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LAST CLASS

We now understand what a database looks like at a
logical level and how to write queries to read/write data

(e.g., using SQL).

We will next learn how to build software that manages
a database (i.e., a DBMS).
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TODAY'S AGENDA

Background
File Storage
Page Layout
Tuple Layout
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DISK-BASED ARCHITECTURE

The DBMS assumes that the primary storage location of
the database is on non-volatile disk.

The DBMS's components manage the movement of
data between non-volatile and volatile storage.

6
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ACCESS TIMES

Latency Numbers Every Programmer Should Know

Ins L1 Cache Ref
4ns L2 Cache Ref
100 ns DRAM
16,000 ns SSD
2,000,000 ns HDD
~50,000,000 ns Network Storage
1,000,000,000 ns Tape Archives

Source: Colin Scott
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ACCESS TIMES

100 ns DRAM ‘ 100 sec
16,000 ns SSD « 4.4 hours
2,000,000 ns HDD « 3.3 weeks

~50,000,000 ns Network Storage ‘ 1.5 years
1,000,000,000 ns Tape Archives « 31.7 years

Source: Colin Scott
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SEQUENTIAL VS. RANDOM ACCESS =

Random access on non-volatile storage is almost always

slower than sequential access.
— Random I/O: 80-100 ps
— Sequential I/O: 10-100 ps

DBMS will want to maximize sequential access.

— Algorithms try to reduce number of writes to random pages so
that data is stored in contiguous blocks.

— Allocating multiple pages at the same time is called an extent.
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SYSTEM DESIGN GOALS

Allow the DBMS to manage databases that exceed the
amount of memory available.

Reading/writing to disk is expensive, so it must be
managed carefully to avoid large stalls and performance
degradation.

Random access on disk is usually much slower than
sequential access, so the DBMS will want to maximize
sequential access.

11
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Database File
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DISK-ORIENTED DBMS
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DATABASE STORAGE

13

Problem #1: How the DBMS represents the database | « Toda
in files on disk. Y

Problem #2: How the DBMS manages its memory
and moves data back-and-forth from disk.
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FILE STORAGE

The DBMS stores a database as one or more files on
disk typically in a proprietary format.

— OS does not know anything about the contents of these files.
— We will discuss portable file formats next week...

Early systems in the 1980s used custom filesystems on

raw block storage.
— Some enterprise DBMSs still do this (Oracle, Teradata).
— Most newer DBMSs do not do this.

14
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FILE STORAGE

Thp nR]\ﬁQ ctosraon 1 . 1

Oracle Database

Oracle Database
ASM

File System and Volume Management

Operating System

File System

Logical Volume Manager

K
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FILE STORAGE

PR |
Oracle Database
Operating System
File System
Logical Volume Manager

teradata, Developers

The File System <

The file system is nota general-purpose file system. It helps isolate the
database from hardware platform dependencies, and supports the creation
and maintenance of database tables under the direction of Vantage.

The file system stores data in physical rows. A physical row is a general data
structure that consists of a row header (metadata that includes a unique row
ID) and stored data, Each physical row stores one of severa| kinds of data. For
example:

* Atable row

* Aseries of one or more column partition values

* Atable header (metadata for g table)

* Index data structyres
This list is not comprehensive; physical rows also store other types of data used
by Vantage.
interpretation and differentiation js made by the higher-leve| database software
that requests ang receives the data from the file system,
In the context of this file system discussion, the term row generally refers to g
physical row in the file system, irrespective of the kind of data the physical row

stores. It may store data that corresponds to a row in g database tabje or other
data.

14


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.oracle.com/technetwork/products/cloud-storage/oracle-12c-asm-overview-1965430.pdf
https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Database-Utilities/Ferret-Utility-ferret/The-File-System
https://www.oracle.com/technetwork/products/cloud-storage/oracle-12c-asm-overview-1965430.pdf
https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Database-Utilities/Ferret-Utility-ferret/The-File-System

STORAGE MANAGER

The storage manager is responsible for maintaining a

database's files.
— Some do their own scheduling for reads and writes to improve
spatial and temporal locality of pages.

