
DatabaseSystems

Database
Systems

15-445/645 SPRING 2026

15-445/645 SPRING 2026

ANDY PAVLO

ANDY PAVLO
JIGNESH PATEL

JIGNESH PATEL

Database Storage:

Files & Pages

Lecture #03

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ADMINISTRIVIA

Project #0 is due Sunday Jan 25th @ 11:59pm

Homework #1 is due Sunday Jan 25th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LAST CLASS

We now understand what a database looks like at a 
logical level and how to write queries to read/write data 
(e.g., using SQL).

We will next learn how to build software that manages 
a database (i.e., a DBMS).

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

COURSE OUTLINE

Relational Databases

Storage

Query Execution

Query Planning / Optimization

Concurrency Control

Database Recovery

Distributed Databases

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

COURSE OUTLINE

Relational Databases

Storage

Query Execution

Query Planning / Optimization

Concurrency Control

Database Recovery

Distributed Databases

4

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

Application

SQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

COURSE OUTLINE

Relational Databases

Storage

Query Execution

Query Planning / Optimization

Concurrency Control

Database Recovery

Distributed Databases

4

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

Application

SQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TODAY'S AGENDA

Background

File Storage

Page Layout

Tuple Layout

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-BASED ARCHITECTURE

The DBMS assumes that the primary storage location of 
the database is on non-volatile disk.

The DBMS's components manage the movement of 
data between non-volatile and volatile storage.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STORAGE HIERARCHY

7

CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Faster
Smaller

Expensive

Slower
Larger

Cheaper

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STORAGE HIERARCHY

7

CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Volatile
Random Access
Byte-Addressable

Non-Volatile
Sequential Access
Block-Addressable

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STORAGE HIERARCHY

7

CPU Registers

CPU Caches

DRAM

SSD

HDD

Network Storage

Disk

Memory

CPU

CPU

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15721.courses.cs.cmu.edu/


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ACCESS TIMES

8

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

Latency Numbers Every Programmer Should Know

Colin Scott

Source: Colin Scott

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://colin-scott.github.io/personal_website/research/interactive_latency.html


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ACCESS TIMES

8

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

1 sec

4 sec

100 sec

4.4 hours

3.3 weeks

1.5 years

31.7 years

Latency Numbers Every Programmer Should Know

Colin Scott

Source: Colin Scott

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://colin-scott.github.io/personal_website/research/interactive_latency.html


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SEQUENTIAL VS. RANDOM ACCESS

Random access on non-volatile storage is almost always 
slower than sequential access.
→ Random I/O: 80–100 μs
→ Sequential I/O: 10–100 μs

DBMS will want to maximize sequential access.
→ Algorithms try to reduce number of writes to random pages so 

that data is stored in contiguous blocks.
→ Allocating multiple pages at the same time is called an extent.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SYSTEM DESIGN GOALS

Allow the DBMS to manage databases that exceed the 
amount of memory available.

Reading/writing to disk is expensive, so it must be 
managed carefully to avoid large stalls and performance 
degradation.

Random access on disk is usually much slower than 
sequential access, so the DBMS will want to maximize 
sequential access.

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

12

Disk D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages4
Header

5
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

12

Disk

Memory

D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2

Execution
Engine

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

12

Disk

Memory

D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2

Directory

Execution
Engine

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

12

Disk

Memory

D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

2
Header

4
Header

5
Header

Get Page #2

Directory

Execution
Engine

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

12

Disk

Memory

D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Pointer to Page #2

Execution
Engine

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

12

Disk

Memory

D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Interpret Page #2 layout

Pointer to Page #2

Execution
Engine

Update Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

12

Disk

Memory

D
at

ab
as

e 
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

2
Header

4
Header

5
Header

Get Page #2

Directory
Interpret Page #2 layout

Pointer to Page #2

Lectures #3+5+6

Lecture #4

Lectures #13-14

Execution
Engine

Update Page #2

Lecture #4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATABASE STORAGE

Problem #1: How the DBMS represents the database
in files on disk.

Problem #2: How the DBMS manages its memory
and moves data back-and-forth from disk.

