
DatabaseSystems

Database
Systems

15-445/645 SPRING 2026

15 - 445/645 SPRING 2026ANDY PAVLO

ANDY PAVLOJIGNESH PATEL

JIGNESH PATEL

Modern SQL
Lecture #02

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ADMINISTRIVIA

Project #0 is due Sunday Jan 25th @ 11:59pm

Homework #1 is due Sunday Sept 25th @ 11:59pm

No in-class lecture next Wednesday Jan 21st

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LAST CLASS

We introduced the Relational Model as the superior
data model for databases.

We then showed how Relational Algebra is the
building blocks that will allow us to query and modify a
relational database.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SQL HISTORY

SQUARE

IBM System R

In 1971, IBM created its first relational query language
called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM System R
prototype DBMS.
→ Structured English Query Language

IBM releases commercial SQL-based DBMSs:
→ System/38 (1979), SQL/DS (1981), and DB2 (1983).

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SQL HISTORY

SQUARE

IBM System R

In 1971, IBM created its first relational query language
called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM System R
prototype DBMS.
→ Structured English Query Language

IBM releases commercial SQL-based DBMSs:
→ System/38 (1979), SQL/DS (1981), and DB2 (1983).

4

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R
https://dl.acm.org/doi/10.1145/361219.361221

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SQL HISTORY

SQUARE

IBM System R

In 1971, IBM created its first relational query language
called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM System R
prototype DBMS.
→ Structured English Query Language

IBM releases commercial SQL-based DBMSs:
→ System/38 (1979), SQL/DS (1981), and DB2 (1983).

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SQL HISTORY

SQL-92

ANSI Standard in 1986. ISO in 1987
→ Structured Query Language

Current standard is SQL:2023
→ SQL:2023 → Property Graph Queries, Muti-Dim. Arrays
→ SQL:2016 → JSON, Polymorphic tables
→ SQL:2011 → Temporal DBs, Pipelined DML
→ SQL:2008 → Truncation, Fancy Sorting
→ SQL:2003 → XML, Windows, Sequences, Auto-Gen IDs.
→ SQL:1999 → Regex, Triggers, OO

The minimum language syntax a system needs to say
that it supports SQL is SQL-92.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/files/sql/sql1992.txt

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SQL HISTORY

SQL-92

ANSI Standard in 1986. ISO in 1987
→ Structured Query Language

Current standard is SQL:2023
→ SQL:2023 → Property Graph Queries, Muti-Dim. Arrays
→ SQL:2016 → JSON, Polymorphic tables
→ SQL:2011 → Temporal DBs, Pipelined DML
→ SQL:2008 → Truncation, Fancy Sorting
→ SQL:2003 → XML, Windows, Sequences, Auto-Gen IDs.
→ SQL:1999 → Regex, Triggers, OO

The minimum language syntax a system needs to say
that it supports SQL is SQL-92.

5

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/files/sql/sql1992.txt
https://spectrum.ieee.org/the-rise-of-sql

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

RELATIONAL LANGUAGES

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:
→ View definition
→ Integrity & Referential Constraints
→ Transactions

Important: SQL is based on bags (duplicates) not sets
(no duplicates).

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TODAYS AGENDA

Aggregations + Group By

String / Date / Time Operations

Output Control + Redirection

Nested Queries

Lateral Joins

Common Table Expressions

Window Functions

DB Flash Talk: dbt

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.getdbt.com/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXAMPLE DATABASE

9

student(sid,name,login,gpa) enrolled(sid,cid,grade)

course(cid,name)

sid name login age gpa
53666 RZA rza@cs 56 4.0
53688 Taylor swift@cs 36 3.9
53655 Tupac shakur@cs 25 3.5

sid cid grade
53666 15-445 C
53688 15-721 A
53688 15-826 B
53655 15-445 B
53666 15-721 C

cid name
15-445 Database Systems
15-721 Advanced Database Systems
15-826 Data Mining
15-799 Special Topics in Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

AGGREGATES

Functions that return a single value from a bag of
tuples:
→ AVG(col)→ Return the average col value.
→ MIN(col)→ Return minimum col value.
→ MAX(col)→ Return maximum col value.
→ SUM(col)→ Return sum of values in col.
→ COUNT(col)→ Return # of values for col.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