[t organizes the files as a collection of pages.
— Tracks data read/written to pages.
— Tracks the available space.

A DBMS typically does not maintain multiple copies of
a page on disk.

— Assume this happens above/below storage manager.

15
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DATABASE PAGES

A page is a fixed-size block of data.

— [t can contain tuples, meta-data, indexes, log records...
— Most systems do not mix page types.

— Some systems require a page to be self-contained.

Each page is given a unique identifier (page ID).

— A page ID could be unique per DBMS instance, per database, or
per table.

— The DBMS uses an indirection layer to map page IDs to
physical locations.

16
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DATABASE PAGES =

Default DB Page Sizes
There are three different notions of

"pages" in a DBMS: 4KB ?SQLite ORACLE
— Hardware Page (usually 4KB)

— OS Page (usually 4KB, x64 2MB/1GB)

" RocksDB

— Database Page (512B-32KB) WIREDTIGEL

A hardware page is the largest block 8KB »%5l server INGR=S
of data that the storage device can -
guarantee failsafe writes. @ PostgreSQL Informix

16KB Y\ MysaL.
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DATABASE PAGES -

Optimal database page size depends on environment,
database contents, and expected workload.

DBMSs specializing in read-heavy workloads tend to

have larger page sizes (1 MB or larger).
— Fetching a single page brings in many tuples that are needed for
a query.

DBMSs specializing in write-heavy workloads tend to
have smaller page sizes (4-16 KB).

— The system must write entire page to disk even if only a small
portion of it is modified.
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PAGE STORAGE ARCHITECTURE

Different DBMSs manage pages in files on disk in

different ways.

— Heap File Organization
— Tree File Organization
— Sequential / Sorted File Organization (ISAM)
— Hashing File Organization

At this point in the hierarchy, we do not need to know
anything about what is inside of the pages.

19
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HEAP FILE

A heap file is an unordered collection of pages with

tuples that are stored in random order.
— Create / Get / Write / Delete Page
— Must also support iterating over all pages.

Need additional meta-data to track location of files and
free space availability.

20
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HEAP FILE

A heap file is an unordered collection of pages with

tuples that are stored in random order.
— Create / Get / Write / Delete Page
— Must also support iterating over all pages.

Need additional meta-data to track location of files and
free space availability.

Offset = Page# % PageSize

Page0 Pagel Page?2 Page3 Page4

Get Page #2

Database File
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HEAP FILE

A heap file is an unordered collection of pages with

tuples that are stored in random order.
— Create / Get / Write / Delete Page
— Must also support iterating over all pages.

Need additional meta-data to track location of files and
free space availability.

File Location W Page# x PageSize
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HEAP FILE: PAGE DIRECTORY

The DBMS maintains special pages
that tracks the location of data pages

in the database files.

— One entry per database object.

— Must make sure that the directory pages
are in sync with the data pages.

DBMS also keeps meta-data about

pages' contents:

— Amount of free space per page.
— List of free / empty pages.

— Page type (data vs. meta-data).

Directory

Table X

21

Index Y

Table 7

—B Filel —®&File2
Page0 Page0
Data Data

_—
Page1 Page1
Data Data
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TODAY'S AGENDA

Page Layout
Tuple Layout

22
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PAGE HEADER

Every page contains a header of meta-

Page

data about the page's contents.
— Page Size Header

— Checksum

— DBMS Version
— Transaction Visibility Data
— Compression / Encoding Meta-data
— Schema Information

— Data Summary / Sketches

Some systems require pages to be self-
contained (e.g., Oracle).
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PAGE LAYOUT =

For any page storage architecture, we now need to

decide how to organize the data inside of the page.

— We are still assuming that we are only storing tuples in a
row-oriented storage model.

— We will also assume that an each tuple fits in a single page.

Approach #1: Tuple-oriented Storage
Approach #2: Log-structured Storage
Approach #3: Index-organized Storage
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PAGE LAYOUT =

For any page storage architecture, we now need to

decide how to organize the data inside of the page.
— We are still assuming that we are only storing tuples in a

row-oriented storage model.

