Carnegie Mellon ‘Universityv‘
‘Database
Systems

ANDY.PAVLO |
JIGNESH PATEL

Lecture #64
Buffer Pool
Memory Management

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/

LAST CLASS

Problem #1: How the DBMS represents the database
in files on disk.

Problem #2: How the DBMS manages its memory | « Toda
and move data back-and-forth from disk. y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATABASE STORAGE

Spatial Control:

— Where to write pages on disk.

— The goal is to keep pages that are used together often as
physically close together as possible on disk.

Temporal Control:

— When to read pages into memory, and when to write them
back to disk if they get changed.

— The goal is to minimize the number of stalls from having to
read data from disk.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DISK-ORIENTED

Get Page #2

A 4
T— —

g E.-.-.-.-.-.-.-.-.E E.-.-.-.-.-.-.-.-.E E§ ™

S| : | Frames
=3l 5 j

Database File
- 3
N L
w L&
AL
o L&
l
.
=)
3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DISK-ORIENTED

Get Page #2

'E — 5 5 -~
o R Y|
|

Q

..................................

Database File
- 3
N L
w L&
AL
o L&
l
.
=)
3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DISK-ORIENTED

Get Page #2
T r—

% : % 2 — Frames
Memory Q T G |l

Database File
— [
N L&
w L]
S
o g
]
i
()
3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DISK-ORIENTED DBMS

Get Page #2 Execution

Engine

Pointer to Page #2

'E s [-
S 2 — Frames
S| (L]
m =

.................

Database File
- 3
N L
w L&
AL
o L&
l
.
=)
3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DISK-ORIENTED DBMS

.................

5
STl 2 | . |p— Frames
3

Database File
- 3
N L
w L&
AL
o L&
l
.
=)
3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DISK-ORIENTED DBMS

..................................

) : : : :
° irector E EE E
= | A
Q

Database File
- 3
N L
w L&
AL
o L&
l
.
=)
3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DISK-ORIENTED DBMS

Get Page #2 Execution

Engine

Pointer to Page #2

é e = gg . N

< | [LLL]| : | 2 __F

> || ¢ : rames
3 = =

Q 7'y

.................

Database File
—_ [T
N L
w L&
AL
o L&
l
.
=)
3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OTHER MEMORY POOLS

The DBMS needs memory for tasks and information
other than tuples and indexes.

These other memory pools may not always backed by

disk. Depends on implementation.
— Sorting + Join Buffers

— Query Caches

— Maintenance Buffers

— Log Buffers

— Dictionary Caches

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

TODAY'S AGENDA

Buffer Pool Manager
Memory-Mapped Files?
Replacement Policies

Disk I/O Scheduling
Optimizations

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BUFFER POOL ORGANIZATION -

Memory region organized as an array Buffer
of fixed-size pages. Each array entry is Pool
called a frame.

: framel :
When the DBMS requests a page, it | frame2 ;
places an exact copy of that page into - frame3 |
one of these frames. W
Dirty Pages are buffered and not ..
written to disk immediately pagel || page2 || page3 | [page4

— Write-Back Cache On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BUFFER POOL ORGANIZATION -

Memory region organized as an array Buffer
of fixed-size pages. Each array entry is Pool
called a frame.

L pagel
When the DBMS requests a page, it - frame2 |
places an exact copy of that page into - frame3 |
one of these frames. frames

Dirty pages are buffered and not

written to disk immediately pagel || page2 || page3 | [page4
Write-Back Cach : -

AR AR On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BUFFER POOL ORGANIZATION

Memory region organized as an array
of fixed-size pages. Each array entry is
called a frame.

When the DBMS requests a page, it
places an exact copy of that page into
one of these frames.

Dirty pages are buffered and not

written to disk immediately page]

page2

page3

— Write-Back Cache

On-Disk File

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

Page
Table

agel ; ,
mgta%a'a ta pa ge 1

meta-data pa ge3

Buffer
Pool

8

page2

page3

On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

Page
Table

agel ; ,
mgta%a'a ta pa ge 1
meta-data pa ge3

Buffer
Pool

8

page2

page3

On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

Page
Table

agel ; ,
mgta%a'a ta pa ge1
meta-data pa ge3

Buffer
Pool

8

» ﬁ frame3
' frames
page1 page2 page3 page4

On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

Page
Table

agel ; ,
mgta%a'a ta pa ge 1

* page3
meta-data pa ge3

Buffer
Pool

8

B 6.5 e page2
page1 page2 page3 page4

On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BUFFER POOL META-DATA

The page table keeps track of pages

that are currently in memory.
— Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

Page
Table

agel ; ,
mgta%a'a ta pa ge 1
* page3
meta-data page3

age2
K, | Pase2

Buffer
Pool

8

page2

page3

On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LOCKS VS. LATCHES

Locks:

— Protects the database's logical contents from other transactions.
— Held for transaction duration.
— Need to be able to rollback changes.

Latches:
— Protects the critical sections of the DBMS's internal data

structures from other workers (e.g., threads). —Mutex
— Held for operation duration.
— Do not need to be able to rollback changes.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PAGE TABLE VS. PAGE DIRECTORY

The page directory is the mapping from page ids to

page locations in the database files.
— All changes must be recorded on disk to allow the DBMS to
find on restart.

The page table is the mapping from page ids to a copy

of the page in buffer pool frames.
— This is an in-memory data structure that does not need to be
stored on disk.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WHY NOT USE THE 0S? *

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical

address space of a program. Memory Memory
pagel

OS is responsible for moving file B—

pages in and out of memory, so the —

DBMS doesn't need to worry about it. —

What if DBMS allows mlﬂtiple ..
threads to access mmap files to hide pagel || page2 || page3 || pages

page fault stalls? On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WHY NOT USE THE 0S? *

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical

address space of a program. Memory AL G,
. . . pagel

OS is responsible for moving file » bage?

pages in and out of memory, so the Sage3

DBMS doesn't need to worry about it. Saged

What if DBMS allows mlﬂtiple ..
threads to access mmap files to hide pagel || page2 || page3 || pages

page fault stalls? On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WHY NOT USE THE 0S?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the

DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

11

Virtual Physical
Memory Memory
» pagel * pagel
A
page?2
page3
page4
pagel page?2 page3 page4

On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WHY NOT USE THE 0S? *

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical
address space of a program. Memory Memory
: . . page *| pagel
OS is responsible for moving file —
pages in and out of memory, so the »
\ . page3
DBMS doesn't need to worry about it. —

What if DBMS allows mlﬂtiple ..
threads to access mmap files to hide pagel || page2 || page3 || pages

page fault stalls? On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WHY NOT USE THE 0S? *

Use OS memory mapping (mmap) to
store the contents of a file into the Virtual Physical
address space of a program. Memory Memory

pagel »| pagel

OS is responsible for moving file

. page?2 page3
pages in and out of memory, so the » — / 5
DBMS doesn't need to worry about it.

page4

What if DBMS allows mlﬂtiple :_n:
threads to access mmap files to hide pagel || page2 || page3 || pages

page fault stalls? On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WHY NOT USE THE 0S? *

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical
address space of a program. Memory Memory

: . . page *| pagel
OS is 1jespon51ble for moving file 277 » — / —
pages in and ?ut of memory, so the | - "
DBMS doesn't need to worry about it. \ﬁf;/[

page4

What if DBMS allows mlﬂtiple ..
threads to access mmap files to hide pagel || page2 || page3 || pages

page fault stalls? On-Disk File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MEMORY MAPPED I/0 PROBLEMS =

Problem #1: Transaction Safety
— OS can flush dirty pages at any time.

