Carnegie Mellon .University‘ |

‘Database
Systems

15-445/645 SPRING 2026 I

ANDY PAVLO
JIGNESH PATEL

I_Aectu‘re #02
Modern SQL_ |

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/

ADMINISTRIVIA

Project #0 is due Sunday Jan 25® @ 11:59pm
Homework #1 is due Sunday Sept 25" @ 11:59pm

No in-class lecture next Wednesday Jan 21%

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LAST CLASS

We introduced the Relational Model as the superior
data model for databases.

We then showed how Relational Algebra is the
building blocks that will allow us to query and modify a
relational database.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SQL HISTORY

In 1971, IBM created its first relational query language
called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM System R

prototype DBMS.
— Structured English Query Language

IBM releases commercial SQL-based DBMSs:
—> System/38 (1979), SQL/DS (1981), and DB2 (1983).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R

SQL HISTORY

In 1971, IBM created its

E. Mappings may be composed by applying one mapping
Caued SQUAR to the result of another, as illustrated by Q3.
" Q3. Find those items sold by departments on the second floor.
[BM then created "SEQ SALES o LOC (2)
t e DBMS ITEM DEPT DEpT FLQOR
prototyp :

The floor 27 is first mapped to the departments located
there, and then to the items which they sell. The range
of the inner mapping must be compatible with the
domain of the outer mapping, but they need not be
identical, as illustrated by Q4.

— Structured English Quer

IBM releases commerci
— System/38 (1979), SQL/

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R
https://dl.acm.org/doi/10.1145/361219.361221

SQL HISTORY

In 1971, IBM created its first relational query language
called SQUARE.

IBM then created "SEQUEL" in 1972 for IBM System R

prototype DBMS.
— Structured English Query Language

IBM releases commercial SQL-based DBMSs:
—> System/38 (1979), SQL/DS (1981), and DB2 (1983).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dl.acm.org/doi/10.1145/361219.361221
https://en.wikipedia.org/wiki/IBM_System_R

SQL HISTORY

ANSI Standard in 1986. ISO in 1987

— Structured Query Language

Current standard is SQL:2023

— SQL:2023 — Property Graph Queries, Muti-Dim. Arrays
— SQL:2016 — JSON, Polymorphic tables

— SQL:2011 » Temporal DBs, Pipelined DML

— SQL:2008 — Truncation, Fancy Sorting

— SQL:2003 —» XML, Windows, Sequences, Auto-Gen IDs.
— SQL:1999 — Regex, Triggers, OO

The minimum language syntax a system needs to say
that it supports SQL is SQL-92.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/files/sql/sql1992.txt

TEEE.ORG TEEE XPLORE DIGITAL

LIBRARY 1EEE STANDARDS MORE SITEs

SIGN IN JoIN rege @IEEE

NEWS COMPUTTING

The Rise of SQL >It’s become the

second programming language everyone
needs to know

BY RINA DIANE CABALLAR | 23 AuG 2023 | 3 MIN READ Q

ANSI Standard in

— Structured Query

ISTOCK

SHARE THIs SToRY

Current standard
— SQL:2023 — Proy
— SQL:2016 — JSO]

Eé v fin Programming @g@g@ this year, Normall

TAGS

T0P PROGRAMNING Lancuages more general-purpose language, boosted it to No, 1
SQL

So what’s behind SQLs soar to the top? The ever-increasing yse of databases, for
one. SQL has become the primary query language for accessing and managing data
stored in such databases—speciﬁcaﬂy relational databases, which represent data in
table form with rows and columns, Databases serve as the foundation of many
enterprise applications and are increasingly found in other places as well, for

— SQL:1999 — Reg

The minimum |
that it supports

of the CMU database group.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/files/sql/sql1992.txt
https://spectrum.ieee.org/the-rise-of-sql

RELATIONAL LANGUAGES

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)

Also includes:

— View definition

— Integrity & Referential Constraints
— Transactions

Important: SQL is based on bags (duplicates) not sets
(no duplicates).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

TODAYS AGENDA

Aggregations + Group By
String / Date / Time Operations
Output Control + Redirection
Nested Queries