— We will also assume that an each tuple fits in a single page.

Approach #1: Tuple-oriented Storage | Today
Approach #2: Log-structured Storage

Approach #3: Index-organized Storage
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PAGE LAYOUT

For any page storage architecture, we now need to

decide how to organize the data inside of the page.
— We are still assuming that we are only storing tuples in a

row-oriented storage model.

— We will also assume that an each tuple fits in a single page.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Agproach #3: Index-organized Storage
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TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.

Page

Num Tuples = 0

25
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TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then
just append a new tuple to the end.

Page

Num Tuples = 3

Tuple #1

Tuple #2

Tuple #3

25
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TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then

just append a new tuple to the end.
— What happens if we delete a tuple?

Page

Num Tuples = 3

Tuple #1

Tuple #2

Tuple #3

25
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TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then

just append a new tuple to the end.
— What happens if we delete a tuple?

Page

Num Tuples = 2

Tuple #1

Tuple #3

25


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then

just append a new tuple to the end.
— What happens if we delete a tuple?

Page

Num Tuples = 3

Tuple #1

Tuple #4

Tuple #3

25
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TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the
number of tuples in a page and then

just append a new tuple to the end.

— What happens if we delete a tuple?

— What happens if we have a variable-
length attribute?

Page

Num Tuples = 3

Tuple #1

Tuple #4

Tuple #3

25
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SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:

— The # of used slots

— The offset of the starting location of the
last slot used.

Tuple #4

Tuple #3

Tuple #2

Tuple #1

26


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:

— The # of used slots

— The offset of the starting location of the
last slot used.

Slot /}rray

Header

v 23 456 7"

v v
Tuple #4 Tuple #3
Tuple #2 Tuple #1

|
Fixed- and Var-length

Tuple Data

26
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SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.
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— The # of used slots

— The offset of the starting location of the
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SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:

— The # of used slots

— The offset of the starting location of the
last slot used.

Slot /}rray

Header

v 2 3 456 7"
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SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:

— The # of used slots

— The offset of the starting location of the
last slot used.

Slot /}rray

Header

v 2 3 456 7"

v
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SLOTTED PAGES

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:

— The # of used slots

— The offset of the starting location of the
last slot used.

Slot /}rray

Header

v 2 3 456 7"

Tuple #4

Tuple #2

Tuple #1

|
Fixed- and Var-length
Tuple Data
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RECORD IDS

The DBMS assigns each logical tuple a
unique record identifier that
represents its physical location in the

database.

— Example: File Id, Page Id, Slot #

— Most DBMSs do not store ids in tuple.

— SQLite uses ROWID as the true primary key
and stores them as a hidden attribute.

Applications should never rely on
these IDs to mean anything.

Record Id Sizes
INGR=S TID 4-bytes
@ PostgreSQL  CTID 6-bytes

?SQLite

SOL Server
@) Firebird

ORACLE

ROWID 8-bytes
%%physloc%k% 8-bytes
RDB$DB_KEY 8-bytes

ROWID 10-bytes

27
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TODAY'S AGENDA

Tuple Layout

28


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

TUPLE LAYOUT

A tuple is essentially a sequence of bytes prefixed with a
header that contains meta-data about it.

[t is the job of the DBMS to interpret those bytes into
attribute types and values.

The DBMS's catalogs contain the schema information
about tables that the system uses to figure out the
tuple's layout.

29
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TUPLE HEADER

Each tuple is prefixed with a header

that contains meta-data about it.

— Visibility info (concurrency control)
— Bit Map for NULL values.

W e do not need to store meta-data
about the schema.

Tuple

30

Header

Attribute Data
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TUPLE DATA

Attributes are typically stored in the
order that you specify them when you
create the table.

This is done for software engineering
reasons (i.e., simplicity).

However, it might be more efficient
to lay them out differently.