11

SELECT COUNT(login) AS cnt
 FROM student WHERE login LIKE '%@cs'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

11

SELECT COUNT(login) AS cnt
 FROM student WHERE login LIKE '%@cs'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

11

SELECT COUNT(login) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(*) AS cnt
 FROM student WHERE login LIKE '%@cs'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

11

SELECT COUNT(login) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(*) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(1) AS cnt
 FROM student WHERE login LIKE '%@cs'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

11

SELECT COUNT(login) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(*) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(1) AS cnt
 FROM student WHERE login LIKE '%@cs'

SELECT COUNT(1+1+1) AS cnt
 FROM student WHERE login LIKE '%@cs'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

12

SELECT AVG(s.gpa), e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

12

SELECT AVG(s.gpa), e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid

AVG(s.gpa) e.cid

3.86 ???

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

12

SELECT AVG(s.gpa), e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid

AVG(s.gpa) e.cid

3.86 ???

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

12

SELECT AVG(s.gpa), e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid

AVG(s.gpa) e.cid

3.86 ???

SELECT AVG(s.gpa), ANY_VALUE(e.cid)
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid

AVG(s.gpa) e.cid

3.86 15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GROUP BY

Project tuples into subsets and
calculate aggregates against
each subset.

13

SELECT AVG(s.gpa), e.cid
 FROM enrolled AS e
 JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GROUP BY

Project tuples into subsets and
calculate aggregates against
each subset.

13

AVG(s.gpa) e.cid

2.46 15-721

3.39 15-826

1.89 15-445

SELECT AVG(s.gpa), e.cid
 FROM enrolled AS e
 JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GROUP BY

Project tuples into subsets and
calculate aggregates against
each subset.

13

AVG(s.gpa) e.cid

2.46 15-721

3.39 15-826

1.89 15-445

SELECT AVG(s.gpa), e.cid
 FROM enrolled AS e
 JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid

e.sid s.sid s.gpa e.cid

53435 53435 2.25 15-721

53439 53439 2.70 15-721

56023 56023 2.75 15-826

59439 59439 3.90 15-826

53961 53961 3.50 15-826

58345 58345 1.89 15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GROUPING SETS

Specify multiple groupings in a single query instead of
using UNION ALL to combine the results of several
individual GROUP BY queries.

14

SELECT c.name AS c_name, e.grade,
 COUNT(*) AS num_students
 FROM enrolled AS e
 JOIN course AS c ON e.cid = c.cid
 GROUP BY GROUPING SETS (
 (c.name, e.grade), -- By course and grade
 (c.name), -- By course only
 () -- Overall total
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GROUPING SETS

Specify multiple groupings in a single query instead of
using UNION ALL to combine the results of several
individual GROUP BY queries.

14

SELECT c.name AS c_name, e.grade,
 COUNT(*) AS num_students
 FROM enrolled AS e
 JOIN course AS c ON e.cid = c.cid
 GROUP BY GROUPING SETS (
 (c.name, e.grade), -- By course and grade
 (c.name), -- By course only
 () -- Overall total
);

cid grade num_students
null null 5
15-721 C 1
15-826 B 1
15-445 B 1
15-445 C 1
15-721 A 1
15-445 null 2
15-826 null 1
15-721 null 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GROUPING SETS

Specify multiple groupings in a single query instead of
using UNION ALL to combine the results of several
individual GROUP BY queries.

14

SELECT c.name AS c_name, e.grade,
 COUNT(*) AS num_students
 FROM enrolled AS e
 JOIN course AS c ON e.cid = c.cid
 GROUP BY GROUPING SETS (
 (c.name, e.grade), -- By course and grade
 (c.name), -- By course only
 () -- Overall total
);

cid grade num_students
null null 5
15-721 C 1
15-826 B 1
15-445 B 1
15-445 C 1
15-721 A 1
15-445 null 2
15-826 null 1
15-721 null 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

FILTER

Qualify results pre aggregation computation.
Aggregation group membership qualifier.

