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LAST CLASS

Problem #1: How the DBMS represents the database
in files on disk.

Problem #2: How the DBMS manages its memory
and move data back-and-forth from disk.
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DATABASE STORAGE

Spatial Control:
→ Where to write pages on disk.
→ The goal is to keep pages that are used together often as 

physically close together as possible on disk.

Temporal Control:
→ When to read pages into memory, and when to write them 

back to disk if they get changed.
→ The goal is to minimize the number of stalls from having to 

read data from disk.
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DISK-ORIENTED DBMS
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OTHER MEMORY POOLS

The DBMS needs memory for tasks and information 
other than tuples and indexes.

These other memory pools may not always backed by 
disk. Depends on implementation.
→ Sorting + Join Buffers
→ Query Caches
→ Maintenance Buffers
→ Log Buffers
→ Dictionary Caches

5
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TODAY'S AGENDA

Buffer Pool Manager

Memory-Mapped Files?

Replacement Policies

Disk I/O Scheduling

Optimizations

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BUFFER POOL ORGANIZATION

Memory region organized as an array 
of fixed-size pages. Each array entry is 
called a frame.

When the DBMS requests a page, it 
places an exact copy of that page into 
one of these frames.

Dirty pages are buffered and not 
written to disk immediately
→ Write-Back Cache
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frame1
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BUFFER POOL META-DATA

The page table keeps track of pages 
that are currently in memory.
→ Usually a fixed-size hash table protected 

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information
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LOCKS VS. LATCHES

Locks:
→ Protects the database's logical contents from other transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of the DBMS's internal data 

structures from other workers (e.g., threads).
→ Held for operation duration.
→ Do not need to be able to rollback changes.

9
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PAGE TABLE VS. PAGE DIRECTORY

The page directory is the mapping from page ids to 
page locations in the database files.
→ All changes must be recorded on disk to allow the DBMS to 

find on restart.

The page table is the mapping from page ids to a copy 
of the page in buffer pool frames.
→ This is an in-memory data structure that does not need to be 

stored on disk.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to 
store the contents of a file into the 
address space of a program.

OS is responsible for moving file 
pages in and out of memory, so the 
DBMS doesn't need to worry about it.

What if DBMS allows multiple 
threads to access mmap files to hide 
page fault stalls?
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MEMORY MAPPED I/O PROBLEMS

Problem #1: Transaction Safety
→ OS can flush dirty pages at any time.

Problem #2: I/O Stalls
→ DBMS doesn't know which pages are in memory. The OS will 

stall a thread on page fault.

Problem #3: Error Handling
→ Difficult to validate pages. Any access can cause a SIGBUS that 

the DBMS must handle.

Problem #4: Performance Issues
→ OS data structure contention. TLB shootdowns.

12
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WHY NOT USE THE OS?

There are some solutions to some of 
these problems:
→ madvise: Tell the OS how you expect to 

read certain pages.
→ mlock: Tell the OS that memory ranges 

cannot be paged out.
→ msync: Tell the OS to flush memory 

ranges out to disk.

Using these syscalls to get the OS to 
behave correctly is just as onerous as 
managing memory yourself.

13

Full Usage

Partial Usage
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WHY NOT USE THE OS?

DBMS (almost) always wants to control things itself 
and can do a better job than the OS.
→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

The OS is not your friend.

14
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BUFFER REPLACEMENT POLICIES

When the DBMS needs to free up a frame to make 
room for a new page, it must decide which page to evict 
from the buffer pool.

Goals:
→ Correctness
→ Accuracy
→ Speed
→ Meta-data overhead

15
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LEAST-RECENTLY USED (1965)

Maintain a single timestamp of when 
each page was last accessed. When the 
DBMS needs to evict a page, select the 
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce 

the search time on eviction.
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CLOCK (1969)

Approximation of LRU that does not 
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer 
with a "clock hand" that sweeps over 
pages in order:
→ As the hand visits each page, check if its 

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.
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OBSERVATION

LRU + CLOCK replacement policies are susceptible to 
sequential flooding.
→ A query performs a sequential scan that reads every page in a 

table one or more times (e.g., nested-loop joins).
→ This pollutes the buffer pool with pages that are read once and 

then never again.

In OLAP workloads, the most recently used page is often 
the best page to evict.

18
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LEAST-FREQUENTLY USED (1971) 

LRU + CLOCK only track when a page was last 
accessed, but not how often a page is accessed.

To identify popular pages, maintain an access count for 
each page and then evict page with the lowest count.

But LFU introduces more problems:
→ Logarithmic implementation complexity relative to cache size.
→ Ignores time and accumulates stale pages with high frequency 

counts that may no longer be relevant.