31

Header | a b C d

CREATE TABLE foo (
a INT PRIMARY KEY,
b INT NOT NULL,
c INT,
d DOUBLE,
e FLOAT

5
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CREATE TABLE foo (
id INT PRIMARY KEY,
value BIGINT

)E

DATA LAYOUT

unsigned charl]

32
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DATA LAYOUT =

unsigned charl]

CREATE TABLE foo ( '
id INT PRIMARY KEY, Header id value
value BIGINT

);
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CREATE TABLE foo (
id INT PRIMARY KEY,
value BIGINT

);

DATA LAYOUT

W unsigned char[]

Header id value

32

reinterpret_cast<int32_t*>(address)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

33

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to enable
the CPU to access it without any unexpected behavior
or additional work.

CREATE TABLE foo (

);

unsigned charl]

id INT PRIMARY KEY,
cdate TIMESTAMP,

color CHAR(2), ~—_

zipcode INT 64-bit Word  64-bit Word 64-bit Word  64-bit Word
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33

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to enable
the CPU to access it without any unexpected behavior
or additional work.

CREATE TABLE foo (
y21 id INT PRIMARY KEY,

cdate TIMESTAMP,

color CHAR(2),
zipcode INT 64-bit Word  64-bit Word 64-bit Word  64-bit Word

unsigned charl]

);
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WORD-ALIGNED TUPLES =

All attributes in a tuple must be word aligned to enable
the CPU to access it without any unexpected behavior
or additional work.

CREATE TABLE foo (

EYR%] id INT PRIMARY KEY, unsigned char([]

[E8gs] cdate TIMESTAMP, id cdate
zipcode INT 64-bit Word 64-bit Word 64-bit Word  64-bit Word

);
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WORD-ALIGNED TUPLES -

All attributes in a tuple must be word aligned to enable
the CPU to access it without any unexpected behavior
or additional work.

CREATE TABLE foo (
y21 id INT PRIMARY KEY,
[E8gs] cdate TIMESTAMP, id cdate C

zipcode INT 64-bit Word  64-bit Word 64-bit Word  64-bit Word

unsigned charl]

);
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WORD-ALIGNED TUPLES =

All attributes in a tuple must be word aligned to enable
the CPU to access it without any unexpected behavior

or additional work.

CREATE TABLE foo (
Y28 id INT PRIMARY KEY,
(ZRUA cdate TIMESTAMP,
IR color CHAR(2),
Ky~ zipcode INT

);

unsigned charl]

id cdate c zipc

WW

64-bit Word 64-bit Word 64-bit Word  64-bit Word
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WORD-ALIGNED TUPLES =

All attributes in a tuple must be word aligned to enable
the CPU to access it without any unexpected behavior

or additional work.

CREATE TABLE foo (
Y28 id INT PRIMARY KEY,
(ZRUA cdate TIMESTAMP,
IR color CHAR(2),
Ky~ zipcode INT

);

‘l|r unsigned char([]
id cdate c zipc

WW

64-bit Word 64-bit Word 64-bit Word  64-bit Word
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WORD-ALIGNMENT: PADDING =

Add empty bits after attributes to ensure that tuple is
word aligned. Essentially round up the storage size of
types to the next largest word size.

CREATE TABLE foo (
Y28 id INT PRIMARY KEY,
(ZRUA cdate TIMESTAMP,
IR color CHAR(2),
Ky~ zipcode INT

);

soccanss oacer
1 00000000 Z1 00000
d 00000000 Cdate c pC 000

WW

64-bit Word 64-bit Word 64-bit Word  64-bit Word
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WORD-ALIGNMENT: REORDERING -

Switch the order of attributes in the tuples' physical

layout to make sure they are aligned.
— May still have to use padding to fill remaining space.

CREATE TABLE foo (
y21 id INT PRIMARY KEY,
(8 cdate TIMESTAMP, ' cdate c zipc

Ky~ zipcode INT 64-bit Word  64-bit Word  64-bit Word  64-bit Word
);
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WORD-ALIGNMENT: REORDERING -

Switch the order of attributes in the tuples' physical

layout to make sure they are aligned.
— May still have to use padding to fill remaining space.