15

AVG(s.gpa) e.cid

3.75 15-445
3.950000 15-721
3.900000 15-826

avg_gpa e.cid

3.75 15-445

SELECT AVG(s.gpa)
 ⮱FILTER (WHERE e.cid = '15-445') AS avg_gpa,
 ANY_VALUE(e.cid)
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HAVING

Filters results post-aggregation computation.
→ Like a WHERE clause for a GROUP BY

16

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 WHERE avg_gpa > 3.9
 GROUP BY e.cid

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HAVING

Filters results post-aggregation computation.
→ Like a WHERE clause for a GROUP BY

16

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 WHERE avg_gpa > 3.9
 GROUP BY e.cid

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HAVING

Filters results post-aggregation computation.
→ Like a WHERE clause for a GROUP BY

16

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 WHERE avg_gpa > 3.9
 GROUP BY e.cid

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid
 HAVING avg_gpa > 3.9;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HAVING

Filters results post-aggregation computation.
→ Like a WHERE clause for a GROUP BY

16

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 WHERE avg_gpa > 3.9
 GROUP BY e.cid

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid
 HAVING avg_gpa > 3.9;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HAVING

Filters results post-aggregation computation.
→ Like a WHERE clause for a GROUP BY

16

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 WHERE avg_gpa > 3.9
 GROUP BY e.cid

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid
 HAVING avg_gpa > 3.9;

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid
 HAVING AVG(s.gpa) > 3.9;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HAVING

Filters results post-aggregation computation.
→ Like a WHERE clause for a GROUP BY

16

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 WHERE avg_gpa > 3.9
 GROUP BY e.cid

AVG(s.gpa) e.cid

3.75 15-445
3.950000 15-721
3.900000 15-826

avg_gpa e.cid

3.950000 15-721

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid
 HAVING avg_gpa > 3.9;

SELECT AVG(s.gpa) AS avg_gpa, e.cid
 FROM enrolled AS e JOIN student AS s
 ON e.sid = s.sid
 GROUP BY e.cid
 HAVING AVG(s.gpa) > 3.9;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STRING OPERATIONS

17

String Case String Quotes

SQL-92 Sensitive Single Only

Postgres Sensitive Single Only

MySQL Insensitive Single/Double

SQLite Sensitive Single/Double

MSSQL Sensitive Single Only

Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('TuPaC')

WHERE name = "TuPaC" MySQL

SQL-92

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STRING OPERATIONS

LIKE provides string matching with
special match operators:
→'%' Matches any substring (including

empty strings).

→'_' Match any one character

SIMILAR TO allows for regular
expression matching.
→ In the SQL standard but not all systems

support it.
→ Other systems also support POSIX-style

regular expressions.

18

SELECT * FROM enrolled AS e
 WHERE e.cid LIKE '15-%';

SELECT * FROM student AS s
 WHERE s.login LIKE '%@c_';

SELECT * FROM student AS s
 WHERE login SIMILAR TO
 '[\w]{3}@cs';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STRING OPERATIONS

SQL-92 defines string functions.
→ Many DBMSs also have their own unique functions

Can be used in either output and predicates:

19

SELECT SUBSTRING(name,1,5) AS abbrv_name
 FROM student WHERE sid = 53688

SELECT * FROM student AS s
 WHERE UPPER(s.name) LIKE 'KAN%'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STRING OPERATIONS

SQL standard defines the || operator for concatenating
two or more strings together.

20

SELECT name FROM student
 WHERE login = LOWER(name) + '@cs'

MSSQL

SELECT name FROM student
 WHERE login = LOWER(name) || '@cs'

SQL - 92

SELECT name FROM student
 WHERE login = CONCAT(LOWER(name), '@cs')

MySQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATE/TIME OPERATIONS

Operations to manipulate and modify DATE/TIME
attributes.

Can be used in both output and predicates.

Support/syntax varies wildly…

Demo: Compute the number of days since the
beginning of the year.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]
→ Sort tuples by the values in one or more

of their columns.

FETCH {FIRST|NEXT} <#> ROWS
OFFSET <#> ROWS
→ Limit # of tuples returned in output.
→ Can set an offset to return a “range”

22

SELECT sid, name FROM student
 WHERE login LIKE '%@cs'
 FETCH FIRST 10 ROWS ONLY;

SELECT sid, name FROM student
 WHERE login LIKE '%@cs'
 ORDER BY gpa
OFFSET 5 ROWS
 FETCH FIRST 5 ROWS WITH TIES;

SELECT TOP 10 sid, name
 FROM student
 WHERE login LIKE '%@cs';

MSSQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OUTPUT REDIRECTION

Store query results in another table:
→ Table must not already be defined.
→ Table will have the same # of columns with the same types as

the input.