13

← Today

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

FILE STORAGE

Oracle Teradata

The DBMS stores a database as one or more files on 
disk typically in a proprietary format.
→ OS does not know anything about the contents of these files.
→ We will discuss portable file formats next week…

Early systems in the 1980s used custom filesystems on 
raw block storage.
→ Some enterprise DBMSs still do this (Oracle, Teradata).
→ Most newer DBMSs do not do this.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.oracle.com/technetwork/products/cloud-storage/oracle-12c-asm-overview-1965430.pdf
https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Database-Utilities/Ferret-Utility-ferret/The-File-System


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

FILE STORAGE

Oracle Teradata

The DBMS stores a database as one or more files on 
disk typically in a proprietary format.
→ OS does not know anything about the contents of these files.
→ We will discuss portable file formats next week…

Early systems in the 1980s used custom filesystems on 
raw block storage.
→ Some enterprise DBMSs still do this (Oracle, Teradata).
→ Most newer DBMSs do not do this.

14

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.oracle.com/technetwork/products/cloud-storage/oracle-12c-asm-overview-1965430.pdf
https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Database-Utilities/Ferret-Utility-ferret/The-File-System
https://www.oracle.com/technetwork/products/cloud-storage/oracle-12c-asm-overview-1965430.pdf


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

FILE STORAGE

Oracle Teradata

The DBMS stores a database as one or more files on 
disk typically in a proprietary format.
→ OS does not know anything about the contents of these files.
→ We will discuss portable file formats next week…

Early systems in the 1980s used custom filesystems on 
raw block storage.
→ Some enterprise DBMSs still do this (Oracle, Teradata).
→ Most newer DBMSs do not do this.

14

2

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.oracle.com/technetwork/products/cloud-storage/oracle-12c-asm-overview-1965430.pdf
https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Database-Utilities/Ferret-Utility-ferret/The-File-System
https://www.oracle.com/technetwork/products/cloud-storage/oracle-12c-asm-overview-1965430.pdf
https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Database-Utilities/Ferret-Utility-ferret/The-File-System


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STORAGE MANAGER

The storage manager is responsible for maintaining a 
database's files.
→ Some do their own scheduling for reads and writes to improve 

spatial and temporal locality of pages.

It organizes the files as a collection of pages.
→ Tracks data read/written to pages.
→ Tracks the available space.

A DBMS typically does not maintain multiple copies of 
a page on disk.
→ Assume this happens above/below storage manager.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATABASE PAGES

A page is a fixed-size block of data.
→ It can contain tuples, meta-data, indexes, log records…
→ Most systems do not mix page types.
→ Some systems require a page to be self-contained.

Each page is given a unique identifier (page ID).
→ A page ID could be unique per DBMS instance, per database, or 

per table.
→ The DBMS uses an indirection layer to map page IDs to 

physical locations.

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Default DB Page Sizes

DATABASE PAGES

There are three different notions of 
"pages" in a DBMS:
→ Hardware Page (usually 4KB)
→ OS Page (usually 4KB, x64 2MB/1GB)
→ Database Page (512B-32KB)

A hardware page is the largest block 
of data that the storage device can 
guarantee failsafe writes.

17

16KB

4KB

8KB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATABASE PAGES

Optimal database page size depends on environment, 
database contents,  and expected workload.

DBMSs specializing in read-heavy workloads tend to 
have larger page sizes (1 MB or larger).
→ Fetching a single page brings in many tuples that are needed for 

a query.

DBMSs specializing in write-heavy workloads tend to 
have smaller page sizes (4-16 KB).
→ The system must write entire page to disk even if only a small 

portion of it is modified.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAGE STORAGE ARCHITECTURE

Different DBMSs manage pages in files on disk in 
different ways.
→ Heap File Organization
→ Tree File Organization
→ Sequential / Sorted File Organization (ISAM)
→ Hashing File Organization

At this point in the hierarchy, we do not need to know 
anything about what is inside of the pages.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HEAP FILE

A heap file is an unordered collection of pages with 
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files and 
free space availability.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HEAP FILE

A heap file is an unordered collection of pages with 
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files and 
free space availability.

20

D
at

ab
as

e 
F

il
e

Page0 Page1 Page2 Page3 Page4

…

Offset = Page# × PageSize

Get Page #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HEAP FILE

A heap file is an unordered collection of pages with 
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files and 
free space availability.