Problem #2: I/0 Stalls

— DBMS doesn't know which pages are in memory. The OS will
stall a thread on page fault.

Problem #3: Error Handling

— Difficult to validate pages. Any access can cause a SIGBUS that
the DBMS must handle.

Problem #4: Performance Issues
— OS data structure contention. TLB shootdown:s.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WHY NOT USE THE 0S? =

There are some solutions to some of

these problems:

— madvise: Tell the OS how you expect to
read certain pages.

— mlock: Tell the OS that memory ranges
cannot be paged out.

— msync: Tell the OS to flush memory
ranges out to disk.

Using these syscalls to get the OS to
behave correctly is just as onerous as
managing memory yourself.

Full Usage

mo@ LDB @ levelpB

RavenDB Q QuestDB “ Weaviate

& elasticsearch Yellowbrick ¢4 0 MongoDB.

Partial Usage

N/
%\\% SingleStore “%ER

?SQLm @ influxdb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WHY NOT USE THE 0S? =

There are some solutions to some of

these problems:

— madvise: Tell the OS how you expect to
read certain pages.

— mlock: Tell the OS that memory ranges
cannot be paged out.

— msync: Tell the OS to flush memory
ranges out to disk.

Using these syscalls to get the OS to
behave correctly is just as onerous as
managing memory yourself.

Full Usage

mo@ LDB @ levelpB

RavenDB (X QuestDB “Xviote

& elasticsearch Yellcxicki.‘ 0 MMODB@

Partial Usage

WIRED
Store TIGER

?SQLm @ iyt

S Sj
7S Ol

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WHY NOT USE THE 0S? =

DBMS (almost) always wants to control things itself

and can do a better job than the OS.

— Flushing dirty pages to disk in the correct order.
— Specialized prefetching.

— Buffer replacement policy.

— Thread/process scheduling.

The OS is not your friend.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

WHY NOT USE |

Are You Sure You Want to Use MMAP in Your
Database Management System?

Andrew Crotty Viktor Leis Andrew Pavlo
Carnegie Mellon University University of Erlangen-Nuremberg Carnegie Mellon University
andrewer@cs.cmu.edu viktorleis@fau.de pavlo@cs.cmu.edu

m a S ‘N; ants tO ‘ ABSTRACT Page cache. The POSIX mnap system call maps a file on secondary
D a O S a Memory-mapped (mnap) file 1/0 s an OS-provided feature that storage into the virtua) address space of the caller (L., the DBMS),

maps the contents of a file on second: ¥ storge into a program’s and the OS will then load pages lazily when the DEMS accesses
them. To the DBM

the database appears o reside fully in memory,
but the OS handles all necessary paging behind the scenes rathey

° ifthe file resided entirely in memory. The 0§ transparently loads d
al l pages only when the program references them and automatically ~ than the DBM s buffer pool.
an Ca n O a evicts pages if memoty il up On the surface, mnap scems like an attractive implementation

address space, The program then accesses pages via pointers as

a0’ perceived ease of use has seduced database management option for managing file IO in a DBMS. The most notable benefits

system (DBMS) developers for decades as a viable alternative to are ease of use and low engineering cost, The DBMS no longer

. . he C implementing a buffer pool. There are, however, severe comect. neads to track which pages are in memory, nor does it need o track

fess and performance issues with map that are not immediately how often pages are accessed o Which pages are dirty. Instead,

e 2 u apparent. Such problems make it difficul,if not impossible, to wse the DBMS can simply access disk-resident data via pointers as if
map correctly and efficiently in a modem DBMS. In fact, several it Were accessing data i metnory while leaving all low-level page

popular DBMSs initially used mnap to support larger-than-memory management to the OS. If the available memory fills up, then the

databases but s0on encountered these hidden peril, forcing them to OS willfree space for new pages by transparently evicting (ideally
hto managing file VO themselves after signif It engineering unneeded) pages from the page cache.

costs. In this way, amap and DBMSs are like coffee and spicy food From a performance perspective, mmap should also have much

an unfortunate combination that becomes obvious after the fact lower overhead than a traditional buffer pool. Specif ly, mmap
Since developers keep trying to use mmap in new DBMSs, we does not incur the cost of explicit system calls (ie., read/write)

wrote this paper (o provide 4 warning to others that map is not a and avoids redundant copying to a buffer in user space because the

suitable replacement for traditional buffer pool. We discuss the DBMS can access pages directly from the 08 page cache.

main shortcomings of mmap in detail, and ou ntal analysis Since the early 19805, th benefits b S

demonstrates clear performance limitations. Based on these find. developers to forga implementing a buffer pool and instead rely

ings, we conclude with a presciption for when DBMS developers on the OS to manage file 1O [36]. In fact, the developers of several

well-known DBMSs (see Section 2.3) have gone down this path,
with some even touting mmap as a key factor in achieving good
1 INTRODUCTION performance [20]

Unfortunately, nmap has a hidden dark side with many sordid
ble for file /O in a DBMS. As we

might consider using mmap for file /0,

problems that make it undesi
describe in this paper, these problems involve both data safety and

Animportant feature of disk-based DBMSs is their ability to support
databases that are larger than the available physical memory. This
functionality allows a user to query a database as if it resides entirely
In memory, even if it does not fit all at once. DBMSs achieve this
ilusion by reading pages of data from secondary storage (., HDD,
SSD) into memory on demand. If there is not enough memory for n
new page, the DBMS will evict an existing page that is no longer
needed in order to make room,

A . DBMSs impl, the of pages be-
tween secondary storage and memory in a buffer pool, which i
teracts with secondary storage using system calls like read and
write. These file 110 mechanisms copy data to and from a buffer
With the DBMS maintaining complete control oyer
haw and when it transfers pages

Altemmatively, can relinquish the responsibility of data
movement to the O, which maintains its own file mapping and

System performance concerns. We contend that the engincering
steps required to overcome them negate the purported simplicity
of working with mnap. For these reasons, we believe that nmap
adds too much complexity with no commensura performance
benefit and strongly urge DBMS developers to avokd using mmap as
a replacement for a traditional buffer pool

The remainder of this paper is organized as follows, We begin
with a short background on mmap (Section 2), followed by a discus
sion of its main problems (Section 3) and our experimental analysis
(Section 4). We then discuss related work (Section 5) and conclude
withaa summary of our guidance for when you might consider using
mmap in your DBMS (Section 6),

0 1 e " . 2 BACKGROUND

1 the Creative ribution

se. Authors reserve ther ights o diseminate the work o ey This section provides the relevant background on mmap, We begin

personal and corporate Web sites with -level overvie y-mapped file 1/ .

et e e s i with a high-level overview of memory-mapped file 10 and the

Inovative Data Systems Research (1O POSIX mmap APL. Then, we discuss real-waorld implementations of
mmap-based systems.