23

CREATE TABLE CourseIds (
 SELECT DISTINCT cid FROM enrolled);

MySQL

SELECT DISTINCT cid INTO CourseIds
 FROM enrolled;

SQL - 92

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OUTPUT REDIRECTION

Store query results in another table:
→ Table must not already be defined.
→ Table will have the same # of columns with the same types as

the input.

23

CREATE TABLE CourseIds (
 SELECT DISTINCT cid FROM enrolled);

MySQL

SELECT DISTINCT cid INTO CourseIds
 FROM enrolled;

SQL - 92

SELECT DISTINCT cid
 INTO TEMPORARY CourseIds
 FROM enrolled;

Postgres

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Invoke a query inside of another query to compose
more complex computations.
→ Inner queries can appear (almost) anywhere in query.

24

SELECT name FROM student WHERE
 sid IN (SELECT sid FROM enrolled)

Outer Query
Inner Query

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Invoke a query inside of another query to compose
more complex computations.
→ Inner queries can appear (almost) anywhere in query.

24

SELECT name FROM student WHERE
 sid IN (SELECT sid FROM enrolled)

Outer Query
Inner Query

SELECT sid,
 (SELECT name FROM student AS s
 WHERE s.sid = e.sid) AS name
 FROM enrolled AS e;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Get the names of students in '15-445'

25

SELECT name FROM student
 WHERE ...

sid in the set of people that take 15 - 445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Get the names of students in '15-445'

25

SELECT name FROM student
 WHERE ...
SELECT name FROM student
 WHERE ...
 SELECT sid FROM enrolled
 WHERE cid = '15-445'

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Get the names of students in '15-445'

25

SELECT name FROM student
 WHERE ...
SELECT name FROM student
 WHERE ...
 SELECT sid FROM enrolled
 WHERE cid = '15-445'

SELECT name FROM student
 WHERE sid IN (
 SELECT sid FROM enrolled
 WHERE cid = '15-445'
)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Get the names of students in '15-445'

25

SELECT name FROM student
 WHERE ...
SELECT name FROM student
 WHERE ...
 SELECT sid FROM enrolled
 WHERE cid = '15-445'

SELECT name FROM student
 WHERE sid IN (
 SELECT sid FROM enrolled
 WHERE cid = '15-445'
)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

ALL→ The expression must be true for all rows in the
sub-query.

ANY→ The expression must be true for at least one row
in the sub-query.

IN→ Equivalent to '=ANY()' .

EXISTS→ At least one row is returned without
comparing it to an attribute in outer query.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

27

SELECT sid, name FROM student
 WHERE ...

"Is the highest enrolled sid "

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

27

SELECT sid, name FROM student
 WHERE ...
SELECT sid, name FROM student
 WHERE sid = ANY(
 SELECT MAX(sid) FROM enrolled
);

sid name

53688 Taylor

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

27

SELECT sid, name FROM student
 WHERE ...
SELECT sid, name FROM student
 WHERE sid = ANY(
 SELECT MAX(sid) FROM enrolled
);

SELECT sid, name FROM student
 WHERE sid IN (
 SELECT sid FROM enrolled
 ORDER BY sid DESC FETCH FIRST 1 ROW ONLY
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

27

SELECT sid, name FROM student
 WHERE ...
SELECT sid, name FROM student
 WHERE sid = ANY(
 SELECT MAX(sid) FROM enrolled
);

SELECT sid, name FROM student
 WHERE sid IN (
 SELECT sid FROM enrolled
 ORDER BY sid DESC FETCH FIRST 1 ROW ONLY
);

SELECT student.sid, name
 FROM student
 JOIN (SELECT MAX(sid) AS sid
 FROM enrolled) AS max_e
 ON student.sid = max_e.sid;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Find all courses that have no students enrolled in it.

28

SELECT * FROM course
 WHERE ...