20

Page 
Directory

File Location  Page# × PageSize

Get Page #23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HEAP FILE: PAGE DIRECTORY

The DBMS maintains special pages 
that tracks the location of data pages 
in the database files.
→ One entry per database object.
→ Must make sure that the directory pages 

are in sync with the data pages.

DBMS also keeps meta-data about 
pages' contents:
→ Amount of free space per page.
→ List of free / empty pages.
→ Page type (data vs. meta-data).

21

Directory

Table X

Index Y

Table Z

Page0

Data

Page1

Data

⋮

File 2

⋮

Page0

Data

Page1

Data

File 1

⋮

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TODAY'S AGENDA

File Storage

Page Layout

Tuple Layout

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAGE HEADER

Every page contains a header of meta-
data about the page's contents.
→ Page Size
→ Checksum
→ DBMS Version
→ Transaction Visibility
→ Compression / Encoding Meta-data
→ Schema Information
→ Data Summary / Sketches

Some systems require pages to be self-
contained (e.g., Oracle).

23

Data

Page

Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAGE LAYOUT

For any page storage architecture, we now need to 
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.
→ We will also assume that an each tuple fits in a single page.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAGE LAYOUT

For any page storage architecture, we now need to 
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.
→ We will also assume that an each tuple fits in a single page.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage

24

Lecture #6

← Today

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAGE LAYOUT

For any page storage architecture, we now need to 
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.
→ We will also assume that an each tuple fits in a single page.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage

24

Lecture #6

Lecture #5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the 
number of tuples in a page and then 
just append a new tuple to the end.
                                   
                                    

                 

25

Page

Num Tuples = 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the 
number of tuples in a page and then 
just append a new tuple to the end.
                                   
                                    

                 

25

Page

Num Tuples = 0

Tuple #1

Tuple #2

Tuple #3

Num Tuples = 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the 
number of tuples in a page and then 
just append a new tuple to the end.
→ What happens if we delete a tuple?
                                    

                 

25

Page

Num Tuples = 0

Tuple #1

Tuple #2

Tuple #3

Num Tuples = 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the 
number of tuples in a page and then 
just append a new tuple to the end.
→ What happens if we delete a tuple?
                                    

                 

25

Page

Num Tuples = 0

Tuple #1

Tuple #3

Num Tuples = 3Num Tuples = 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the 
number of tuples in a page and then 
just append a new tuple to the end.
→ What happens if we delete a tuple?
                                    

                 

25

Page

Num Tuples = 0

Tuple #1

Tuple #3

Tuple #4

Num Tuples = 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the 
number of tuples in a page and then 
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?

25

Page

Num Tuples = 0

Tuple #1

Tuple #3

Tuple #4

Num Tuples = 3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common layout scheme is 
called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.

26

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common layout scheme is 
called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.

26

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common layout scheme is 
called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.

26

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common layout scheme is 
called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.

26

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common layout scheme is 
called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.

26

Header

Tuple #4

Tuple #2 Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common layout scheme is 
called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.

26

Header

Tuple #4

Tuple #2 Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Record Id Sizes

RECORD IDS

ROWID

The DBMS assigns each logical tuple a 
unique record identifier that 
represents its physical location in the 
database.
→ Example: File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary key 

and stores them as a hidden attribute.

Applications should never rely on 
these IDs to mean anything.

27

TID 4-bytes

CTID 6-bytes

ROWID 8-bytes

%%physloc%% 8-bytes

RDB$DB_KEY 8-bytes

ROWID 10-bytes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.sqlite.org/rowidtable.html


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TODAY'S AGENDA

File Storage

Page Layout

Tuple Layout

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TUPLE LAYOUT

A tuple is essentially a sequence of bytes prefixed with a 
header that contains meta-data about it.

It is the job of the DBMS to interpret those bytes into 
attribute types and values.

The DBMS's catalogs contain the schema information 
about tables that the system uses to figure out the 
tuple's layout.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Tuple

TUPLE HEADER

Each tuple is prefixed with a header 
that contains meta-data about it.
→ Visibility info (concurrency control)
→ Bit Map for NULL values.

We do not need to store meta-data 
about the schema.

30

Header Attribute Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TUPLE DATA

Attributes are typically stored in the 
order that you specify them when you 
create the table.

This is done for software engineering 
reasons (i.e., simplicity).