January 9:12, 2022, Chaminade, USA

htt s://db.cs.cmu.edu/mma -cidr2022

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/mmap-cidr2022/
https://db.cs.cmu.edu/mmap-cidr2022

WHY NOT

USE| =

DBMS (almost) always
and can do a better job

A marginalia_nu 42 days ago | prev | next[-]

Optimizing the Marginalia Search index code. The new code is at Ie:st tW|cedf;si':"assftoltr:r
i iti duction because it turns out when you

benchmarks, butI can't run it in pro ' ‘

times as slow as what came before it for the queries that are the simplest and fastest

to the point where queries exceed their timeout values by a lot.

I'm 97% certain this is because the faster code leads to more page thrashing |r|1;:z
mmap-based index readers. I'm gonna have to implement my own buffer poo

manage my reads directly like that vexatious paper[1] said all along.

[1] https://db.cs.cmu.edu/papers...

* 21 points by apavlo 42 days ago | parent | next [-]

>I'm gonna have to implement my own buffer pool and manage my reads directly like
that vexatious paper[1] said all along.

You make it sound like I was trying to troll everyone when we wrote that paper. We
were warning you.

ITSERg P 1%

Tramtianlly, DRNSy implement the movement of pages be

wreplacement for a traditional buffer pool.
tween secondary storage and memory in a by ffer pool, which in

The remainder of this paper
with a short background on mmay
el 100 of its main problems (Se
write. These file 110 mechanisms copy data to and from a buffer (Sacees 3Dkl problems

follows. We begin
i

on 3) and ysis
(Section 4). We then discuss related work (Section 5 ude
e o e itha summary of our guidance for when you might consider using
how and when it transfers pages
mmap in your DBMS (Section 6.
Alternatively. the DBMS can relinquish the responsibility of data piny Pesad)
movement to the 08, which maintains its own file

mapping and

2 BACKGROUND

This section provides the ackground on mmap, We begin
with a high-level overvie emory-mapped file 1O and the
POSIX mmap API. Then, we discuss real-world implementations of
mmap-based systems

htts://db.cs.cmu.edu/mma-cidr2022

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/mmap-cidr2022/
https://db.cs.cmu.edu/mmap-cidr2022
https://news.ycombinator.com/item?id=44704294

BUFFER REPLACEMENT POLICIES -

When the DBMS needs to free up a frame to make
room for a new page, it must decide which page to evict
from the buffer pool.

Goals:

— Correctness

— Accuracy

— Speed

— Meta-data overhead

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LEAST-RECENTLY USED (1965)

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the

one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

—

Buffer Pool

page0 pagel

page2

LRU List

Newest<Oldest

pageo

page2

Disk Pages

pageo

Q1 ‘ pagel

page2

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LEAST-RECENTLY USED (1965)

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the

one with the oldest timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

Buffer Pool

pagel

page0

page2

LRU List

Newest<Oldest

pageo

page2

Disk Pages

pageo

Q1 ‘ pagel

page2

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LEAST-RECENTLY USED (1965)

Maintain a single timestamp of when

each page was last accessed. When the Declc
DBMS needs to evict a page, select the pageo
one with the oldest timestamp.
— Keep the pages in sorted order to reduce Q1 ‘ pagel
the search time on eviction.
Buffer Pool page2

pageo

pagel page0
Newest<—Oldest

page2

LRU List

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CLOCK (1969) z

Approximation of LRU that does not

need a separate timestamp per page. access=0
— Each page has an access bit. pagel
— When a page is accessed, set its bit to 1.
access=0 access=0

Organize pages in a circular buffer page4 page2
with a "clock hand" that sweeps over
pages in order:
— As the hand visits each page, check if its page3

access bit is set to 1. access=0

— [f yes, set it to zero. If no, then evict.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CLOCK (1969) z

Approximation of LRU that does not

need a separate timestamp per page. access=0
— Each page has an access bit. pagel
— When a page is accessed, set its bit to 1.
access=0 access=0

Organize pages in a circular buffer page4 page2
with a "clock hand" that sweeps over
pages in order:
— As the hand visits each page, check if its page3

access bit is set to 1. access=0

— [f yes, set it to zero. If no, then evict.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CLOCK (1969) z

Approximation of LRU that does not

need a separate timestamp per page. access=1
— Each page has an access bit. pagel
— When a page is accessed, set its bit to 1.
access=0 access=0

Organize pages in a circular buffer page4 page2
with a "clock hand" that sweeps over
pages in order:
— As the hand visits each page, check if its page3

access bit is set to 1. access=0

— [f yes, set it to zero. If no, then evict.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CLOCK (1969) z

Approximation of LRU that does not

need a separate timestamp per page. access=0
— Each page has an access bit. pagel
— When a page is accessed, set its bit to 1.
access=0 access=0

Organize pages in a circular buffer page4 page2
with a "clock hand" that sweeps over
pages in order:
— As the hand visits each page, check if its page3

access bit is set to 1. access=0

— [f yes, set it to zero. If no, then evict.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CLOCK (1969) z

Approximation of LRU that does not

need a separate timestamp per page. access=0
— Each page has an access bit. pagel
— When a page is accessed, set its bit to 1.
access=0 access=0

Organize pages in a circular buffer page4 ” page2
with a "clock hand" that sweeps over
pages in order:
— As the hand visits each page, check if its page3

access bit is set to 1. access=0

— [f yes, set it to zero. If no, then evict.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CLOCK (1969) z

Approximation of LRU that does not

need a separate timestamp per page. access=0
— Each page has an access bit. pagel
— When a page is accessed, set its bit to 1.

access=0 d
Organize pages in a circular buffer page4 ”
with a "clock hand" that sweeps over
pages in order:
— As the hand visits each page, check if its page3
access bit is set to 1. access=0

— [f yes, set it to zero. If no, then evict.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CLOCK (1969) z

Approximation of LRU that does not

need a separate timestamp per page. access=0
— Each page has an access bit. pagel
— When a page is accessed, set its bit to 1.
access=0 access=0

