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ADMINISTRIVIA

Project #0 is due Sunday Jan 25th @ 11:59pm

Homework #1 is due Sunday Jan 25th @ 11:59pm
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LAST CLASS

We now understand what a database looks like at a 
logical level and how to write queries to read/write data 
(e.g., using SQL).

We will next learn how to build software that manages 
a database (i.e., a DBMS).
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COURSE OUTLINE

Relational Databases

Storage

Query Execution

Query Planning / Optimization

Concurrency Control

Database Recovery

Distributed Databases
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Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

Application

SQL
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TODAY'S AGENDA

Background

File Storage

Page Layout

Tuple Layout
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DISK-BASED ARCHITECTURE

The DBMS assumes that the primary storage location of 
the database is on non-volatile disk.

The DBMS's components manage the movement of 
data between non-volatile and volatile storage.
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STORAGE HIERARCHY
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STORAGE HIERARCHY
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STORAGE HIERARCHY
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ACCESS TIMES
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1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

Latency Numbers Every Programmer Should Know

Colin Scott

Source: Colin Scott
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SEQUENTIAL VS. RANDOM ACCESS

Random access on non-volatile storage is almost always 
slower than sequential access.
→ Random I/O: 80–100 μs
→ Sequential I/O: 10–100 μs

DBMS will want to maximize sequential access.
→ Algorithms try to reduce number of writes to random pages so 

that data is stored in contiguous blocks.
→ Allocating multiple pages at the same time is called an extent.
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SYSTEM DESIGN GOALS

Allow the DBMS to manage databases that exceed the 
amount of memory available.

Reading/writing to disk is expensive, so it must be 
managed carefully to avoid large stalls and performance 
degradation.

Random access on disk is usually much slower than 
sequential access, so the DBMS will want to maximize 
sequential access.
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DISK-ORIENTED DBMS
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DATABASE STORAGE

Problem #1: How the DBMS represents the database
in files on disk.

Problem #2: How the DBMS manages its memory
and moves data back-and-forth from disk.

13
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FILE STORAGE

Oracle Teradata

The DBMS stores a database as one or more files on 
disk typically in a proprietary format.
→ OS does not know anything about the contents of these files.
→ We will discuss portable file formats next week…

Early systems in the 1980s used custom filesystems on 
raw block storage.
→ Some enterprise DBMSs still do this (Oracle, Teradata).
→ Most newer DBMSs do not do this.
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STORAGE MANAGER

The storage manager is responsible for maintaining a 
database's files.
→ Some do their own scheduling for reads and writes to improve 

spatial and temporal locality of pages.

It organizes the files as a collection of pages.
→ Tracks data read/written to pages.
→ Tracks the available space.

A DBMS typically does not maintain multiple copies of 
a page on disk.
→ Assume this happens above/below storage manager.

15
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DATABASE PAGES

A page is a fixed-size block of data.
→ It can contain tuples, meta-data, indexes, log records…
→ Most systems do not mix page types.
→ Some systems require a page to be self-contained.

Each page is given a unique identifier (page ID).
→ A page ID could be unique per DBMS instance, per database, or 

per table.
→ The DBMS uses an indirection layer to map page IDs to 

physical locations.

16
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Default DB Page Sizes

DATABASE PAGES

There are three different notions of 
"pages" in a DBMS:
→ Hardware Page (usually 4KB)
→ OS Page (usually 4KB, x64 2MB/1GB)
→ Database Page (512B-32KB)

A hardware page is the largest block 
of data that the storage device can 
guarantee failsafe writes.

17
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DATABASE PAGES

Optimal database page size depends on environment, 
database contents,  and expected workload.

DBMSs specializing in read-heavy workloads tend to 
have larger page sizes (1 MB or larger).
→ Fetching a single page brings in many tuples that are needed for 

a query.

DBMSs specializing in write-heavy workloads tend to 
have smaller page sizes (4-16 KB).
→ The system must write entire page to disk even if only a small 

portion of it is modified.

18
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PAGE STORAGE ARCHITECTURE

Different DBMSs manage pages in files on disk in 
different ways.
→ Heap File Organization
→ Tree File Organization
→ Sequential / Sorted File Organization (ISAM)
→ Hashing File Organization

At this point in the hierarchy, we do not need to know 
anything about what is inside of the pages.