Lateral Joins

Common Table Expressions

Window Functions
$DB Flash Talk: dbt

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.getdbt.com/

EXAMPLE DATABASE

student(sid, name,login, gpa) enrolled(sid,cid, grade)

sid name login age gpa sid cid grade

53666 | RZA rza@cs 56 (4.0 53666 15-445 C

53688 | Taylor swift@cs 36 (3.9 53688 15-721 A

53655 | Tupac shakur@cs 25 3.5 53688 15-826 B

53655 15-445 B

course(cid, name) 53666 | 15-721 ¢

cid name

15-445 Database Systems

15-721 Advanced Database Systems

15-826 Data Mining

15-799 Special Topics in Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Functions that return a single value from a bag of

tuples:

— AVG(col)— Return the average col value.
— MIN(col)— Return minimum col value.
— MAX(col)— Return maximum col value.
— SUM(col)— Return sum of values in col.
— COUNT(col)— Return # of values for col.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt
FROM student WHERE login LIKE '%@cs'

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt

SELECT COUNT(*) AS cnt
FROM student WHERE login LIKE '%@cs'

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(login) AS cnt

SELECT COUNT(*) AS cnt

SELECT COUNT(1) AS cnt
FROM student WHERE login LIKE '%@cs'

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Aggregate functions can (almost) only be used in the
SELECT output list.

Get # of students with a “@cs” login:

SELECT COUNT(logln) AS cnt

SELECT COUNT(*) AS cnt
SELECT COUNT(1) AS cnt
SELECT COUNT(1+1+1) AS cnt

FROM student WHERE login LIKE '%@cs'

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Output of other columns outside of an aggregate is
undefined.

Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Output of other columns outside of an aggregate is

undefined.

Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

AVG(s.gpa)
3.86

e.cid
222

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Output of other columns outside of an aggregate is

undefined.

Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), x\‘
FROM enrolled AS J student AS s

ON e.sid = s.sid

AVG(s.gpa)
3.86

e.cid
222

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

AGGREGATES

Output of other columns outside of an aggregate is

undefined.

Get the average GPA of students enrolled in each course.

FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

AVG(s.gpa) e.cid
SELECT AVG(s.gpa), x\‘ 3.86 22?
FROM enrolled AS@J student AS s
ON e.sid = s.sid
AVG(s.gpa) e.cid
SELECT AVG(s.gpa), ANY_VALUE(e.cid) 3.86 15-445

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

GROUP BY

Project tuples into subsets and
calculate aggregates against
each subset.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e
JOIN student AS s

ON e.sid = s.sid
GROUP BY e.cid

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

GROUP BY

Project tuples into subsets and SELECT AVG(s.gpa), e.cid

. FROM enrolled AS e
calculate ageregates against
581¢5 >dag > JOIN student AS s

each subset. ON e.sid = s.sid
GROUP BY e.cid

53435 53435 | 2.25 |15-721
53439 53439 | 2.70 |15-721 2 46 15-721

56023 56023 | 2.75 |15-826 # 3 39 15-826

59439 59439 3.90 15-826 1.89 15-445

53961 53961 | 3.50 |15-826

58345 58345 | 1.89 |15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

GROUP BY

Project tuples into subsets and SELECT AVG(s.gpa), e.cid

. FROM enrolled AS e
calculate ageregates against
581¢5 >dag > JOIN student AS s

each subset. ON e.sid = s.sid
GROUP BY e.cid

53435 53435 | 2.25 |15-721
53439 53439 | 2.70 |15-721 2 46 15-721

56023 56023 | 2.75 |15-826 # 3 39 15-826

59439 59439 3.90 15-826 1.89 |1 5-445

53961 53961 | 3.50 |15-826

58345 58345 | 1.89 |15-445

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

GROUPING SETS

Specify multiple groupings in a single query instead of
using UNION ALL to combine the results of several
individual GROUP BY queries.

SELECT c.name AS c_name, e.grade,
COUNT(*) AS num_students
FROM enrolled AS e
JOIN course AS c ON e.cid = c.cid
GROUP BY GROUPING SETS (

(c.name, e.grade), -- By course and grade
(c.name), -- By course only

@) -- Overall total
)5

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

14

GROUPING SETS

Specify multiple groupings in a single query instead of
using UNION ALL to combine the results of several
individual GROUP BY queries.

cid grade num_students
null null |5
SELECT c.name AS c_name, e.grade, [15-721

C
COUNT(*) AS num_students 15-826 | B
FROM enrolled AS e 15-445 | B
JOIN course AS c ON e.cid = c.cigql2744> i

N_\M_____\

GROUP BY GROUPING SETS (/2]
15-445 | null
(c.name, e.grade), -- By course ¢ :_ere | uil
(c.name), —= By course {15-721 | nuil

