-721

56023 56023 | 2.75 |15-826 # 3 39 15-826

59439 59439 3.90 15-826 1.89 |1 5-445

53961 53961 | 3.50 |15-826

58345 58345 | 1.89  |15-445
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GROUPING SETS

Specify multiple groupings in a single query instead of
using UNION ALL to combine the results of several
individual GROUP BY queries.

SELECT c.name AS c_name, e.grade,
COUNT(*) AS num_students
FROM enrolled AS e
JOIN course AS c ON e.cid = c.cid
GROUP BY GROUPING SETS (

(c.name, e.grade), -- By course and grade
(c.name), -- By course only

@) -- Overall total
)5

14
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14

GROUPING SETS

Specify multiple groupings in a single query instead of
using UNION ALL to combine the results of several
individual GROUP BY queries.

cid grade num_students
null null |5
SELECT c.name AS c_name, e.grade, [15-721

C
COUNT(*) AS num_students 15-826 | B
FROM enrolled AS e 15-445 | B
JOIN course AS c ON e.cid = c.cigql2744> i

N_\M_\_\_\_\_\

GROUP BY GROUPING SETS ( /2]
15-445 | null
(c.name, e.grade), -- By course ¢ :_ere | uil
(c.name), —= By course {15-721 | nuil

@) -- Overall total
Pk
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14

GROUPING SETS

Specify multiple groupings in a single query instead of
using UNION ALL to combine the results of several
individual GROUP BY queries.

cid grade num_students
null | null |5
SELECT c.name AS c_name, e.grade, |15-721]C 1
COUNT(*) AS num_students 15-826 | B 1
FROM enrolled AS e 15-445 | B 1
JOIN course AS c ON e.cid = c.ciq2=44s5(C |1
GROUP BY GROUPING SETS ( S PN
15-445 | null |2
(c.name, e.grade)| -- By course 15-826 | null |1
(c.name)|, -— By course q15-721 | null 12
@) -- Overall total
Pk
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FILTER

Qualify results pre aggregation computation.
Aggregation group membership qualifier.

SELECT AVG(s.gpa)
QFILTER (WHERE e.cid = '15-445"') AS avg_gpa,
ANY_VALUE(e.cid)
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid;

AVG(s.gpa) e.cid
3.75 15-445 avg_gpa e.cid
3.950000 |15-721 3.75 15-445

3.900000 |15-826

15
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HAVING

Filters results post-aggregation computation.
— Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
WHERE avg_gpa > 3.9
GROUP BY e.cid

16
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HAVING

Filters results post-aggregation computation.
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HAVING

Filters results post-aggregation computation.
— Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

16
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HAVING

Filters results post-aggregation computation.
— Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

GROUP BY e.cid
HAVING avg_gpa > 3.9;x

16
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HAVING
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HAVING

Filters results post-aggregation computation.
— Like a WHERE clause for a GROUP BY
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GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;
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3.75 15-445 avg_gpa e.cid
3.950000 |15-721 3.950000 | 15-721

3.900000 |15-826

16


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

STRING OPERATIONS

String Case String Quotes
SQL-92 Sensitive Single Only
Postgres Sensitive Single Only
MySQL Insensitive Single/Double
SQLite Sensitive Single/Double
MSSQL Sensitive Single Only
Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('TuPaC') SQL92

WHERE name = "TuPaC" MySQL
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STRING OPERATIONS

LIKE provides string matching with
special match operators:

— '%"' Matches any substring (including
empty strings).

— ' _" Match any one character

SIMILAR TO allows for regular

expression matching.

— In the SQL standard but not all systems
support it.

— Other systems also support POSIX-style
regular expressions.

SELECT * FROM enrolled AS e
WHERE e.cid LIKE '15-%';

SELECT * FROM student AS s
WHERE s.login LIKE '%@c_';

SELECT * FROM student AS s
WHERE login SIMILAR TO
'[\wl{3}Ccs';

18
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STRING OPERATIONS

SQL-92 defines string functions.
— Many DBMSs also have their own unique functions

Can be used in either output and predicates:

SELECT SUBSTRING(name,1,5) AS abbrv_name
FROM student WHERE sid = 53688

SELECT * FROM student AS s
WHERE UPPER(s.name) LIKE 'KAN%'

19
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STRING OPERATIONS

SQL standard defines the | | operator for concatenating
two or more strings together.

SELECT name FROM student SQL-92
WHERE login = LOWER(name) || '@cs'
SELECT name FROM student MSSQL

WHERE login = LOWER(name) + '@cs'

SELECT name FROM student MySQL
WHERE login = CONCAT(LOWER(name), '@cs')
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DATE/TIME OPERATIONS

Operations to manipulate and modify DATE/TIME
attributes.

Can be used in both output and predicates.