Organize pages in a circular buffer page4 ” page5
with a "clock hand" that sweeps over
pages in order:
— As the hand visits each page, check if its page3

access bit is set to 1. access=0

— [f yes, set it to zero. If no, then evict.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CLOCK (1969) z

Approximation of LRU that does not

need a separate timestamp per page. access=0
— Each page has an access bit. pagel
— When a page is accessed, set its bit to 1.
access=1 access=0

Organize pages in a circular buffer page4 ” page5
with a "clock hand" that sweeps over
pages in order:
— As the hand visits each page, check if its page3

access bit is set to 1. access=1

— [f yes, set it to zero. If no, then evict.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CLOCK (1969) z

Approximation of LRU that does not

need a separate timestamp per page. access=0
— Each page has an access bit. pagel
— When a page is accessed, set its bit to 1.
access=0 access=0

Organize pages in a circular buffer page4 page5
with a "clock hand" that sweeps over
pages in order:
— As the hand visits each page, check if its page3

access bit is set to 1. access=0

— [f yes, set it to zero. If no, then evict.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CLOCK (1969) z

Approximation of LRU that does not

need a separate timestamp per page.
— Each page has an access bit.
— When a page is accessed, set its bit to 1.

access=0 access=0
Organize pages in a circular buffer page4 page5
with a "clock hand" that sweeps over
pages in order:
— As the hand visits each page, check if its page3
access bit is set to 1. access=0

— [f yes, set it to zero. If no, then evict.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OBSERVATION

LRU + CLOCK replacement policies are susceptible to

sequential flooding.

— A query performs a sequential scan that reads every page in a
table one or more times (e.g., nested-loop joins).

— This pollutes the buffer pool with pages that are read once and
then never again.

In OLAP workloads, the most recently used page is often
the best page to evict.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SEQUENTIAL FLOODING

SELECT *» FROM A WHERE id = 1

Buffer Pool

A EEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEER
.

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

Disk Pages

o1

pageo

page1

page2

page3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SEQUENTIAL FLOODING

SELECT *» FROM A WHERE id = 1

Buffer Pool

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

Disk Pages

Q1 * page0

page1

page2

page3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SEQUENTIAL FLOODING

SELECT *» FROM A WHERE id = 1

SELECT AVG(val) FROM A

Buffer Pool

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

Disk Pages

02 * page0

page1

page2

page3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SEQUENTIAL FLOODING

SELECT *» FROM A WHERE id = 1

SELECT AVG(val) FROM A

Buffer Pool

pageo

pagel

page2

Disk Pages

pageo

page1

page2

M page3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SEQUENTIAL FLOODING

SELECT *» FROM A WHERE id = 1

SELECT AVG(val) FROM A

Buffer Pool

pagel

page2

Disk Pages

pageo

page1

page2

M page3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SEQUENTIAL FLOODING

SELECT * FROM A WHERE id

SELECT AVG(val) FROM A

SELECT * FROM A WHERE id

Buffer Pool

page3

page2

Disk Pages

Q3 * page®

page1

page2

M page3

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LEAST-FREQUENTLY USED (1971)

LRU + CLOCK only track when a page was last
accessed, but not how often a page is accessed.

To identify popular pages, maintain an access count for
each page and then evict page with the lowest count.

But LFU introduces more problems:

— Logarithmic implementation complexity relative to cache size.

— Ignores time and accumulates stale pages with high frequency
counts that may no longer be relevant.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Track history of last K accesses to each
page as timestamps and compute the
interval between subsequent accesses.
— Can distinguish between reference types
Use this history to estimate the next

time that page is going to be accessed.
— Replace page with the oldest K" access.
— Balances recency vs. frequency of access.

Maintain in-memory "ghost list" for
recently evicted pages to prevent
them from always being evicted.

The LRU-K Page Replacement Algorithm
For Database Disk Buffering

Microsoft®

ZSQL Server

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://doi.org/10.1145/170036.170081

LRU-K (1993)

Q1 |SELECT * FROM A WHERE
id IN (1, 31, 11, 41);

Page History

Page LastAccess #1 LastAccess #2

page0 Time 1

pagel Time 2

page2 Time 3

Buffer Pool

pageo

pagel

page2

Disk Pages

Q1 *| pageo

page1

page2

page3

page4

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 |SELECT * FROM A WHERE
id IN (1, 31, 11, 41);

Page History

Page LastAccess #1 LastAccess #2

page0 Time 4 Time 1

pagel Time 2

page2 Time 3

Buffer Pool

pageo

pagel

page2

Disk Pages

Q1 *| pageo

page1

page2

page3

page4

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 |SELECT * FROM A WHERE
id IN (1, 31,

11, 41);

Page History Buffer Pool
e e 1 e
pageo
page0 Time 4 Time 1
pagel Time 2 pagel
page2 Time 3 pagez

Disk Pages

pageo

page1

page2

Q1 mp

page3

page4

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 |SELECT * FROM A WHERE
id IN (1, 31, 11, 41);

FEviction Policy:
CurrentTime - k™ LastAccess = Backward Distance
Use oldest access time to break ties.

Page History Buffer Pool
e e 1 e
pageo
page0 Time 4 Time 1
pagel Time 2 pagel
page2 Time 3 pagez

Disk Pages

pageo

page1

page2

Q1 mp

page3

page4

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 [SELECT *» FROM A WHERE

id IN (1, 31,

11, 41);

FEviction Policy:

CurrentTime - k™ LastAccess = Backward Distance

Use oldest access time to break ties.

Page History

Page LastAccess #1 LastAccess #2 Time=5
page0 Time 4 Time 1 n

pagel

Time 2

>

page2

Time 3

pE

Buffer Pool

pageo

pagel

page2

Disk Pages

pageo

page1

page2

Q1 mp

page3

page4

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 [SELECT *» FROM A WHERE

id IN (1, 31,

11, 41);

FEviction Policy:

CurrentTime - k™ LastAccess = Backward Distance

Use oldest access time to break ties.

Page History

Page LastAccess #1 LastAccess #2 Time=5
page0 Time 4 Time 1 n

pagel

Time 2

e

page2

Time 3

ad >

Buffer Pool

pageo

pagel

page2

Disk Pages

pageo

page1

page2

1

page3

page4

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 [SELECT *» FROM A WHERE

id IN (1, 31,

11, 41);

FEviction Policy:

CurrentTime - k™ LastAccess = Backward Distance

Use oldest access time to break ties.

Page History

Page LastAccess #1 LastAccess #2 Time=5
page0 Time 4 Time 1 n

page3

Time 5

e

page2

Time 3

ad >

Buffer Pool

pageo

page3

page2

Disk Pages

pageo

page1

page2

1

page3

page4

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 |SELECT * FROM A WHERE
id IN (1, 31, 11, 41);

FEviction Policy:

CurrentTime - k™ LastAccess = Backward Distance

Use oldest access time to break ties.