20
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LRU-K (1993)

Track history of last K accesses to each 
page as timestamps and compute the 
interval between subsequent accesses.
→ Can distinguish between reference types

Use this history to estimate the next 
time that page is going to be accessed.
→ Replace page with the oldest Kth access.
→ Balances recency vs. frequency of access.

Maintain in-memory "ghost list" for 
recently evicted pages to prevent 
them from always being evicted.

21
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Single LRU linked list but with two 
entry points ("old" vs "young").
→ New pages are always inserted to the head 

of the old list.
→ If pages in the old list is accessed again, 

then insert into the head of the young list.
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ARC: ADAPTIVE REPLACEMENT CACHE (2003)

Adaptive replacement policy algorithm developed by 
IBM Research in the early 2000s.
→ Only implemented in IBM DB2, PostgreSQL, and ZFS.
→ Rewritten in PostgreSQL to avoid IBM's patent.

Support both recency (MRU) and frequency (MFU) by 
maintaining two lists and then adjusts the size of them 
based on workload access patterns.

Maintain ghost lists to remember recent evictions and 
adapt quickly.

24
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ARC: ADAPTIVE REPLACEMENT CACHE (2003)

MRU List (T1):
→ Holds pages that have been accessed once recently.

MRU Ghost List (B1):
→ History of pages recently evicted from T1 (i.e., recency misses).

MFU List (T2):
→ Holds pages that have been accessed at least twice.

MFU Ghost List (B2):
→ History of pages recently evicted from T2 (i.e., frequency 

misses).

Target Size Parameter (p):
→ Adaptively adjusts how much to favor recency (T1) vs. 

frequency (T2).

25
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ARC: LOOKUP PROTOCOL
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ARC: LOOKUP PROTOCOL

Cache Miss, Page Found in B1 (Ghost of T1):
→ Increase target size p (favor more recency pages).
→ Move page into T2 (since it’s now accessed again).

Cache Miss, Page Found in B2 (Ghost of T2):
→ Decrease target size p (favor more frequency pages).
→ Move page into T2.

Cache Miss, Page Not in Cache or Ghost Lists:
→ If T1 + B1 is full, evict from B1 or T1.
→ If T2 + B2 is full, evict from B2 or T2.
→ Insert new page into T1.

27
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BETTER POLICIES: LOCALIZATION

The DBMS chooses which pages to evict on a per query 
basis. This minimizes the pollution of the buffer pool 
from each query.
→ Keep track of the pages that a query has accessed.

Example: Postgres assigns a limited number of buffer of 
buffer pool pages to a query and uses it as a circular ring 
buffer.

28
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BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether a 
page is important or not.

29

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

Priority
High

Low

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether a 
page is important or not.

29

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

Priority
High

Low

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page 
during query execution.

It can provide hints to the buffer pool on whether a 
page is important or not.

29

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

Priority
High

Low

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BETTER POLICIES: PRIORITY HINTS
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DIRTY PAGES

Fast Path: If a page in the buffer pool is not dirty, then 
the DBMS can simply "drop" it.

Slow Path: If a page is dirty, then the DBMS must 
write back to disk to ensure that its changes are 
persisted.

Trade-off between fast evictions versus dirty writing 
pages that will not be read again in the future.

30
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BACKGROUND WRITING

The DBMS periodically walks through the page table 
and preemptively write dirty pages to disk.
→ Also called page cleaning or "buffer flushing".

When a dirty page is safely flushed, the DBMS can 
either evict the page or just reset its dirty flag.

Need to be careful the system does not write dirty pages 
before their log records are written…

31
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OBSERVATION

OS/hardware tries to maximize disk bandwidth by 
reordering and batching I/O requests.

But they do not know which I/O requests are more 
important than others.

Many DBMSs tell you to switch Linux to use the 
deadline or noop (FIFO) scheduler.
→ Example: Oracle, Vertica, MySQL 

32
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DISK I/O SCHEDULING

The DBMS maintain internal queue(s) to track page 
read/write requests from the entire system.

Compute priorities based on several factors:
→ Sequential vs. Random I/O
→ Critical Path Task vs. Background Task
→ Table vs. Index vs. Log vs. Ephemeral Data
→ Transaction Information
→ User-based SLAs

The OS doesn't know these things and is going to get in 
the way of our beautiful DBMS…

33
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OS PAGE CACHE

O_DIRECT

Most disk operations go through the 
OS API. Unless the DBMS tells it not 
to, the OS maintains its own 
filesystem cache (aka page cache, 
buffer cache).

Most DBMSs use direct I/O 
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

34
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FSYNC PROBLEMS

If the DBMS calls write, what happens?