@) -- Overall total
Pk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

14

GROUPING SETS

Specify multiple groupings in a single query instead of
using UNION ALL to combine the results of several
individual GROUP BY queries.

cid grade num_students
null | null |5
SELECT c.name AS c_name, e.grade, |15-721]C 1
COUNT(*) AS num_students 15-826 | B 1
FROM enrolled AS e 15-445 | B 1
JOIN course AS c ON e.cid = c.ciq2=44s5(C |1
GROUP BY GROUPING SETS (S PN
15-445 | null |2
(c.name, e.grade)| -- By course 15-826 | null |1
(c.name)|, -— By course q15-721 | null 12
@) -- Overall total
Pk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

FILTER

Qualify results pre aggregation computation.
Aggregation group membership qualifier.

SELECT AVG(s.gpa)
QFILTER (WHERE e.cid = '15-445"') AS avg_gpa,
ANY_VALUE(e.cid)
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid;

AVG(s.gpa) e.cid
3.75 15-445 avg_gpa e.cid
3.950000 |15-721 3.75 15-445

3.900000 |15-826

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HAVING

Filters results post-aggregation computation.
— Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
WHERE avg_gpa > 3.9
GROUP BY e.cid

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HAVING

Filters results post-aggregation computation.
— Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e JOIN student AS s

ON e.sid = s.sid
WHERE avg_gpa > 3.9
GROUP BY e.cid

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HAVING

Filters results post-aggregation computation.
— Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HAVING

Filters results post-aggregation computation.
— Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid

GROUP BY e.cid
HAVING avg_gpa > 3.9;x

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HAVING

Filters results post-aggregation computation.
— Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HAVING

Filters results post-aggregation computation.
— Like a WHERE clause for a GROUP BY

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e JOIN student AS s
ON e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;

AVG(s.gpa) e.cid
3.75 15-445 avg_gpa e.cid
3.950000 |15-721 3.950000 | 15-721

3.900000 |15-826

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

STRING OPERATIONS

String Case String Quotes
SQL-92 Sensitive Single Only
Postgres Sensitive Single Only
MySQL Insensitive Single/Double
SQLite Sensitive Single/Double
MSSQL Sensitive Single Only
Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('TuPaC') SQL92

WHERE name = "TuPaC" MySQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

STRING OPERATIONS

LIKE provides string matching with
special match operators:

— '%"' Matches any substring (including
empty strings).

— ' _" Match any one character

SIMILAR TO allows for regular

expression matching.

— In the SQL standard but not all systems
support it.

— Other systems also support POSIX-style
regular expressions.

SELECT * FROM enrolled AS e
WHERE e.cid LIKE '15-%';

SELECT * FROM student AS s
WHERE s.login LIKE '%@c_';

SELECT * FROM student AS s
WHERE login SIMILAR TO
'[\wl{3}Ccs';

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

STRING OPERATIONS

SQL-92 defines string functions.
— Many DBMSs also have their own unique functions

Can be used in either output and predicates:

SELECT SUBSTRING(name,1,5) AS abbrv_name
FROM student WHERE sid = 53688

SELECT * FROM student AS s
WHERE UPPER(s.name) LIKE 'KAN%'

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

STRING OPERATIONS

SQL standard defines the | | operator for concatenating
two or more strings together.

SELECT name FROM student SQL-92
WHERE login = LOWER(name) || '@cs'
SELECT name FROM student MSSQL

WHERE login = LOWER(name) + '@cs'

SELECT name FROM student MySQL
WHERE login = CONCAT(LOWER(name), '@cs')

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATE/TIME OPERATIONS

Operations to manipulate and modify DATE/TIME
attributes.

Can be used in both output and predicates.

Support/syntax varies wildly...

Demo: Compute the number of days since the
beginning of the year.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OUTPUT CONTROL

ORDER BY <column*> [ASC|DESC]

— Sort tuples by the values in one or more
of their columns.

FETCH {FIRST|NEXT]} <#> ROWS
OFFSET <#> ROWS

— Limit # of tuples returned in output.
— Can set an offset to return a “range”

22

SELECT
WHERE
FETCH

sid, name FROM student
login LIKE '%@cs'
FIRST 10 ROWS ONLY;

SELECT
WHERE
ORDER

OFFSET
FETCH

sid, name FROM student
login LIKE '%@cs'

BY gpa

5 ROWS

FIRST 5 ROWS| WITH TIES;

SELECT
FROM
WHERE

TOP 10 sid, name MSSQL
student
login LIKE '%@cs';

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OUTPUT REDIRECTION

Store query results in another table:

— Table must not already be defined.