“with no tuples in the enrolled table”

sid cid grade

53666 15-445 C

53688 15-721 A

53688 15-826 B

53655 15-445 B

53666 15-721 C

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-799 Special Topics in Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Find all courses that have no students enrolled in it.

28

SELECT * FROM course
 WHERE ...

“with no tuples in the enrolled table”

SELECT * FROM course
 WHERE NOT EXISTS(

);

tuples in the enrolled table

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Find all courses that have no students enrolled in it.

28

SELECT * FROM course
 WHERE ...

“with no tuples in the enrolled table”

SELECT * FROM course
 WHERE NOT EXISTS(

);

tuples in the enrolled table

SELECT * FROM course
 WHERE NOT EXISTS(
 SELECT * FROM enrolled
 WHERE course.cid = enrolled.cid
);

cid name

15-799 Special Topics in Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NESTED QUERIES

Find all courses that have no students enrolled in it.

28

SELECT * FROM course
 WHERE ...

“with no tuples in the enrolled table”

SELECT * FROM course
 WHERE NOT EXISTS(

);

tuples in the enrolled table

SELECT * FROM course
 WHERE NOT EXISTS(
 SELECT * FROM enrolled
 WHERE course.cid = enrolled.cid
);

cid name

15-799 Special Topics in Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LATERAL JOINS

The LATERAL operator allows a nested query to
reference attributes in other nested queries that precede
it (according to position in the query).
→ You can think of it like a for loop that allows you to invoke

another query for each tuple in a table.

29

SELECT * FROM
 (SELECT 1 AS x) AS t1,
 LATERAL (SELECT t1.x+1 AS y) AS t2;

t1.x t2.y

1 2

for x in [1]:
 for y in [x+1]:
 print(x,y)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SELECT * FROM course AS c,
For each course:
 ⮕ Compute the # of enrolled students

For each course:
 ⮕ Compute the average gpa of enrolled students

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses' enrollment count
in ascending order.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SELECT * FROM course AS c,
For each course:
 ⮕ Compute the # of enrolled students

For each course:
 ⮕ Compute the average gpa of enrolled students

SELECT * FROM course AS c,
 LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
 WHERE enrolled.cid = c.cid) AS t1,
 LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
 JOIN enrolled AS e ON s.sid = e.sid
 WHERE e.cid = c.cid) AS t2
 ORDER BY cnt ASC;

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses' enrollment count
in ascending order.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SELECT * FROM course AS c,
For each course:
 ⮕ Compute the # of enrolled students

For each course:
 ⮕ Compute the average gpa of enrolled students

SELECT * FROM course AS c,
 LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
 WHERE enrolled.cid = c.cid) AS t1,
 LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
 JOIN enrolled AS e ON s.sid = e.sid
 WHERE e.cid = c.cid) AS t2
 ORDER BY cnt ASC;

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses' enrollment count
in ascending order.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SELECT * FROM course AS c,
For each course:
 ⮕ Compute the # of enrolled students

For each course:
 ⮕ Compute the average gpa of enrolled students

SELECT * FROM course AS c,
 LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
 WHERE enrolled.cid = c.cid) AS t1,
 LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
 JOIN enrolled AS e ON s.sid = e.sid
 WHERE e.cid = c.cid) AS t2
 ORDER BY cnt ASC;

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses' enrollment count
in ascending order.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SELECT * FROM course AS c,
For each course:
 ⮕ Compute the # of enrolled students

For each course:
 ⮕ Compute the average gpa of enrolled students

SELECT * FROM course AS c,
 LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
 WHERE enrolled.cid = c.cid) AS t1,
 LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
 JOIN enrolled AS e ON s.sid = e.sid
 WHERE e.cid = c.cid) AS t2
 ORDER BY cnt ASC;

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses' enrollment count
in ascending order.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SELECT * FROM course AS c,
For each course:
 ⮕ Compute the # of enrolled students

For each course:
 ⮕ Compute the average gpa of enrolled students

SELECT * FROM course AS c,
 LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
 WHERE enrolled.cid = c.cid) AS t1,
 LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
 JOIN enrolled AS e ON s.sid = e.sid
 WHERE e.cid = c.cid) AS t2
 ORDER BY cnt ASC;

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses' enrollment count
in ascending order.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SELECT * FROM course AS c,
For each course:
 ⮕ Compute the # of enrolled students

For each course:
 ⮕ Compute the average gpa of enrolled students

SELECT * FROM course AS c,
 LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
 WHERE enrolled.cid = c.cid) AS t1,
 LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
 JOIN enrolled AS e ON s.sid = e.sid
 WHERE e.cid = c.cid) AS t2
 ORDER BY cnt ASC;

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses' enrollment count
in ascending order.