However, it might be more efficient 
to lay them out differently.

31

Tuple

Header a b c d e

CREATE TABLE foo (
  a INT PRIMARY KEY,
  b INT NOT NULL,
  c INT,
  d DOUBLE,
  e FLOAT
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATA LAYOUT

32

CREATE TABLE foo (
  id INT PRIMARY KEY,
  value BIGINT
);

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATA LAYOUT

32

CREATE TABLE foo (
  id INT PRIMARY KEY,
  value BIGINT
);

Header id value

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATA LAYOUT

32

CREATE TABLE foo (
  id INT PRIMARY KEY,
  value BIGINT
);

Header id value

unsigned char[]

reinterpret_cast<int32_t*>(address)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to enable 
the CPU to access it without any unexpected behavior 
or additional work.

33

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

64-bit Word 64-bit Word 64-bit Word64-bit Word

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to enable 
the CPU to access it without any unexpected behavior 
or additional work.

33

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

id

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to enable 
the CPU to access it without any unexpected behavior 
or additional work.

33

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to enable 
the CPU to access it without any unexpected behavior 
or additional work.

33

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to enable 
the CPU to access it without any unexpected behavior 
or additional work.

33

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to enable 
the CPU to access it without any unexpected behavior 
or additional work.

33

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

unsigned char[]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple is 
word aligned. Essentially round up the storage size of 
types to the next largest word size.

34

id cdate zipc
00000000
00000000
00000000
00000000

00000
000

00000
000

c

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

id cdate c zipc

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical 
layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.

35

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

id cdate czipc

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical 
layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.

35

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

id cdate czipc

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical 
layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.

35

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

000000000000
000000000000 
000000000000
000000000000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes OR pointer to 

another page/offset with data.
→ Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
→ 32/64-bit integer of (micro/milli)-seconds since Unix epoch 

(January 1st, 1970).

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes OR pointer to 

another page/offset with data.
→ Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
→ 32/64-bit integer of (micro/milli)-seconds since Unix epoch 

(January 1st, 1970).

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses the 
"native" C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision 
numbers because CPU ISA's (Xeon, Arm) have 
instructions / registers to support them.

But they do not guarantee exact values…

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/IEEE-754
https://en.wikipedia.org/wiki/IEEE-754
https://en.wikipedia.org/wiki/IEEE-754


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

VARIABLE PRECISION NUMBERS

38

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %f\n", x+y);
    printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

VARIABLE PRECISION NUMBERS

38

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %f\n", x+y);
    printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %.20f\n", x+y);
    printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary 
precision and scale. Used when rounding errors are 
unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary 

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide arbitrary 

precision (e.g., decimal point can be in a different position per 
value).

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

POSTGRES: NUMERIC

40

typedef unsigned char NumericDigit;

typedef struct {

  int ndigits;

  int weight;

  int scale;

  int sign;

  NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

POSTGRES: NUMERIC

40

typedef unsigned char NumericDigit;

typedef struct {

  int ndigits;

  int weight;

  int scale;

  int sign;

  NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://doxygen.postgresql.org/interfaces_2ecpg_2pgtypeslib_2numeric_8c_source.html#l00722


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NULL DATA TYPES

Choice #1: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what 

attributes are null.
→ This is the most common approach in row-stores.

Choice #2: Special Values
→ Designate a placeholder value to represent NULL for a data type 

(e.g., INT32_MIN). More common in column-stores.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this messes 

up with word alignment.

41

Don't
Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NULL DATA TYPES

Choice #1: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what 

attributes are null.
→ This is the most common approach in row-stores.

Choice #2: Special Values
→ Designate a placeholder value to represent NULL for a data type 

(e.g., INT32_MIN). More common in column-stores.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this messes 

up with word alignment.

41

Don't
Do This!

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/papers/2024/zeng-damon24.pdf


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LARGE VALUES

Overflow Compression German Strings

Most DBMSs do not allow a tuple to 
exceed the size of a single page.

To store values that are larger than a 
page, the DBMS uses separate 
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings

42

Tuple

Header INT INT TEXT

CREATE TABLE foo (
  id INT PRIMARY KEY,
  data INT,
  contents TEXT
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LARGE VALUES

Overflow Compression German Strings

Most DBMSs do not allow a tuple to 
exceed the size of a single page.