CREATE TABLE foo (
y21 id INT PRIMARY KEY,
(8 cdate TIMESTAMP, id | zipc cdate C

Ky~ zipcode INT 64-bit Word  64-bit Word  64-bit Word  64-bit Word
);
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WORD-ALIGNMENT: REORDERING -

Switch the order of attributes in the tuples' physical

layout to make sure they are aligned.
— May still have to use padding to fill remaining space.

CREATE TABLE foo (
y21 id INT PRIMARY KEY,

000000000000
PR cdate TIMESTAMP, id | zipc PENCdAten N c  Ginsansans
IR color CHAR(2), N
Ky~ zipcode INT 64-bit Word  64-bit Word  64-bit Word  64-bit Word

);
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DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT

— Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
— IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB

— Header with length, followed by data bytes OR pointer to
another page/offset with data.

— Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL

— 32/64-bit integer of (micro/milli)-seconds since Unix epoch
(January 15, 1970).

36
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VARCHAR/VARBINARY/TEXT/BLOB

— Header with length, followed by data bytes OR pointer to
another page/offset with data.
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VARIABLE PRECISION NUMBERS -

Inexact, variable-precision numeric type that uses the
"native" C/C++ types.

Store directly as specified by IEEE-754.
— Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision
numbers because CPU ISA's (Xeon, Arm) have
instructions / registers to support them.

But they do not guarantee exact values...
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VARIABLE PRECISION NUMBERS -

Rounding Example Output

#include <stdio.h> x+y = 0.300000
0.3 = 0.300000

int main(int argc, charx argv[]) {
float x = 0.1;
float y = 0.2;
printf("x+y
printf("0.3

Bf\n", x+y);
%\n", 0.3);
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VARIABLE PRECISION NUMBERS -

Rounding Example Output

#include <stdio.h> x+y = 0.300000
0.3 = 0.300000

#include <stdio.h>

in|

0.30000001192092895508

int main(int argc, charx argv[D) { |5 3 = g 29999999999999998890
float x = 0.1;

float y = 0.2;
) printf("x+y
printf("0.3

%.20f\n", xty);
%.20f\n", 0.3);



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors are

unacceptable.
— Example: NUMERIC, DECIMAL

Many different implementations.

— Example: Store in an exact, variable-length binary
representation with additional meta-data.

— Can be less expensive if the DBMS does not provide arbitrary
precision (e.g., decimal point can be in a different position per
value).

39
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POSTGRES: NUMERIC

# of Digits

Weight of 15 Digit
Scale Factor
Positive/Negative/NaN

Digit Storage

typedef unsigned char NumericDigit:

typedef struct {

int ndigits;

hint Wqg o
/int sdB
int sip

2N ;
/NumericDigit *digits;

} numeric;
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* Full version of add functicnality on variable leval

* f Hlandling S]‘gl‘lS)_
Lt 'ight Doint 0 one o Fhe ope By :
e rands too witho .
cooood /
EEEsEssEsEEsEEEEEEEEEEEEEEEES

PGTYPESnumeriec add(numeric *varl, numeric *var2, numeric *result)
{

E Decide on the signs of the two variables what to do
;ff(uar1—>sign == NUMERIC Pgs)
{ if {var2->sign == MUMERIC_POs)
{ p
: Both are positive result = +(ABS(varl) + ABS(varz))
if (gqg‘afs(varl, varz, result) 1= g}

a =

result->sign = NUMERTC POS;

TH et

1

se

~~

/Jk
* varl is positive, war2 is negative Must compare absolute values
*/
switch {cmp abs(varil, var2})
{

case 0:

* ABS(varl) == AB5{war2)

* result = ZgRp

x L

*/
zero var(result}),

result-srscale = Hax(varl—brﬁcale, var2-»rscale);
result-sdscale = Max(var1—>dscale, var2->dscale);

ireak;

* ABS(varl) > ABS(varz)
* result = +{ABS(var1) - ABS{wvar2))
*

&

I:) ° if (sub abs(varl, var2, result} 1= @)
retirn -1;
lg result-»sign = NUMERIC POS;
reak;
case -1:
£

* Aéérva;ll < ABS(varz)
* result = -(ABS(var2) - ABS(varl))
*

umericDigit:

40
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NULL DATA TYPES

Choice #1: Null Column Bitmap Header

— Store a bitmap in a centralized header that specifies what
attributes are null.
— This is the most common approach in row-stores.