30

cid name cnt avg

15-799 Special Topics in Databases 0 null
15-826 Data Mining 1 3.9
15-445 Database Systems 2 3.75
15-721 Advanced Database Systems 2 3.95

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WITH cteName (col1, col2) AS (
 SELECT 1, 2
)
SELECT col1 + col2 FROM cteName

COMMON TABLE EXPRESSIONS

Specify a temporary result set that can then be
referenced by another part of that query.
→ Bind/alias output columns to names before the AS keyword.

Alternative to nested queries, views, and explicit temp
tables.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled in at
least one course.

32

WITH maxCTE (maxId) AS (
 SELECT MAX(sid) FROM enrolled
)
SELECT name FROM student AS s
 JOIN maxCTE ON s.sid = maxCTE.maxId;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled in at
least one course.

32

WITH maxCTE (maxId) AS (
 SELECT MAX(sid) FROM enrolled
)
SELECT name FROM student AS s
 JOIN maxCTE ON s.sid = maxCTE.maxId;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WINDOW FUNCTIONS

Performs a calculation across a set of tuples that are
related to the current tuple, without collapsing them
into a single output tuple, to support running totals,
ranks, and moving averages.
→ Like an aggregation but tuples are not grouped into a single

output tuples.

33

SELECT FUNC-NAME(...) OVER (...)
 FROM tableName;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WINDOW FUNCTIONS

Performs a calculation across a set of tuples that are
related to the current tuple, without collapsing them
into a single output tuple, to support running totals,
ranks, and moving averages.
→ Like an aggregation but tuples are not grouped into a single

output tuples.

33

SELECT FUNC-NAME(...) OVER (...)
 FROM tableName;

Aggregation Functions
Special Functions

How to “slice” up data
Can also sort tuples

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WINDOW FUNCTIONS

Aggregation functions:
→ Anything that we discussed earlier

Special window functions:
→ ROW_NUMBER()→ # of the current row
→ RANK()→ Order position of the current

row.

34

SELECT *, ROW_NUMBER() OVER () AS row_num
 FROM enrolled;

sid cid grade row_num
53666 15-445 C 1
53688 15-721 A 2
53688 15-826 B 3
53655 15-445 B 4
53666 15-721 C 5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WINDOW FUNCTIONS

Aggregation functions:
→ Anything that we discussed earlier

Special window functions:
→ ROW_NUMBER()→ # of the current row
→ RANK()→ Order position of the current

row.

34

SELECT *, ROW_NUMBER() OVER () AS row_num
 FROM enrolled;

sid cid grade row_num
53666 15-445 C 1
53688 15-721 A 2
53688 15-826 B 3
53655 15-445 B 4
53666 15-721 C 5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

35

SELECT cid, sid,
 ROW_NUMBER() OVER (PARTITION BY cid)
 FROM enrolled
 ORDER BY cid;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

35

SELECT cid, sid,
 ROW_NUMBER() OVER (PARTITION BY cid)
 FROM enrolled
 ORDER BY cid;

cid sid row_number
15-445 53666 1
15-445 53655 2
15-721 53688 1
15-721 53666 2
15-826 53688 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WINDOW FUNCTIONS

You can also include an ORDER BY in the window
grouping to sort entries in each group.

36

SELECT *,
 ROW_NUMBER() OVER (ORDER BY cid)
 FROM enrolled
 ORDER BY cid;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WINDOW FUNCTIONS

Find the student with second highest grade for each course.

37

SELECT * FROM (
 SELECT *, RANK() OVER (PARTITION BY cid
 ORDER BY grade ASC) AS rank
 FROM enrolled) AS ranking
 WHERE ranking.rank = 2

Group tuples by cid
Then sort by grade

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WINDOW FUNCTIONS

Find the student with second highest grade for each course.