Page History

Page LastAccess #1 LastAccess #2

page0 Time 4 Time 1

page3 Time 5

page2 Time 3

Buffer Pool

pageo

page3

page2

Disk Pages

pageo

Q1 *l page1

page2

page3

page4

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 |SELECT * FROM A WHERE
id IN (1, 31, 11, 41);

FEviction Policy:
CurrentTime - k™ LastAccess = Backward Distance
Use oldest access time to break ties.

Page History Buffer Pool
T
pageo Time 4 Time 1 H pageo
page3 Time 5 E page3
pagel Time 6 E page1

Disk Pages

pageo

Q1 *l page1

page2

page3

page4

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 |SELECT * FROM A WHERE
id IN (1, 31, 11, 41);

FEviction Policy:
CurrentTime - k™ LastAccess = Backward Distance
Use oldest access time to break ties.

Page History Buffer Pool
T
pageo Time 4 Time 1 H pageo
page3 Time 5 E page3
pagel Time 6 Time 2 E page1

Disk Pages

pageo

Q1 *l page1

page2

page3

page4

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 |SELECT * FROM A WHERE
id IN (1, 31, 11, 41);

FEviction Policy:
CurrentTime - k™ LastAccess = Backward Distance
Use oldest access time to break ties.

Page History Buffer Pool
L .
pageo Time 4 Time 1 n pageO
page3 Time 5 E page3
pagel Time 6 Time 2 H page1

Disk Pages

pageo

page1

page2

page3

page4

Q1

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 |SELECT * FROM A WHERE
id IN (1, 31, 11, 41);

FEviction Policy:
CurrentTime - k™ LastAccess = Backward Distance
Use oldest access time to break ties.

Page History Buffer Pool
T
pageo Time 4 Time 1 n pageo
page3 Time 5 E page3
pagel Time 6 Time 2 H page1

Disk Pages

pageo

page1

page2

page3

page4

Q1

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LRU-K (1993)

Q1 |SELECT * FROM A WHERE
id IN (1, 31, 11, 41);

FEviction Policy:
CurrentTime - k™ LastAccess = Backward Distance
Use oldest access time to break ties.

Page History Buffer Pool
e s Lo
pageo0 Time 4 Time 1 n paged
page4 Time 7 E page4
page1l Time 6 Time 2 H page1

Disk Pages

pageo

page1

page2

page3

page4

Q1

pageb

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,
then insert into the head of the young list.

uean Young List

weao Old List

Disk Pages

pageo

page1

page2

page3

|page4 pageb

»

page9 [«

»

page3

<=

4page6

\ 4

page2

page8

Newest<Oldest

page4

pageb

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,
then insert into the head of the young list.

uean Young List

weao Old List

|page4 page5 (>

page9 [«

»

page3

<=

4page6

\ 4

page2

page8

Newest<Oldest

Disk Pages

pageo

o1 P

page1

page2

page3

page4

pageb

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,
then insert into the head of the young list.

uean Young List neap Old List

\ 4

|page4 page5 > page9 [« * page3 **Ipages

page2

Newest<Oldest

Disk Pages

pageo

o1 P

page1

page2

page3

page4

pageb

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,
then insert into the head of the young list.

uean Young List

weao Old List

|page4 pageb

»

page9 [«

»

page3

<=

4page1

\ 4

page6

page2

Newest<Oldest

Disk Pages

pageo

o1 P

page1

page2

page3

page4

pageb

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,
then insert into the head of the young list.

uean Young List

weao Old List

|page4 pageb

»

page9 [«

»

page3

<=

4page1

\ 4

page6

page2

Newest<Oldest

Disk Pages

pageo

02 mp

page1

page2

page3

page4

pageb

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,
then insert into the head of the young list.

uean Young List

weao Old List

|page4 page5 (>

page9 [«

»

page3

<=

4page1

\ 4

page6

page2

Newest<Oldest

Disk Pages

pageo

02 mp

page1

page2

page3

page4

pageb

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two

entry points ("old" vs "young").
— New pages are always inserted to the head

of the old list.

— [f pages in the old list is accessed again,
then insert into the head of the young list.

uean Young List

weao Old List

|page1 page4

»

pageb ¢

»

page9

<=

-4page3

\ 4

page6

page2

Newest<Oldest

Disk Pages

pageo

02 mp

page1

page2

page3

page4

pageb

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: ADAPTIVE REPLACEMENT CACHE (2003)

Adaptive replacement policy algorithm developed by

IBM Research in the early 2000s.
— Only implemented in IBM DB2, PostgreSQL, and ZFS.
— Rewritten in PostgreSQL to avoid IBM's patent.

Support both recency (MRU) and frequency (MFU) by
maintaining two lists and then adjusts the size of them
based on workload access patterns.

Maintain ghost lists to remember recent evictions and
adapt quickly.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Adaptive_replacement_cache
https://en.wikipedia.org/wiki/ZFS
http://web.archive.org/web/20191030120515/http:/www.varlena.com/GeneralBits/96.php

ARC: ADAPTIVE REPLACEMENT CACHE (2003)

MRU List (T1):

— Holds pages that have been accessed once recently.

MRU Ghost List (B1):

— History of pages recently evicted from T1 (i.e., recency misses).

MFU List (T2):

— Holds pages that have been accessed at least twice.

MFU Ghost List (B2):

— History of pages recently evicted from T2 (i.e., frequency
misses).

Target Size Parameter (p):
— Adaptively adjusts how much to favor recency (T1) vs.
frequency (T2).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

= Target Size = P
I Disk Pages

B1 pageo

MEFU List Target Size = #frames - P

T2 page1
MEFU Ghost

B2

Buffer Pool page2

g3

.......................................

P - e :'.

.......................................

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T Target Size = 0
o —— Disk Pages
2l pageo
MEU Lust Target Size =3
T2 page1
MEFU Ghost
B2
Buffer Pool page2

g3

.......................................

P - e :'.

.......................................

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page0 Target Size = 0
MRU Ghost Disk Pages
81 * pageo
MEFU L.:.szt Target Size =3
page1
MEFU Ghost
B2
Buffer Pool page2

S~ page3

P - e :'.