— Table will have the same # of columns with the same types as
the input.

SELECT DISTINCT cid INTO Courselds SQL-92
FROM enrolled;

CREATE TABLE Courselds (MySQL
SELECT DISTINCT cid FROM enrolled);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OUTPUT REDIRECTION

Store query results in another table:

— Table must not already be defined.

— Table will have the same # of columns with the same types as
the input.

SELECT DISTINCT cid INTO Courselds SQL-92
FROM enrolled;

SELECT DISTINCT cid Postgres
INTO TEMPORARY Courselds
FROM enrolled;

CREATE TABLE Courselds (MySQL
SELECT DISTINCT cid FROM enrolled);

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Invoke a query inside of another query to compose

more complex computations.
— Inner queries can appear (almost) anywhere in query.

Outer Query ELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled) Inner Query

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Invoke a query inside of another query to compose

more complex computations.
— Inner queries can appear (almost) anywhere in query.

Outer Query ELECT name FROM student WHERE
sid IN (SELECT sid FROM enrolled)

SELECT sid,
(SELECT name FROM student AS s
WHERE s.sid = e.sid) AS name
FROM enrolled AS e;

Inner Query

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...

T

sid in the set of people that take 15-445

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE ...
SELECT sid FROM enrolled
WHERE cid = '15-445"

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Get the names of students in '15-445

SELECT name FROM student
WHERE sid IN (
SELECT sid FROM enrolled
WHERE cid = '15-445"

)

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Get the names of students in '15-445

SELECT nameﬂlngstudent
WHERE| sid (
SELECT|sid |=Re™enrolled

WHERE cid = '15-445"'

)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

ALL— The expression must be true for all rows in the
sub-query.

ANY— The expression must be true for at least one row
in the sub-query.

IN— Equivalent to '=ANY()'.

EXISTS— At least one row is returned without
comparing it to an attribute in outer query.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

SELECT sid, name FROM student
WHERE ...

“Is the highest enrolled sid”

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

SELECT sid, name FROM student m
WHERE sid = ANY(53688 | Taylor

SELECT MAX(sid) FROM enrolled

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

SELECI _<sid name FROM ctiident
WHEHSELECT sid, name FROM student

Si WHERE sid IN (
) SELECT sid FROM enrolled
ORDER BY sid DESC FETCH FIRST 1 ROW ONLY

);

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Find student record with the highest id that is enrolled in at
least one course.

SELECI _<sid name FROM ctiident
WHEHSELECT sid, name FROM student

s WHE] (
): SISELECT student.sid, name
FROM student

e JOIN (SELECT MAX(sid) AS sid
FROM enrolled) AS max_e
ON student.sid = max_e.sid;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE

“with no tuples in the enrolled table”

. sid cid grade
cid name
53666 |15-445 C
15-445 Database Systems
53688 |15-721 A
15-721 Advanced Database Systems
— 53688 | 15-826 B
15-826 Data Mining
- - - 53655 |15-445 B
15-799 Special Topics in Databases
53666 |15-721 C

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(

tuples in the enrolled table
)

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

);

‘15—799 ‘Special Topics in Databases \

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NESTED QUERIES

Find all courses that have no students enrolled in it.

SELECT * FROM course
WHERE NOT EXISTA(
SELECT * FROJl enrolled
WHERE |course.cid|= enrolled.cid

);

‘15—799 ‘Special Topics in Databases \

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LATERAL JOINS

The LATERAL operator allows a nested query to

reference attributes in other nested queries that precede

it (according to position in the query).

— You can think of it like a for loop that allows you to invoke
another query for each tuple in a table.

SELECT * FROM ‘ 1 ‘2 ‘

(SELECT 1 AS x) AS t1,
LATERAL (SELECT t1.x+1 AS y) AS t2;

for x in [1]:
for y in [x+11]:
print(x,y)

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

30

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c,
For each course:
— Compute the # of enrolled students

For each course:
— Compute the average gpa of enrolled students

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

30

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2
ORDER BY cnt ASC;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

30

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c
LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2
ORDER BY cnt ASC;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(*) AS cnt FROM egrolled
WHERE enrolled.cid =]|c.c1 S t1,
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid
WHERE e.cid = c.cid) AS t2
ORDER BY cnt ASC;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

30

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(*) AS cnt FROM enrolled
WHERE enrolled.cid = c.cid) AS t1
LATERAL (SELECT AVG(gpa) AS avg FROM student AS s
JOIN enrolled AS e ON s.sid = e.sid

WHERE e.cid = c.cid) AS t2
ORDER BY cnt ASC;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

30

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count
in ascending order.