To store values that are larger than a 
page, the DBMS uses separate 
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings

42

Overflow Page

VARCHAR DATA

Tuple

Header INT INT TEXT

CREATE TABLE foo (
  id INT PRIMARY KEY,
  data INT,
  contents TEXT
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LARGE VALUES

Overflow Compression German Strings

Most DBMSs do not allow a tuple to 
exceed the size of a single page.

To store values that are larger than a 
page, the DBMS uses separate 
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings

42

Overflow Page

VARCHAR DATA

Tuple

Header INT INT TEXTsize location

CREATE TABLE foo (
  id INT PRIMARY KEY,
  data INT,
  contents TEXT
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

4-bytes 8-bytes

GERMAN STRINGS

Optimization for VARCHAR data 
type to avoid retrieving full-string 
unnecessarily for predicates.
→ If value is 16-bytes or less, store the 

complete string inline with the fixed-
length tuple data.

→ If value is more than 16-bytes, store size + 
prefix + location pointer (pageId + offset) 
to the full string.

43

5

size location

AndyP

AndyP|AndyP sm
ells bad!|...

Overflow Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

4-bytes 8-bytes

GERMAN STRINGS

Optimization for VARCHAR data 
type to avoid retrieving full-string 
unnecessarily for predicates.
→ If value is 16-bytes or less, store the 

complete string inline with the fixed-
length tuple data.

→ If value is more than 16-bytes, store size + 
prefix + location pointer (pageId + offset) 
to the full string.

43

5

size location

AndyP smells bad!

AndyP|AndyP sm
ells bad!|...

Overflow Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

4-bytes 4-bytes 8-bytes

4-bytes 8-bytes

GERMAN STRINGS

Optimization for VARCHAR data 
type to avoid retrieving full-string 
unnecessarily for predicates.
→ If value is 16-bytes or less, store the 

complete string inline with the fixed-
length tuple data.

→ If value is more than 16-bytes, store size + 
prefix + location pointer (pageId + offset) 
to the full string.

43

5 Andy PAndyP

size prefix suffix

5

size location

AndyP smells bad!

AndyP|AndyP sm
ells bad!|...

Overflow Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

4-bytes 4-bytes 8-bytes

4-bytes 8-bytes

GERMAN STRINGS

Optimization for VARCHAR data 
type to avoid retrieving full-string 
unnecessarily for predicates.
→ If value is 16-bytes or less, store the 

complete string inline with the fixed-
length tuple data.

→ If value is more than 16-bytes, store size + 
prefix + location pointer (pageId + offset) 
to the full string.

43

AndyP smells bad!

5 Andy PAndyP

AndyP smells bad! 17 Andy

size prefix suffix

location

full string

5

size location

AndyP smells bad!

AndyP|AndyP sm
ells bad!|...

Overflow Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTERNAL VALUE STORAGE

Some systems allow you to store a 
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the 
contents of an external file.
→ No durability protections.
→ No transaction protections.

44

Data

Header a b c d e

External File

Tuple

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTERNAL VALUE STORAGE

Some systems allow you to store a 
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the 
contents of an external file.
→ No durability protections.
→ No transaction protections.

44

Data

Header a b c d e

External File

Tuple

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CONCLUSION

Database is organized in pages.

Different ways to track pages.

Different ways to store pages.

Different ways to store tuples.

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NEXT CLASS

Problem #1: How the DBMS represents the database
in files on disk.

Problem #2: How the DBMS manages its memory
and moves data back-and-forth from disk.

46

← Today

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NEXT CLASS

Problem #1: How the DBMS represents the database
in files on disk.

Problem #2: How the DBMS manages its memory
and moves data back-and-forth from disk.