Choice #2: Special Values

— Designate a placeholder value to represent NULL for a data type
(e.g., INT32_MIN). More common in column-stores.

*a o
‘Q‘» Choice #3: Per Attribute Null Flag

Don' — Store a flag that marks that a value is null.
e t , Must use more space than just a single bit because this messes
Do This! up with word alignment.

a1
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NULL DATA T

]

Choice #1: Null Column Bitmap
— Store a bitmap in a centralized header {

attributes are null. .
— This is the most common approach in

Choice #2: Special Values
— Designate a placeholder value to repre
e.g., INT32_MIN). More common in ¢

Y ’» Choice #3: Per Attribute Null F

— Store a flag that marks that a Valug is
— Must use more space than just a singl
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NULLS!
Revisiting Null Representation in Modern Columnar Formats
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Carnegie Mellon University

Xinyu Zeng Ruijun Meng
Tsinghua University Tsinghua University
Zeng-xy2l@mails.tsinghua,edu.c mijz1 ingh
Wes McKinney
Posit PRC
wes@posit.co
ABSTRACT

Mulls are common in real-world data sets, yet recent research on
columnar formats und encodings rarely address Null representa-
ot Papula file formats like Parquet and ORC follow the same
design as C-Stare from nearly 20 years ago that only stores non-
Null values contiguously. But recent formats stors bogh non-Null
and Null values, with Nuls being set to u placcholles val. 1y this

MD [54),
and implementations. We optimize the bottlenecks in the iraditional
2pproach using AVX512. We also propose Null-lling strategy
called SmartNull, which ean determine the Nujl values best for
compression ratio ut encoding time. From qur micro-benchmarks,
yhe argue that the aptinsal Null compression depends on severs] fae-
tors: decoding speed, data distribution, and Null ratio Our analysis
shows that the Congact layout performs better when Null ratio is
high and the Placeholger layout is better when the Null ratio is
low or the data is serial-correlated,
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1 INTRODUCTION
Codd first mentioned how touse Nuil values to represent m sing
dataina relational database in 1975 [17]. A subsequent Paper in 1979
described the semantics of Null propagation through ternary logic
for SQL's arithmetic and comparison operations [18). Every major
DBMS and data file format [27, 36] supports Nulls today and they
are widely uscd in real-world applications, a recent survey showed
that ~80% of SQL developers encounter Nuls in their databases [34].
Despite the prevalence of Nulls, there has not been a deep in-
vestigation into how to best handle them in a modern file format
that is designed for analytieal workioads Pprocessing columnar dats,
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Placehalder

Logical Compact

Figure 1: Nuli Representations - Eximples of Compact and Placehalder
sepresentation schemes for a logical duta set.

Today's most widely used cobumnar e formats i, Apache Pag-
Guet [7], Apache ORC [6]) follow the same Compact ayour np e
seminal C-Store DBMS from the 20008 [13]. For each nullabje at.
tribute in a table, C-Stone’s scheme stores nonNgll (fixed-width)
values in densely packed contiguous columns, To handle Nulls, the
seheme maintains a scparate bitmap 1o rocord whethcs the value
for an attribute at & given position is Null or st Storing vahues
in this manner enables better compression and fmprove query
pevlorrtance. Huwever, because the Canpact Iayout does ot e
Nulls & tuple’slogical position i a table g ot miatch s physicat
postion in the column, hampering random nccess abilty.