SELECT * FROM course AS c,
LATERAL (SELECT COUNT(F) AS cnt FROM enrolled
WHERE enrollpd.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) A} avg FROM student AS s
JOIN enrolled A§ e ON s.sid = e.sid
WHERE e.cid =
ORDER BY cnt ASC;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LATERAL JOIN

Calculate the number of students enrolled in each course and
the average GPA. Sort output by the courses enrollment count

in ascending order.

SELECT * FROM course AS c,

cid name cnt avg
15-799 [Special Topics in Databases |0 null
15-826 [Data Mining 1 3.9
15-445 [Database Systems 2 3.75

Advanced Database Systems 2 3.95

LATERAL (SELECT COUNT(F) [15-721
WHERE enrollpd.cid = c.cid) AS t1,
LATERAL (SELECT AVG(gpa) A} avg FROM student AS s
JOIN enrolled A§ e ON s.sid = e.sid

WHERE e.cid =

ORDER BY cnt ASC;

c.cid

AS t2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

COMMON TABLE EXPRESSIONS

Specify a temporary result set that can then be
referenced by another part of that query.

— Bind/alias output columns to names before the AS keyword.
Alternative to nested queries, views, and explicit temp
tables.

WITH|cteName|(col1, col2) AS (
SELECT 1, 2
)

SELECT coll + col2 FROM|cteName|

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled in at
least one course.

WITH maxCTE (maxId) AS (

SELECT MAX(sid) FROM enrolled
)
SELECT name FROM student AS s

JOIN maxCTE ON s.sid = maxCTE.maxId;

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

COMMON TABLE EXPRESSIONS

Find student record with the highest id that is enrolled in at
least one course.

WITH maxCTE (maxId) AS

SELECT MAX(sid) FROM Enrolled
)
SELECT naJe FROM student AS s

JOIN |maxCTE| ON s.sid = maxCTE.maxId;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WINDOW FUNCTIONS

Performs a calculation across a set of tuples that are
related to the current tuple, without collapsing them
into a single output tuple, to support running totals,

ranks, and moving averages.
— Like an aggregation but tuples are not grouped into a single
output tuples.

SELECT FUNC-NAME(...) OVER (...)
FROM tableName;

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

33

WINDOW FUNCTIONS

Performs a calculation across a set of tuples that are
related to the current tuple, without collapsing them
into a single output tuple, to support running totals,

ranks, and moving averages.
— Like an aggregation but tuples are not grouped into a single
output tuples.

How to “slice” up data
Can also sort tuples

SELECT FUNC-NAME(...) OVER (...)
FROM tableNage;

ggregation Functions
Special Functions

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WINDOW FUNCTIONS

Aggregation functions:
— Anything that we discussed earlier

sid cid grade row_num
Special window functions: 53666 | 15-445 | C 1
— ROW_NUMBER()— # of the current row 53688 | 15-721 A
— RANK()— Order position of the current 53688 |15-826 |B 3
53655 | 15-445 B 4
o 53666 | 15-721 C 5

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WINDOW FUNCTIONS

Aggregation functions:
— Anything that we discussed earlier

sid cid grade row_num
Special window functions: 53666 | 15-445 | C 1
— ROW_NUMBER()— # of the current row 53688 | 15-721 A 2
— RANK()— Order position of the current 53688 |15-826 |B 3
Tow 53655 15-445 B 4
’ 53666 15-721 C 5

SELECT *, ROW_NUMBER() OVER () AS row_num
FROM enrolled;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when
computing the window function.

Use PARTITION BY to specify group.

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid;

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WINDOW FUNCTIONS

The OVER keyword specifies how to
group together tuples when cid sid AS——
computing the window function. 15-445 | 53666 |1

15-445 | 53655 2

Use PARTITION BY to specify group. 15-721 153688 |1

15-721 | 53666 |2
15-826 |53688 |1

SELECT cid, sid,
ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled
ORDER BY cid;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WINDOW FUNCTIONS

You can also include an ORDER BY in the window
grouping to sort entries in each group.

SELECT *,
ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled
ORDER BY cid;

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WINDOW FUNCTIONS

Find the student with second highest grade for each course.