19
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HEAP FILE

A heap file is an unordered collection of pages with 
tuples that are stored in random order.
→ Create / Get / Write / Delete Page
→ Must also support iterating over all pages.

Need additional meta-data to track location of files and 
free space availability.

20
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HEAP FILE

A heap file is an unordered collection of pages with 
tuples that are stored in random order.
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HEAP FILE: PAGE DIRECTORY

The DBMS maintains special pages 
that tracks the location of data pages 
in the database files.
→ One entry per database object.
→ Must make sure that the directory pages 

are in sync with the data pages.

DBMS also keeps meta-data about 
pages' contents:
→ Amount of free space per page.
→ List of free / empty pages.
→ Page type (data vs. meta-data).
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TODAY'S AGENDA

File Storage

Page Layout

Tuple Layout
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PAGE HEADER

Every page contains a header of meta-
data about the page's contents.
→ Page Size
→ Checksum
→ DBMS Version
→ Transaction Visibility
→ Compression / Encoding Meta-data
→ Schema Information
→ Data Summary / Sketches

Some systems require pages to be self-
contained (e.g., Oracle).

23
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PAGE LAYOUT

For any page storage architecture, we now need to 
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.
→ We will also assume that an each tuple fits in a single page.

Approach #1: Tuple-oriented Storage

Approach #2: Log-structured Storage

Approach #3: Index-organized Storage

24
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TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the 
number of tuples in a page and then 
just append a new tuple to the end.
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TUPLE-ORIENTED STORAGE

How to store tuples in a page?

Strawman Idea: Keep track of the 
number of tuples in a page and then 
just append a new tuple to the end.
→ What happens if we delete a tuple?
→ What happens if we have a variable-

length attribute?
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SLOTTED PAGES

The most common layout scheme is 
called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.

26
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Record Id Sizes

RECORD IDS

ROWID

The DBMS assigns each logical tuple a 
unique record identifier that 
represents its physical location in the 
database.
→ Example: File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary key 

and stores them as a hidden attribute.

Applications should never rely on 
these IDs to mean anything.

27

TID 4-bytes

CTID 6-bytes

ROWID 8-bytes

%%physloc%% 8-bytes

RDB$DB_KEY 8-bytes

ROWID 10-bytes
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TODAY'S AGENDA

File Storage

Page Layout

Tuple Layout

28
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TUPLE LAYOUT

A tuple is essentially a sequence of bytes prefixed with a 
header that contains meta-data about it.

It is the job of the DBMS to interpret those bytes into 
attribute types and values.

The DBMS's catalogs contain the schema information 
about tables that the system uses to figure out the 
tuple's layout.

29
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Tuple

TUPLE HEADER

Each tuple is prefixed with a header 
that contains meta-data about it.
→ Visibility info (concurrency control)
→ Bit Map for NULL values.

We do not need to store meta-data 
about the schema.

30

Header Attribute Data
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TUPLE DATA

Attributes are typically stored in the 
order that you specify them when you 
create the table.

This is done for software engineering 
reasons (i.e., simplicity).

However, it might be more efficient 
to lay them out differently.

31

Tuple

Header a b c d e

CREATE TABLE foo (
  a INT PRIMARY KEY,
  b INT NOT NULL,
  c INT,
  d DOUBLE,
  e FLOAT
);

https://db.cs.cmu.edu/
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DATA LAYOUT

32

CREATE TABLE foo (
  id INT PRIMARY KEY,
  value BIGINT
);

unsigned char[]

https://db.cs.cmu.edu/
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DATA LAYOUT
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DATA LAYOUT

32

CREATE TABLE foo (
  id INT PRIMARY KEY,
  value BIGINT
);

Header id value

unsigned char[]

reinterpret_cast<int32_t*>(address)
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WORD-ALIGNED TUPLES

All attributes in a tuple must be word aligned to enable 
the CPU to access it without any unexpected behavior 
or additional work.