If the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?
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FSYNC PROBLEMS

If the DBMS calls write, what happens?

If the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?
→ Linux marks the dirty pages as clean.
→ If the DBMS calls fsync again, then Linux tells you that the 

flush was successful. Since the DBMS thought the OS was its 
friend, it assumed the write was successful…

35
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BUFFER POOL OPTIMIZATIONS

Multiple Buffer Pools

Pre-Fetching

Scan Sharing

Buffer Pool Bypass

36
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MULTIPLE BUFFER POOLS

The DBMS does not always have a single buffer pool 
for the entire system.
→ Multiple buffer pool instances
→ Per-database buffer pool
→ Per-page type buffer pool

Partitioning memory across multiple pools helps reduce 
latch contention and improve locality.
→ Avoids contention on LRU tracking meta-data.

37
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GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.
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GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.
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GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids 

and then maintain a mapping from objects 
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.
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PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty 
frames upon start-up.

39
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PRE-FETCHING

The DBMS can also prefetch pages 
based on a query plan.
→ Examples: Sequential vs. Index Scans
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frames upon start-up.
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PRE-FETCHING
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SCAN SHARING

Allow multiple queries to attach to a single cursor that 
scans a table.
→ Also called synchronized scans.
→ This is different from result caching.

Examples:
→ Fully supported in DB2, MSSQL, Teradata, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

41
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Buffer Pool
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CONTIONOUS SCAN SHARING

Instead of trying to be clever, the 
DBMS continuously scans the 
database files repeatedly.
→ One continuous cursor per table.
→ Queries "hop" on board the cursor while it 

is running and then disconnect once they 
have enough data.

Not viable if you pay per IOP.

Only done in academic prototypes.

43
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BUFFER POOL BYPASS

The sequential scan operator will not store fetched 
pages in the buffer pool to avoid overhead.
→ Memory is local to running query.
→ Works well if operator needs to read a large sequence of pages 

that are contiguous on disk.
→ Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.
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CONCLUSION

The DBMS can almost always manage memory better 
than the OS.

Leverage the semantics about the query plan to make 
better decisions:
→ Evictions
→ Allocations
→ Pre-fetching
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NEXT CLASS

Back to Storage Structures!

Log-Structured Storage

Index-Organized Storage

Catalogs

46
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PROJECT #1

You will build the first component of 
your storage manager.
→ ARC Replacement Policy
→ Disk Scheduler
→ Buffer Pool Manager Instance

We provide you with the basic APIs 
for these components.

Due Date:
Sunday Feb 15th @ 11:59pm
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TASK #1 – ARC REPLACEMENT POLICY

Build a data structure that tracks the usage of pages 
using the ARC policy. Dynamically adjust whether to 
favor recency or frequency in eviction decisions.

General Hints:
→ Your eviction algorithm needs to check the "pinned" status of 

each page.
→ You are allowed to use STL containers for internal lists (e.g., 

MRU, MFU).
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TASK #2 – DISK SCHEDULER

Create a background worker to 
read/write pages from disk.
→ Single request queue but each request can 

contain multiple requested pages.
→ Simulates asynchronous IO using 

std::promise for callbacks.

It's up to you to decide how you want 
to batch, reorder, and issue read/write 
requests to the local disk.

Make sure it is thread-safe!
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TASK #3 – BUFFER POOL MANAGER

Use your ARC replacer to manage
the allocation of pages.
→ Need to maintain internal data

structures to track allocated + free pages.
→ Implement page guards.
→ Use whatever data structure you want

for the page table.

Make sure you get the order of 
operations correct when pinning!
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THINGS TO NOTE

Do not change any file other than the ones listed in the 
project specification. Other changes will not be graded.

The projects are cumulative, and we do not provide 
solutions.

Post any questions on Piazza or come to office hours, 
but we will not help you debug.
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CODE QUALITY

We will automatically check whether you are writing 
good code.
→ Google C++ Style Guide
→ Doxygen Javadoc Style

You need to run these targets before you submit your 
implementation to Gradescope.
→ make format
→ make check-clang-tidy-p1
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EXTRA CREDIT

Gradescope Leaderboard runs your code with a 
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class will 
receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

The student with the most bonus points at the end of 
the semester will be added to the BusTub trophy!
→ I have been struggling to buy a trophy worthy of us…
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PLAGIARISM WARNING

The homework and projects must be your own original 
work. They are not group assignments.
→ You may not copy source code from other people or the web.
→ You are allowed to use generative AI tools.

Plagiarism is not tolerated. You will get lit up.
→ Please ask instructors (not TAs!) if you are unsure.

See CMU's Policy on Academic Integrity for additional 
information. 
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