Support/syntax varies wildly...

Demo: Compute the number of days since the
beginning of the year.

21
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OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Sort tuples by the values in one or more
of their columns.

FETCH {FIRST|NEXT]} <#> ROWS
OFFSET <#> ROWS

— Limit # of tuples returned in output.
— Can set an offset to return a “range”

22

SELECT
WHERE
FETCH

sid, name FROM student
login LIKE '%@cs'
FIRST 10 ROWS ONLY;

SELECT
WHERE
ORDER

OFFSET
FETCH

sid, name FROM student
login LIKE '%@cs'

BY gpa

5 ROWS

FIRST 5 ROWS| WITH TIES;

SELECT
FROM
WHERE

TOP 10 sid, name MSSQL
student
login LIKE '%@cs';
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OUTPUT REDIRECTION

Store query results in another table:

— Table must not already be defined.

— Table will have the same # of columns with the same types as
the input.

SELECT DISTINCT cid INTO Courselds SQL-92
FROM enrolled;

CREATE TABLE Courselds ( MySQL
SELECT DISTINCT cid FROM enrolled);
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OUTPUT REDIRECTION

Store query results in another table:

— Table must not already be defined.

— Table will have the same # of columns with the same types as
the input.

SELECT DISTINCT cid INTO Courselds SQL-92
FROM enrolled;

SELECT DISTINCT cid Postgres
INTO TEMPORARY Courselds
FROM enrolled;

CREATE TABLE Courselds ( MySQL
SELECT DISTINCT cid FROM enrolled);

23
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NESTED QUERIES

Invoke a query inside of another query to compose

more complex computations.
— Inner queries can appear (almost) anywhere in query.

Outer Query ELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled) Inner Query

24
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NESTED QUERIES

Invoke a query inside of another query to compose

more complex computations.
— Inner queries can appear (almost) anywhere in query.

Outer Query ELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

SELECT sid,
(SELECT name FROM student AS s
WHERE s.sid = e.sid) AS name
FROM enrolled AS e;

Inner Query

24
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NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...

T

sid in the set of people that take 15-445

25
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NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445"

25
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NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445"

)

25
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NESTED QUERIES

Get the names of students in '15-445

SELECT nameﬂlngstudent
WHERE| sid (
SELECT|sid |=Re™enrolled

WHERE cid = '15-445"'

)
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NESTED QUERIES

ALL— The expression must be true for all rows in the
sub-query.

ANY— The expression must be true for at least one row
in the sub-query.

IN— Equivalent to '=ANY()'.

EXISTS— At least one row is returned without
comparing it to an attribute in outer query.

26
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NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

SELECT sid, name FROM student
WHERE ...

“Is the highest enrolled sid”

27


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

SELECT sid, name FROM student m
WHERE sid = ANY( 53688 | Taylor

SELECT MAX(sid) FROM enrolled

);
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NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

SELECI _<sid name FROM ctiident
WHEHSELECT sid, name FROM student

Si WHERE sid IN (
) SELECT sid FROM enrolled
ORDER BY sid DESC FETCH FIRST 1 ROW ONLY

);

27
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NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

SELECI _<sid name FROM ctiident
WHEHSELECT sid, name FROM student

s WHE ] (
): SISELECT student.sid, name
FROM student

e JOIN (SELECT MAX(sid) AS sid
FROM enrolled) AS max_e
ON student.sid = max_e.sid;
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NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE

“with no tuples in the enrolled table”

. sid cid grade
cid name
53666 |15-445 C
15-445 Database Systems
53688 |15-721 A
15-721 Advanced Database Systems
— 53688 | 15-826 B
15-826 Data Mining
- - - 53655 |15-445 B
15-799 Special Topics in Databases
53666 |15-721 C
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NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(

tuples in the enrolled table
)

28
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NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

);

‘15—799 ‘Special Topics in Databases \

28
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NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTA(
SELECT * FROJl enrolled
WHERE |course.cid|= enrolled.cid

);

‘15—799 ‘Special Topics in Databases \
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LATERAL JOINS

The LATERAL operator allows a nested query to

reference attributes in other nested queries that precede

it (according to position in the query).

— You can think of it like a for loop that allows you to invoke
another query for each tuple in a table.

SELECT * FROM ‘ 1 ‘2 ‘

(SELECT 1 AS x) AS t1,
LATERAL (SELECT t1.x+1 AS y) AS t2;

for x in [1]:
for y in [x+11]:
print(x,y)

29
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30

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c,
For each course:
— Compute the # of enrolled students

For each course:
— Compute the average gpa of enrolled students
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30

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2
ORDER BY cnt ASC;
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the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c
LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
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LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(*) AS cnt FROM egrolled
WHERE enrolled.cid =]|c.c1 S t1,
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2
ORDER BY cnt ASC;
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Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
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SELECT * FROM course AS c,
LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid

WHERE e.cid = c.cid) AS t2
ORDER BY cnt ASC;
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30

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(F) AS cnt FROM enrolled
WHERE enrollpd.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) A} avg FROM student AS s
JOIN enrolled A§ e ON s.sid = e.sid
WHERE e.cid =
ORDER BY cnt ASC;
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LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count

in ascending order.