33

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

64-bit Word 64-bit Word 64-bit Word64-bit Word

unsigned char[]
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WORD-ALIGNMENT: PADDING

Add empty bits after attributes to ensure that tuple is 
word aligned. Essentially round up the storage size of 
types to the next largest word size.

34

id cdate zipc
00000000
00000000
00000000
00000000

00000
000

00000
000

c

CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word
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id cdate c zipc

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical 
layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.

35
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id cdate czipc

WORD-ALIGNMENT: REORDERING

Switch the order of attributes in the tuples' physical 
layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.

35

CREATE TABLE foo (
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  color CHAR(2),  

  zipcode INT

);
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16-bits
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000000000000
000000000000 
000000000000
000000000000
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DATA REPRESENTATION

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes OR pointer to 

another page/offset with data.
→ Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
→ 32/64-bit integer of (micro/milli)-seconds since Unix epoch 

(January 1st, 1970).

36
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VARIABLE PRECISION NUMBERS

Inexact, variable-precision numeric type that uses the 
"native" C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed precision 
numbers because CPU ISA's (Xeon, Arm) have 
instructions / registers to support them.

But they do not guarantee exact values…

37
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VARIABLE PRECISION NUMBERS

38

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %f\n", x+y);
    printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

https://db.cs.cmu.edu/
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VARIABLE PRECISION NUMBERS

38

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %f\n", x+y);
    printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %.20f\n", x+y);
    printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890
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FIXED PRECISION NUMBERS

Numeric data types with (potentially) arbitrary 
precision and scale. Used when rounding errors are 
unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary 

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide arbitrary 

precision (e.g., decimal point can be in a different position per 
value).

39
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POSTGRES: NUMERIC

40

typedef unsigned char NumericDigit;

typedef struct {

  int ndigits;

  int weight;

  int scale;

  int sign;

  NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage
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NULL DATA TYPES

Choice #1: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what 

attributes are null.
→ This is the most common approach in row-stores.

Choice #2: Special Values
→ Designate a placeholder value to represent NULL for a data type 

(e.g., INT32_MIN). More common in column-stores.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this messes 

up with word alignment.

41

Don't
Do This!
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Do This!
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LARGE VALUES

Overflow Compression German Strings

Most DBMSs do not allow a tuple to 
exceed the size of a single page.

To store values that are larger than a 
page, the DBMS uses separate 
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings

42

Tuple

Header INT INT TEXT

CREATE TABLE foo (
  id INT PRIMARY KEY,
  data INT,
  contents TEXT
);
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Overflow Page

VARCHAR DATA

Tuple

Header INT INT TEXT

CREATE TABLE foo (
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  contents TEXT
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LARGE VALUES

Overflow Compression German Strings

Most DBMSs do not allow a tuple to 
exceed the size of a single page.

To store values that are larger than a 
page, the DBMS uses separate 
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
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Overflow Page

VARCHAR DATA

Tuple

Header INT INT TEXTsize location

CREATE TABLE foo (
  id INT PRIMARY KEY,
  data INT,
  contents TEXT
);
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4-bytes 8-bytes

GERMAN STRINGS

Optimization for VARCHAR data 
type to avoid retrieving full-string 
unnecessarily for predicates.
→ If value is 16-bytes or less, store the 

complete string inline with the fixed-
length tuple data.

→ If value is more than 16-bytes, store size + 
prefix + location pointer (pageId + offset) 
to the full string.

43

5

size location

AndyP

AndyP|AndyP sm
ells bad!|...

Overflow Page
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EXTERNAL VALUE STORAGE

Some systems allow you to store a 
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the 
contents of an external file.
→ No durability protections.
→ No transaction protections.

44

Data

Header a b c d e

External File

Tuple
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Some systems allow you to store a 
large value in an external file.
Treated as a BLOB type.
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→ No durability protections.
→ No transaction protections.
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Data

Header a b c d e

External File

Tuple
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CONCLUSION

Database is organized in pages.

Different ways to track pages.

Different ways to store pages.

Different ways to store tuples.
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NEXT CLASS

Problem #1: How the DBMS represents the database
in files on disk.

Problem #2: How the DBMS manages its memory
and moves data back-and-forth from disk.

46

← Today
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