37

SELECT * FROM (
 SELECT *, RANK() OVER (PARTITION BY cid
 ORDER BY grade ASC) AS rank
 FROM enrolled) AS ranking
 WHERE ranking.rank = 2

Group tuples by cid
Then sort by grade

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CONCLUSION

SQL is a hot language.
→ Lots of NL2SQL tools, but writing

SQL is not going away.

You should (almost) always strive
to compute your answer as a
single SQL statement.

38

https://spectrum.ieee.org/top-programming-languages-2025

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NEXT CLASS

We will begin our journey to understanding the
internals of database systems starting with Storage!

No In-Class Lecture!

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

	Introduction
	Slide 1: Modern SQL
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS

	Background
	Slide 4: SQL HISTORY
	Slide 5: SQL HISTORY
	Slide 6: SQL HISTORY
	Slide 7: SQL HISTORY
	Slide 8: SQL HISTORY
	Slide 9: RELATIONAL LANGUAGES
	Slide 10: TODAYS AGENDA
	Slide 11: EXAMPLE DATABASE

	Aggregation
	Slide 12: AGGREGATES
	Slide 13: AGGREGATES
	Slide 14: AGGREGATES
	Slide 15: AGGREGATES
	Slide 16: AGGREGATES
	Slide 17: AGGREGATES
	Slide 18: AGGREGATES
	Slide 19: AGGREGATES
	Slide 20: AGGREGATES
	Slide 21: AGGREGATES
	Slide 22: GROUP BY
	Slide 23: GROUP BY
	Slide 24: GROUP BY
	Slide 25: GROUPING SETS
	Slide 26: GROUPING SETS
	Slide 27: GROUPING SETS
	Slide 28: FILTER
	Slide 29: HAVING
	Slide 30: HAVING
	Slide 31: HAVING
	Slide 32: HAVING
	Slide 33: HAVING
	Slide 34: HAVING

	String + Date/Time Operations
	Slide 35: STRING OPERATIONS
	Slide 36: STRING OPERATIONS
	Slide 37: STRING OPERATIONS
	Slide 38: STRING OPERATIONS
	Slide 39: DATE/TIME OPERATIONS

	Output Control
	Slide 40: OUTPUT CONTROL
	Slide 41: OUTPUT REDIRECTION
	Slide 42: OUTPUT REDIRECTION

	Nested Queries
	Slide 43: NESTED QUERIES
	Slide 44: NESTED QUERIES
	Slide 45: NESTED QUERIES
	Slide 46: NESTED QUERIES
	Slide 47: NESTED QUERIES
	Slide 48: NESTED QUERIES
	Slide 49: NESTED QUERIES
	Slide 50: NESTED QUERIES
	Slide 51: NESTED QUERIES
	Slide 52: NESTED QUERIES
	Slide 53: NESTED QUERIES
	Slide 54: NESTED QUERIES
	Slide 55: NESTED QUERIES
	Slide 56: NESTED QUERIES
	Slide 57: NESTED QUERIES

	Lateral Joins
	Slide 58: LATERAL JOINS
	Slide 59: LATERAL JOIN
	Slide 60: LATERAL JOIN
	Slide 61: LATERAL JOIN
	Slide 62: LATERAL JOIN
	Slide 63: LATERAL JOIN
	Slide 64: LATERAL JOIN
	Slide 65: LATERAL JOIN

	Common Table Expressions
	Slide 66: COMMON TABLE EXPRESSIONS
	Slide 67: COMMON TABLE EXPRESSIONS
	Slide 68: COMMON TABLE EXPRESSIONS

	Window Functions
	Slide 69: WINDOW FUNCTIONS
	Slide 70: WINDOW FUNCTIONS
	Slide 71: WINDOW FUNCTIONS
	Slide 72: WINDOW FUNCTIONS
	Slide 73: WINDOW FUNCTIONS
	Slide 74: WINDOW FUNCTIONS
	Slide 75: WINDOW FUNCTIONS
	Slide 76: WINDOW FUNCTIONS
	Slide 77: WINDOW FUNCTIONS

	Conclusion
	Slide 78: CONCLUSION
	Slide 79: NEXT CLASS