SELECT * FROM course AS c,

cid name cnt  avg
15-799 [Special Topics in Databases |0 null
15-826 [Data Mining 1 3.9
15-445 [Database Systems 2 3.75

Advanced Database Systems 2 3.95

LATERAL (SELECT COUNT(F) [15-721
WHERE enrollpd.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) A} avg FROM student AS s
JOIN enrolled A§ e ON s.sid = e.sid

WHERE e.cid =

ORDER BY cnt ASC;

c.cid

AS t2
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COMMON TABLE EXPRESSIONS

Specify a temporary result set that can then be
referenced by another part of that query.

— Bind/alias output columns to names before the AS keyword.
Alternative to nested queries, views, and explicit temp
tables.

WITH|cteName|(col1, col2) AS (
SELECT 1, 2
)

SELECT coll + col2 FROM|cteName|

31
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COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled in at
least one course.

WITH maxCTE (maxId) AS (

SELECT MAX(sid) FROM enrolled
)
SELECT name FROM student AS s

JOIN maxCTE ON s.sid = maxCTE.maxId;
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COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled in at
least one course.

WITH maxCTE (maxId) AS

SELECT MAX(sid) FROM Enrolled
)
SELECT naJe FROM student AS s

JOIN |maxCTE| ON s.sid = maxCTE.maxId;
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WINDOW FUNCTIONS

Performs a calculation across a set of tuples that are
related to the current tuple, without collapsing them
into a single output tuple, to support running totals,

ranks, and moving averages.
— Like an aggregation but tuples are not grouped into a single
output tuples.

SELECT FUNC-NAME(...) OVER (...)
FROM tableName;
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WINDOW FUNCTIONS

Performs a calculation across a set of tuples that are
related to the current tuple, without collapsing them
into a single output tuple, to support running totals,

ranks, and moving averages.
— Like an aggregation but tuples are not grouped into a single
output tuples.

How to “slice” up data
Can also sort tuples

SELECT FUNC-NAME(...) OVER (...)
FROM tableNage;

ggregation Functions
Special Functions
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WINDOW FUNCTIONS

Aggregation functions:
— Anything that we discussed earlier

sid cid grade row_num
Special window functions: 53666 | 15-445 | C 1
— ROW_NUMBER()— # of the current row 53688 | 15-721 A
— RANK()— Order position of the current 53688 |15-826  |B 3
53655 | 15-445 B 4
o 53666 | 15-721 C 5

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled;
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WINDOW FUNCTIONS

Aggregation functions:
— Anything that we discussed earlier

sid cid grade row_num
Special window functions: 53666 | 15-445 | C 1
— ROW_NUMBER()— # of the current row 53688 | 15-721 A 2
— RANK()— Order position of the current 53688 |15-826  |B 3
Tow 53655 15-445 B 4
’ 53666 15-721 C 5

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled;
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WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid;
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WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when cid sid AS——
computing the window function. 15-445 | 53666 |1

15-445 | 53655 2

Use PARTITION BY to specify group. 15-721 153688 |1

15-721 | 53666 |2
15-826 |53688 |1

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid;
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WINDOW FUNCTIONS

You can also include an ORDER BY in the window
grouping to sort entries in each group.

SELECT *,
ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled
ORDER BY cid;
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WINDOW FUNCTIONS

Find the student with second highest grade for each course.

Group tuples by cid
Then sort by grade

SELECT * FROM ( /
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking
WHERE ranking.rank = 2
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WINDOW

FUNCTIONS

Find the student with second highest grade for each course.

Group tuples by cid
Then sort by grade

SELECT * FROM (
SELECT *, RANK()
ORDER B
FROM enrolled)

/

OVER (PARTITION BY cid
Y grade ASC) AS_rank

WHERE [ranking. rank
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CONCLUSION

SQL is a hot language.
— Lots of NL2SQL tools, but writing
SQL is not going away.

You should (almost) always strive
to compute your answer as a
single SQL statement.

38

Top Programming Languages 2025

Spectrum Trending

Python
SQL 0.9121
Java 0.7338
JavaScript 0.6597
cs
G
Shell
¢

https://spectrum.ieee.org/top-programming-languages-2025
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NEXT CLASS

We will begin our journey to understanding the
internals of database systems starting with Storage!

No In-Class Lecture!
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