Group tuples by cid
Then sort by grade

SELECT * FROM (/
SELECT *, RANK() OVER (PARTITION BY cid
ORDER BY grade ASC) AS rank
FROM enrolled) AS ranking
WHERE ranking.rank = 2

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WINDOW

FUNCTIONS

Find the student with second highest grade for each course.

Group tuples by cid
Then sort by grade

SELECT * FROM (
SELECT *, RANK()
ORDER B
FROM enrolled)

/

OVER (PARTITION BY cid
Y grade ASC) AS_rank

WHERE [ranking. rank

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CONCLUSION

SQL is a hot language.
— Lots of NL2SQL tools, but writing
SQL is not going away.

You should (almost) always strive
to compute your answer as a
single SQL statement.

38

Top Programming Languages 2025

Spectrum Trending

Python
SQL 0.9121
Java 0.7338
JavaScript 0.6597
cs
G
Shell
¢

https://spectrum.ieee.org/top-programming-languages-2025

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025

NEXT CLASS

We will begin our journey to understanding the
internals of database systems starting with Storage!

No In-Class Lecture!

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

	Introduction
	Slide 1: Modern SQL
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS

	Background
	Slide 4: SQL HISTORY
	Slide 5: SQL HISTORY
	Slide 6: SQL HISTORY
	Slide 7: SQL HISTORY
	Slide 8: SQL HISTORY
	Slide 9: RELATIONAL LANGUAGES
	Slide 10: TODAYS AGENDA
	Slide 11: EXAMPLE DATABASE

	Aggregation
	Slide 12: AGGREGATES
	Slide 13: AGGREGATES
	Slide 14: AGGREGATES
	Slide 15: AGGREGATES
	Slide 16: AGGREGATES
	Slide 17: AGGREGATES
	Slide 18: AGGREGATES
	Slide 19: AGGREGATES
	Slide 20: AGGREGATES
	Slide 21: AGGREGATES
	Slide 22: GROUP BY
	Slide 23: GROUP BY
	Slide 24: GROUP BY
	Slide 25: GROUPING SETS
	Slide 26: GROUPING SETS
	Slide 27: GROUPING SETS
	Slide 28: FILTER
	Slide 29: HAVING
	Slide 30: HAVING
	Slide 31: HAVING
	Slide 32: HAVING
	Slide 33: HAVING
	Slide 34: HAVING

	String + Date/Time Operations
	Slide 35: STRING OPERATIONS
	Slide 36: STRING OPERATIONS
	Slide 37: STRING OPERATIONS
	Slide 38: STRING OPERATIONS
	Slide 39: DATE/TIME OPERATIONS

	Output Control
	Slide 40: OUTPUT CONTROL
	Slide 41: OUTPUT REDIRECTION
	Slide 42: OUTPUT REDIRECTION

	Nested Queries
	Slide 43: NESTED QUERIES
	Slide 44: NESTED QUERIES
	Slide 45: NESTED QUERIES
	Slide 46: NESTED QUERIES
	Slide 47: NESTED QUERIES
	Slide 48: NESTED QUERIES
	Slide 49: NESTED QUERIES
	Slide 50: NESTED QUERIES
	Slide 51: NESTED QUERIES
	Slide 52: NESTED QUERIES
	Slide 53: NESTED QUERIES
	Slide 54: NESTED QUERIES
	Slide 55: NESTED QUERIES
	Slide 56: NESTED QUERIES
	Slide 57: NESTED QUERIES

	Lateral Joins
	Slide 58: LATERAL JOINS
	Slide 59: LATERAL JOIN
	Slide 60: LATERAL JOIN
	Slide 61: LATERAL JOIN
	Slide 62: LATERAL JOIN
	Slide 63: LATERAL JOIN
	Slide 64: LATERAL JOIN
	Slide 65: LATERAL JOIN

	Common Table Expressions
	Slide 66: COMMON TABLE EXPRESSIONS
	Slide 67: COMMON TABLE EXPRESSIONS
	Slide 68: COMMON TABLE EXPRESSIONS

	Window Functions
	Slide 69: WINDOW FUNCTIONS
	Slide 70: WINDOW FUNCTIONS
	Slide 71: WINDOW FUNCTIONS
	Slide 72: WINDOW FUNCTIONS
	Slide 73: WINDOW FUNCTIONS
	Slide 74: WINDOW FUNCTIONS
	Slide 75: WINDOW FUNCTIONS
	Slide 76: WINDOW FUNCTIONS
	Slide 77: WINDOW FUNCTIONS

	Conclusion
	Slide 78: CONCLUSION
	Slide 79: NEXT CLASS