.......................................

page4

pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page0| |pagel Target Size = 0
MRU Ghost Disk Pages
81 pageo
MEFU L.:.szt Target Size =3
* page1
MFU Ghost
B2 Buffer Pool page2
oo i~
P=0 pagel page4
g § ages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List :
T page@| |pagel page2 Target Size =0
MRU Ghost Disk Pages
81 pageo
MEFU L.:.szt Target Size =3
page1
MEFU Ghost
B2 Buffer Pool * page2
oo i~
P=0 page]l page4
page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List :
T page@| |pagel page2 Target Size =0
MRU Ghost Disk Pages
81 * pageo
MEFU L.:.szt Target Size =3
page1
MEFU Ghost
B2 Buffer Pool page2
oo i~
P=0 page]l page4
page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T pagel page2| :TargetSize=0
MRU Ghost Disk Pages
81 * pageo
MEFU L.:.szt page0 Target Size =3
page1
MEFU Ghost
B2
Buffer Pool page2
Oldest< Newest
_ pageo page3
P=0 page]l page4
page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T pagel page2 Target Size = 0
MRU Ghost Disk Pages
81 * pageo
MEFU L.:.szt page0 Target Size =3
page1
MEFU Ghost
B2
Buffer Pool page2
Oldest< Newest
_ pageo page3
P=0 page]l page4
page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T pagel page2 Target Size = 0
MRU Ghost Disk Pages
81 pageo
MEFU L.:.szt page0 Target Size =3
page1
MEFU Ghost
B2
Buffer Pool page2
Oldest< Newest
Ol -Newest g0 || WY peges
P=0 page]l page4
page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

11 |page1| [page2 Target Size = 0
MRU Ghost Disk Pages
81 pageo
LA L.:.szt paged Target Size = 3 1
MFU Ghost .
B2 Buffer Pool page2

ave g
P_@ px1 page4

page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

71 |page1| [page2 Target Size = 0
MRU Ghost Disk Pages
81 pageo
MFU L_:_szt Saged Target Size = 3 page]
MFU Ghost
B2 Buffer Pool page2

ave g

P=0 immmmmmmmmmmé

page2 pages

page4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page2 Target Size = 0
MRU Ghost Disk Pages
B1 pagel >
page
MEFU L.:.szt page0 Target Size =3
page1
MFU Ghost
B2
Buffer Pool page2

ave g

P=0 immmmmmmmmmmé

page2 pages

page4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL

MRU List
T1 page2

MRU Ghost
B1 pagel

MFU List
T2 page0

MFU Ghost
B2

Oldest<—Newest

P=0

Target Size = 0

Target Size =3

Buffer Pool

Disk Pages

pageo

page1

page2

.......................................

page3

page4

pageb

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page2| |page3 Target Size = 0
MRU Ghost Disk Pages
B1 pagel >
page
MEFU L.:.szt page0 Target Size =3
* page1
MEFU Ghost
B2
Buffer Pool page2
Oldest< Newest
_ pageo page3
P=0 page3 page4
page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page2| |page3 Target Size = 0
MRU Gheost | | i Disk Pag =
B1 pagel >
page
MFU L_:_Szt page0 Target Size =3 l | bage 1
MFU Ghost
B2
Buffer Pool page2
Oldest— Newest
_ pageo page3
P=0 page3 page4
page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page2| |page3 Target Size = 0
MRU Ghost | i Disk Pag =
81 pageo
MFU L_:_Szt o] e Target Size =3 l | bage 1
MFU Ghost
B2 Buffer Pool page2
oo i~
P=0 page3 page4
page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page2| |page3 Target Size = 0
MRU Ghost Disk Pages
81 pageo
MEFU List .
T2 page@d| |pagel Target Size =3 | | bage 1
MEFU Ghost
B2
Buffer Pool page2
Oldest< Newest
_ pageo page3
P=0 page3 page4
page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page2| |page3 Target Size =1
MRU Ghost Disk Pages
81 pageo
MEFU List .
T2 page@d| |pagel Target Size =2 | | bage 1
MEFU Ghost
B2
Buffer Pool page2
Oldest< Newest
_ pageo page3
P=1 page3 page4
page2 pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page2| |page3 Target Size =1
MRU Ghost Disk Pages
81 pageo
MFU L_:_Szt o] e Target Size = 2 l | bage 1
MEFU Ghost
B2
Buffer Pool page2
Oldest< Newest
_ pageo page3
P=1 page3 page4
pgz pages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page2| |page3 Target Size =1
MRU Ghost Disk Pages
81 pageo
MFU List . .
T2 paged| |pagel arget Size =2 | | vage 1
MFU Ghost
B2
Buffer Pool page2
Oldest—Newest
_ pageo page3
P=1 page3 page4
: : page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page3 Target Size =1
MRU Ghost Disk Pages
B1 page2 B
page
MFU List T .
T2 paged| |pagel arget Size =2 | | vage 1
MFU Ghost
B2
Buffer Pool page2
Oldest—Newest
_ pageo page3
P=1 page3 page4
: : page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page3 Target Size =1
MRU Ghost Disk Pages
B1 page2 B
page
MFU List .
T2 page@d| |pagel Target Size =2 | | bage 1
MFU Ghost
B2
Buffer Pool page2
Oldest—Newest
_ pageo page3
P=1 page3 page4
pagel pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page3 Target Size =1
MRU Ghost Disk Pages
B1 page2 B
page
MFU L_:_Szt o] e Target Size = 2 bage 1
MEFU Ghost
B2
Buffer Pool page2
oo -~

page3 ‘} page4
P=1

pagel pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page3 Target Size =1
MRU Ghost Disk Pages
B1 page2 B
page
MFU L_:_Szt o] e Target Size = 2 bage 1
MEFU Ghost
B2
Buffer Pool page2
oo -~

page3 ‘} page4
P=1

pagel pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page3 Target Size =1
MRU Ghost Disk Pages
B1 page2 B
page
MEFU List T .
T2 paged| |pagel arget Size =2 vage 1
MFU Ghost
B2
Buffer Pool page2
Oldest— Newest
_ pageo page3

P= 1 pXB ﬂ page4

pagel pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2

page4
page2| |page3
page@ | | pagel

P

Oldest<—Newest

=1

Target Size =1

Target Size =2

Buffer Pool

Disk Pages

pageo

page1

page2

pageo

page3

page4

page4

pagel

pageb

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU L'f's:]t paged Target Size =1
MRU Ghost : | i Disk Pages
B1 page2| |page3 0
page
MFU List T ;
T paged| |pagei arget Size = 2 page_l
MEU Ghost
B2
Buffer Pool * page2
Oldest—Newest
L OldesNewst vages page3
P B 1 page4 page4
pagel pages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T paged Target Size =1
MRU Ghost i o Pages
B1 page3 0
page
MFU List T i
T2 |pageo| |pagel| |page2| | TargetSize=2 pagel
MFU Ghost
B2
Buffer Pool * page2
Oldest— Newest
o Newe paged page3
P_1 page4 page4
page1 pages