(e 2er0, INT_MIN) as a placeholder to represent Null for a given
tuple. The scheme still maintains a bitmap 1o indicate whether 4
position contains Null or not because the placeholder value may
collide with a non-nuil value. Without further compression, this
Placehalder Luyout ahways uses the same amount ot storage space.
whether or not values are Nul, but facilitates randony access and
yeclorized execution. Recent systems and formats such a, DBz
BLU [32], DuckDE [31], Apache Arrow! [4], and BirBlocks [23)
adopt this Placenolder fayout. Figure 1 shows the difference be-
tween Compact and Placehaldar layout,

Many DBISs use a combination of Pacquet and Arrow storage
19 represent data on disk and in-memary, respectively 5, 9, 10].
Howeve, the different representation of Nulls between Conpact

% 5 s aflated with Shanghas 1 Zhi Intine.
et ocs 01 specly Nalls to by pariculr plocoldee vshe, bt
s (Co+ nd Rt 1 v s o ke the cimory flly mepo s

a1

up with word alignment.
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LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)

— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (
id INT PRIMARY KEY,
data INT,
contents TEXT

);

Header | INT | INT TEXT

42
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LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)

— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (

id INT PRIMARY KEY,
data INT,
contents TEXT

);

Header |INT|INT|  TEXT

Overflow Page

VARCHAR DATA

42
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LARGE VALUES

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate

overflow storage pages.

— Postgres: TOAST (>2KB)

— MySQL: Overflow (> size of page)
— SQL Server: Overflow (>size of page)

Lots of potential optimizations:
— Overflow Compression, German Strings

CREATE TABLE foo (
id INT PRIMARY KEY,

data INT,
contents TEXT
);
Header | INT | INT |size loc%tion
Overflow Page
-> VARCHAR DATA @
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GERMAN STRINGS

Optimization for VARCHAR data
type to avoid retrieving full-string

unnecessarily for predicates.

— [f value is 16-bytes or less, store the
complete string inline with the fixed-
length tuple data.

— [f value is more than 16-bytes, store size +
prefix + location pointer (pageld + offset)
to the full string.

G umBRA  QDuckDB (&) Velox
& cedarDB  Milll™ polars @) e6data

size location
I )

AndyP » 5 ®

4-bytes 8-bytes

Overflow Page F”dyP'A”dyP sm

ells bad!]|...
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GERMAN STRINGS

size location
I )

Optimization for VARCHAR data AndyP smells bad! Hp| 5 .

type to avoid retrieving full-string Hoes S

unnecessarily for predicates. AndyP|AndyP sm
y p Overflow Page S A

— [f value is 16-bytes or less, store the
complete string inline with the fixed-
length tuple data.

— [f value is more than 16-bytes, store size + andyP B[ 5 [Andy P
prefix + location pointer (pageld + offset) AT A Ui
to the full string.

size prefix suffix
! ] I

G umBRA  QDuckDB (&) Velox
& cedarDB  Milll™ polars @) e6data
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GERMAN STRINGS

Optimization for VARCHAR data
type to avoid retrieving full-string

unnecessarily for predicates.

— [f value is 16-bytes or less, store the
complete string inline with the fixed-
length tuple data.

— [f value is more than 16-bytes, store size +
prefix + location pointer (pageld + offset)
to the full string.

G umBRA  QDuckDB (&) Velox
& cedarDB  Milll™ polars @) e6data

AndyP smells bad!

Overflow Page

43

size location
I )
5 ®

4-bytes 8-bytes

AndyP |AndyP sm
ells bad!]|...

size prefix suffix
! ] I

5

Andy

P

4-bytes 4-bytes 8-bytes

AndyP smells bad!

location
|
17 |Andy ®
Sfull string

R

AndyP smells bad!
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EXTERNAL VALUE STORAGE

Some systems allow you to store a
large value in an external file.

Treated as a BLOB type.
— Oracle: BFILE data type
— Microsoft: FILESTREAM data type

The DBMS cannot manipulate the

contents of an external file.
— No durability protections.
— No transaction protections.

44

Header

External File

:

Data
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EXTERNAL VALUE

Some systems allow you to store a
large value in an external file.

Treated as a BLOB type.