46

← Today

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

	Introduction
	Slide 1: Database Storage: Files & Pages
	Slide 2: ADMINISTRIVIA
	Slide 3: LAST CLASS
	Slide 4: COURSE OUTLINE
	Slide 5: COURSE OUTLINE
	Slide 6: COURSE OUTLINE
	Slide 7: TODAY'S AGENDA

	Disk-Based Architecture
	Slide 8: DISK-BASED ARCHITECTURE
	Slide 9: STORAGE HIERARCHY
	Slide 10: STORAGE HIERARCHY
	Slide 11: STORAGE HIERARCHY
	Slide 12: ACCESS TIMES
	Slide 13: ACCESS TIMES
	Slide 14: SEQUENTIAL VS. RANDOM ACCESS
	Slide 15: SYSTEM DESIGN GOALS
	Slide 16: DISK-ORIENTED DBMS
	Slide 17: DISK-ORIENTED DBMS
	Slide 18: DISK-ORIENTED DBMS
	Slide 19: DISK-ORIENTED DBMS
	Slide 20: DISK-ORIENTED DBMS
	Slide 21: DISK-ORIENTED DBMS
	Slide 22: DISK-ORIENTED DBMS
	Slide 23: DATABASE STORAGE

	File Storage
	Slide 24: FILE STORAGE
	Slide 25: FILE STORAGE
	Slide 26: FILE STORAGE
	Slide 27: STORAGE MANAGER
	Slide 28: DATABASE PAGES
	Slide 29: DATABASE PAGES
	Slide 30: DATABASE PAGES
	Slide 31: PAGE STORAGE ARCHITECTURE
	Slide 32: HEAP FILE
	Slide 33: HEAP FILE
	Slide 34: HEAP FILE
	Slide 35: HEAP FILE: PAGE DIRECTORY

	Page Layout
	Slide 36: TODAY'S AGENDA
	Slide 37: PAGE HEADER
	Slide 38: PAGE LAYOUT
	Slide 39: PAGE LAYOUT
	Slide 40: PAGE LAYOUT
	Slide 41: TUPLE-ORIENTED STORAGE
	Slide 42: TUPLE-ORIENTED STORAGE
	Slide 43: TUPLE-ORIENTED STORAGE
	Slide 44: TUPLE-ORIENTED STORAGE
	Slide 45: TUPLE-ORIENTED STORAGE
	Slide 46: TUPLE-ORIENTED STORAGE
	Slide 47: SLOTTED PAGES
	Slide 48: SLOTTED PAGES
	Slide 49: SLOTTED PAGES
	Slide 50: SLOTTED PAGES
	Slide 51: SLOTTED PAGES
	Slide 52: SLOTTED PAGES
	Slide 53: RECORD IDS

	Tuple Layout
	Slide 54: TODAY'S AGENDA
	Slide 55: TUPLE LAYOUT
	Slide 56: TUPLE HEADER
	Slide 57: TUPLE DATA
	Slide 58: DATA LAYOUT
	Slide 59: DATA LAYOUT
	Slide 60: DATA LAYOUT
	Slide 61: WORD-ALIGNED TUPLES
	Slide 62: WORD-ALIGNED TUPLES
	Slide 63: WORD-ALIGNED TUPLES
	Slide 64: WORD-ALIGNED TUPLES
	Slide 65: WORD-ALIGNED TUPLES
	Slide 66: WORD-ALIGNED TUPLES
	Slide 67: WORD-ALIGNMENT: PADDING
	Slide 68: WORD-ALIGNMENT: REORDERING
	Slide 69: WORD-ALIGNMENT: REORDERING
	Slide 70: WORD-ALIGNMENT: REORDERING
	Slide 71: DATA REPRESENTATION
	Slide 72: DATA REPRESENTATION
	Slide 73: VARIABLE PRECISION NUMBERS
	Slide 74: VARIABLE PRECISION NUMBERS
	Slide 75: VARIABLE PRECISION NUMBERS
	Slide 76: FIXED PRECISION NUMBERS
	Slide 77: POSTGRES: NUMERIC
	Slide 78: POSTGRES: NUMERIC
	Slide 79: NULL DATA TYPES
	Slide 80: NULL DATA TYPES
	Slide 81: LARGE VALUES
	Slide 82: LARGE VALUES
	Slide 83: LARGE VALUES
	Slide 84: GERMAN STRINGS
	Slide 85: GERMAN STRINGS
	Slide 86: GERMAN STRINGS
	Slide 87: GERMAN STRINGS
	Slide 88: EXTERNAL VALUE STORAGE
	Slide 89: EXTERNAL VALUE STORAGE

	Conclusion
	Slide 90: CONCLUSION
	Slide 91: NEXT CLASS
	Slide 92: NEXT CLASS