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL

MRU List
T1 page4

MRU Ghost
B1 page3

MFU List
T2 page@ | | pagel page2

MFU Ghost
B2

Oldest<—Newest

P=1

Target Size =1

Target Size =2

Buffer Pool

pageo

page4

pagel

Disk Pages

pageo

page1

m

page2

page3

page4

pageb

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL

MRU List
T1 page4

MRU Ghost
B1 page3

MFU List
T2 page@ | | pagel page2

MFU Ghost
B2

Oldest<—Newest

P=2

Target Size =1

Target Size =2

Buffer Pool

pageo

page4

pagel

Disk Pages

pageo

page1

m

page2

page3

page4

pageb

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL =

MRU List

T page4 Target Size = 2
MRU Ghost Disk Pages
o pageo
MFU List T .
T2 pagel page2 arget Size =1 page1
MFU Ghost
B2
Buffer Pool * page2
3 S
P=9 page4 page4
pagel pageb

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2

ARC: LOOKUP PROTOCOL

pagel

page2

page0

Oldest<—Newest

P=2

Target Size = 2

Target Size =1

Buffer Pool

pageo

page4

pagel

Disk Pages

pageo

page1

m

page2

page3

page4

pageb

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2

ARC: LOOKUP PROTOCOL

pagel page2

page0

Oldest<—Newest

P=2

Target Size = 2

Target Size =1

Buffer Pool

page2

page4

pagel

Disk Pages

pageo

page1

m

page2

page3

page4

pageb

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ARC: LOOKUP PROTOCOL

Cache Miss, Page Found in B1 (Ghost of T1):

— Increase target size p (favor more recency pages).
— Move page into T2 (since it’s now accessed again).

Cache Miss, Page Found in B2 (Ghost of T2):

— Decrease target size p (favor more frequency pages).
— Move page into T2.

Cache Miss, Page Not in Cache or Ghost Lists:

— If T1 + B1 is full, evict from B1 or T1.
— If T2 + B2 is full, evict from B2 or T2.
— Insert new page into T1.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BETTER POLICIES: LOCALIZATION

The DBMS chooses which pages to evict on a per query
basis. This minimizes the pollution of the buffer pool

from each query.
— Keep track of the pages that a query has accessed.

Example: Postgres assigns a limited number of buffer of
buffer pool pages to a query and uses it as a circular ring

buffer.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.postgresql.org/docs/devel/glossary.html#GLOSSARY-BUFFER-ACCESS-STRATEGY
https://www.postgresql.org/docs/devel/glossary.html#GLOSSARY-BUFFER-ACCESS-STRATEGY

Q1

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page

during query execution.

[t can provide hints to the buffer pool on whether a

page 1s important or not.

INSERT INTO A VALUES (1d++)

Priority

High

Low

index-page0

— —

index-page1

index-page4

index-page2||index-page3

index-page5||index-page6

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1

BETTER POLICIES: PRIORITY HINTS ~

The DBMS knows about the context of each page
during query execution.

[t can provide hints to the buffer pool on whether a
page 1s important or not.

Priority ‘

High

INSERT INTO A VALUES (1d++)

\ index-pagel

Low index-page2||index-page3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page

during query execution.

[t can provide hints to the buffer pool on whether a

page 1s important or not.

INSERT INTO A VALUES (1d++)

Priority
ngh index-page0
index-page1 index-page4
Low index-page2||index-page3||index-page5||index-page6

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1
Q2

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page

during query execution.

[t can provide hints to the buffer pool on whether a

page 1s important or not.

INSERT INTO A VALUES (1d++)

SELECT *» FROM A WHERE id = ?

Priority

High

Low

index-page0

— —

index-page1 index-page4

index-page2||index-page3||index-page5||index-page6

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1
Q2

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page

during query execution.

[t can provide hints to the buffer pool on whether a

Priority ‘

page 1s important or not.

INSERT INTO A VALUES (id++) | '8P

SELECT * FROM A WHERE id = ? \ L}.p\g;

index-page4

Low index-page2||index-page3||index-page5|| index-page6

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DIRTY PAGES

Fast Path: If a page in the buffer pool is not dirty, then
the DBMS can simply "drop" it.

Slow Path: If a page is dirty, then the DBMS must
write back to disk to ensure that its changes are
persisted.

Trade-off between fast evictions versus dirty writing
pages that will not be read again in the future.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BACKGROUND WRITING

The DBMS periodically walks through the page table

and preemptively write dirty pages to disk.
— Also called page cleaning or "buffer flushing".

When a dirty page is safely flushed, the DBMS can
either evict the page or just reset its dirty flag.

Need to be careful the system does not write dirty pages
before their log records are written...

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dl.acm.org/doi/10.5555/882460.882626

OBSERVATION

OS/hardware tries to maximize disk bandwidth by
reordering and batching I/O requests.

But they do not know which I/O requests are more
important than others.

Many DBMSs tell you to switch Linux to use the

deadline or noop (FIFO) scheduler.
— Example: Oracle, Vertica, MySQL

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://docs.oracle.com/en/database/oracle/oracle-database/23/ladbi/setting-the-disk-io-scheduler-on-linux.html#GUID-B59FCEFB-20F9-4E64-8155-7A61B38D8CDF
https://docs.vertica.com/23.3.x/en/setup/set-up-on-premises/before-you-install/manually-configured-os-settings/io-scheduling/
https://dev.mysql.com/doc/refman/8.0/en/innodb-linux-native-aio.html

DISK I/0 SCHEDULING

The DBMS maintain internal queue(s) to track page
read/write requests from the entire system.

Compute priorities based on several factors:
— Sequential vs. Random I/O

— Critical Path Task vs. Background Task

— Table vs. Index vs. Log vs. Ephemeral Data

— Transaction Information

— User-based SLAs

The OS doesn't know these things and is going to get in
the way of our beautiful DBMS...

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

0S PAGE CACHE

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own
filesystem cache (aka page cache,

buffer cache).

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

User-space | read(...)

Kernel-space

Filesystem

OS Page Cache

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://linux.die.net/man/2/open

0S PAGE CACHE

Most disk operations go through the
OS API. Unless the DBMS tells it not

to, the OS maintains its own User-space read(...)

filesystem cache (aka page cache,

buffer cache).

Kernel-space

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.

— Redundant copies of pages.
— Different eviction policies.

OS Page Cache

-
| OsPageCacke

— Loss of control over file I/O.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://linux.die.net/man/2/open

0S PAGE C/

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own
filesystem cache (aka page cache,
buffer cache).

Most DBMSs use direct [/O
(O_DIRECT) to bypass the OS's cache.

— Redundant copies of pages.
— Different eviction policies.
— Loss of control over file I/O.