— Oracle: BFILE data type
— Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.

— No durability protections.
— No transaction protections.

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?

Russell Sears

“atharine van Ingen', Jim Gra y'
1 Microsoft Research, 2: Univer
sears@cs.berkeley.edu, vanlngen@m

ity of California at Berkeley
rosoft.com, gray@microsoft.com
-45

MSR-TR-2006-4:
April 2006 Revised June 2006

Abstract

Application designers must decide whether to store
large objects (BLOBS) in a filesystem or in o database.
Generally, this decision is based on factors such as
application simplicity or manageability. Ofen, system
performance affects these factors,

Folklore tells us that databases effi ntly handle
large numbers of small objects, while filesystems are
more efficient for large  objects, Where is the
break-even point? When is accessing a BLOB stored
as a file cheaper than accessing a BLOB. stored g5 g
database record?

Of course, this depends on the particular
filesystem, database system, and workload in question.
This study shows that when comparing the NTFS file
system and SQL Server 2005 database system on &
Create, {read, replace}* delete
workload, BLOBs smaller than 256KB are more
cfficiently handled by SQL Server, while NTFS 1
more efficient BLOBS larger than IMB. Of course,
this break-even point will vary among  different
database systems, filesystems, and workloads,

By measuring the performance of a storage server
workload typical of web applications which use gevput
Pprotocols such as WebDAYV [WebDAV], we found that
the  break-even point depends on many factors,
However, our experiments suggest that Storage age, the
fatio of bytes in deleted or replaced objects to bytes in
live objects, is dominant, As storage age incre: es,
fragmentation tends to increase, The filesystem we
study has better fragmentation control than the
database we used, suggesting the databas system
would benefit from incorporating ideas from filesystem
architecture. Conversely, filesystem performance may
be improved by using database techniques to handle
small files.

Surprisingly. for these studies, when average
object size is held constant, the distribution of object
sizes did not significantly affect performance. We alsy
found that, in addition to low percentage free space,
low ratio of free space to average object size Joads to
fi ion and perfc de d: X

1. Introduction

Application data objects are getting larger as digital
media becomes  ubiquitous.  Furthermore, the
increasing popularity of web services and other

network applications means that s;
managed static archives of “finishe

ystems that once
ed” objects now

fanage frequently modified versions of application
data as it is being created and updated. Rather than

updating  these objects, the archi

ve cither stores

multiple versions of the objects (the V of WebDAY

stands for “versioning™), or
replacement  (as  in SharePoint
[SharePoint]).

Application designers have the
large objects as files in the filesy;

mply

y does wholesale
Team  Services

choice of storing
stem, as BLOBs

(binary large objects) in a database, or as a

combination of both, Only  folkl

ore is available

regarding the tradeoffs ~ often the design decision is

based on which technology the desi;

gner knows best.

Most designers will tell Yyou that a database is probably

best for small binary objects and that

that files are best

for large objects. But, what is the break-cven point?

What are the tradeoffs?
This article char;

terizes the performance of an

abstracted write-intensive web application that deals

with relatively large objects, Two

system are compared; one uses a relati

versions of the
database to

store large objects, while the other version stores the
objects as files in the filesystem. We measare how
performance changes over time as the storage becomes
fragmented. The article concludes by describing and
Guanifying the factors that a designer should consider

when picking a storage system.

It also suggests

filesystem and database improvements for large object

support.

One surprising (to us at least) conclusion of our
work is that storage fragmentation is the main
determinant of the break-even point in the tradeoff.
Therefore, much of our work and much of this article
focuses on storage fragmentation issues, [n essence,

filesystems seem 1o have better fragme

than databases and this drives the
down from about IMB to about 256K

ntation handling
break-even point
B.
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CONCLUSION

Database is organized in pages.
Different ways to track pages.
Different ways to store pages.
Different ways to store tuples.
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NEXT CLASS

46

Problem #1: How the DBMS represents the database | « Toda
in files on disk. Y

Problem #2: How the DBMS manages its memory
and moves data back-and-forth from disk.
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