3 Cl,(nshnakumar R« 3rd+
roup Engineering M) + Fo
4mo - @ I Manager, PostgresqL engine @ Micras flow

Dirt i
ectlO in PostgresqQL ang double buffering

The following was an

) experimen
Kernel Interactions at t1had sh

OWn in my talk on Post

PGDay Chicago last week - gresql and

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://linux.die.net/man/2/open
https://www.linkedin.com/posts/krishnakumar-r-bb7b949_postgres-postgresql-kernel-activity-7191224981924552705-i-7R/

* pganalyze

Waiting for Postgres 18: Accelerating
Disk Reads with Asynchronous 1/0

By Lukas Fittl

With the Postgres 18 Beta 1 release this week, a multi-year effort and significant architectural

1/0 (AIO). These capabi\ities are still under ac-

shift in Postgres is taking shape: Asynchronous
hange in how postgres handles 1/O, offer-

tive development, but they representa fundamental
ing the potentia\ for significant performance gains, particularly in cloud environments where la-

tency is often the bottleneck.

ped during the beta period pefore the final re-
postgres 18 performs in practice. In Postgres

While some features may still be adjusted or drop
lease, NOW iS the best time t0 test and validate how
18 AlO is limited to read operations; writes remain synchronous, though support may expand in

future yersions.

In this post, We explain what asynchronous 1O is, how it works in Postgres 18, and what it

means for performance optimization.

Why asynchronous 1/0 matters

. o eynchronous 1/0 model, meaning every read request
P Py o Tl 4 0 | retum

NakumarR - 3rd+

ngineer
ering
p ng Manager, pos

tgres .
JresQL engine @ Micro + Follow
@ Micros

gres
QL and double buffering

an .
Experiment I had sh
ow

Bat PGD . .
ay Chicago last wen N my talk on Post,

ek :-) gresqQL and

€ develg
|~ “~Veloper deby .
rect io is SWEtchedg Setting which is py
in kerne! page on for 'data’ Thisp esent from PG16
| ca : r .
BN see from the Oche and only Cachegs-u,ts in the
utput from fincore i buffer poof
not pages
are

4 Kernel #PageCache #Lin IX #Lin lxKEl"nE

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://linux.die.net/man/2/open
https://www.linkedin.com/posts/krishnakumar-r-bb7b949_postgres-postgresql-kernel-activity-7191224981924552705-i-7R/
https://pganalyze.com/blog/postgres-18-async-io

FSYNC PROBLEMS

[f the DBMS calls write, what happens?
[f the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

FSYNC PROBLEMS

[f the DBMS calls write, what happens?
[f the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?
QQO — Linux marks the dirty pages as clean.

»—> [f the DBMS calls fsync again, then Linux tells you that the
\ i flush was successful. Since the DBMS thought the OS was its

!
Don't friend, it assumed the write was successful...

Do This!

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

\ i 4

oo/
Don't

Do This!

navigation
® Main Page
= Random page
= Recent changes
= Help

tools

= What links here
= Related changes
= Special pages

= Printable version
® Permanent link

= Page information

search

—
[Search PostgreSQL wi

EJ Search]

page discussion

Fsync Errors

This article covers the current status, history, and OS and 0S version differences relating to the circa 2018 fsync() reliah
discussed on the PostgreSQL mailing list and elsewhere. It has sometimes been referred to as "fsyncgate 2018",

view source history

Contents [hide]
1 Current status
2 Articles and news
3 Research notes and 0S differences
3.1 Open source kernels
3.2 Closed source kernels
3.3 Special cases
3.4 History and notes

Current status

and 9.4. Thanks to Thomas Munro, Andres Freund, Robert Haas, and Craig Ringer.

Linux kernel 4.13 improved fsync() error handling and the man page for fsync() is somewhat improved @ as well, ¢

» Kernelnewbies for 4,13
= Particularly significant 4.13 commits include:
= "fs: new infrastructure for writeback error handling and reporting” @
= "ext4: use errseq_t based error handling for reporting data writeback errors" &
= "Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors" &
= "mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error"@
Many thanks to Jeff Layton for work done in this area.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BUFFER POOL OPTIMIZATIONS é

Multiple Buffer Pools
Pre-Fetching

Scan Sharing

Bufter Pool Bypass

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MULTIPLE BUFFER POOLS .

The DBMS does not always have a single buffer pool

for the entire system.

— Multiple buffer pool instances
— Per-database buffer pool
— Per-page type buffer pool

Partitioning memory across multiple pools helps reduce

latch contention and improve locality.
— Avoids contention on LRU tracking meta-data.

Informix > SQLServer
NSYBASE ORACLE 3)Progress

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MULTIPLE BUFFER POOLS -

Approach #1: Object Id

— Embed an object identifier in record ids Q1 [GET RECORD #123
and then maintain a mapping from objects
to specific buffer pools.

Buf ‘fer Pool #1 Buf ‘fer Pool #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids Q1 [GET RECORD |#123

and then maintain a mapping from objects
to specific buffer pools.

Buf ‘fer Pool #1

<ObjectId, Pageld, SlotNum>

Buf fer Pool #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids Q1 [GET RECORD |#123
and then maintain a mapping from objects

to specific buffer pools.

A\

ObjectId,

Buf ‘fer Pool #1

PageId, SlotNum>

Buf fer Pool #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids Q1 [GET RECORD |#123
and then maintain a mapping from objects

to specific buffer pools.

A\

ObjectId,

Buf fer Pool #1

PageId, SlotNum>

Buf fer Pool #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids Q1 [GET RECORD |#123
and then maintain a mapping from objects

to specific buffer pools.

Approach #2: Hashing

— Hash the page id to select which
buffer pool to access.

Buf ‘fer Pool #1

Buf fer Pool #2

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

MULTIPLE BUFFER POOLS

Approach #1: Object Id

— Embed an object identifier in record ids Q1 [GET RECORD |#123
and then maintain a mapping from objects

to specific buffer pools.

Approach #2: Hashing

— Hash the page id to select which
buffer pool to access.

HASH(123) % n

Buf ‘fer Pool #1

Buf fer Pool #2

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

Buffer Pool

A EEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEER
.

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

Disk Pages

pageo

page1

page2

page3

page4

pageb

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PRE-FETCHING

The DBMS can also prefetch pages

Disk Pages

based on a query plan. g
— Examples: Sequential vs. Index Scans Q1 ‘(pageo
Some DBMS prefetch to fill in empty 1

frames upon start-up. —

Buj_" ‘fer Pool ! page2
pagee J IO page3
: page4
: pageb

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PRE-FETCHING

The DBMS can also prefetch pages

Disk Pages
based on a query plan. g
— Examples: Sequential vs. Index Scans pageo
Some DBMS prefetch to fill in empty 1
frames upon start-up. Q1 *I s
Buj_" ‘fer Pool page2
pageo page3
page‘] J SR page4

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

pageb

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

Buffer Pool

pagel

[

Disk Pages

pageo

01 * page1

page2
page3

page4

pageb

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.

— Examples: Sequential vs. Index Scans

Some DBMS prefetch
frames upon start-up.

to fill in empty

Buffer Pool

pagel

Disk Pages

pageo

page1

page2

page3

page4

page2 o

pageb

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

Buffer Pool
page3

pagel

page2

Disk Pages

pageo

page1

Q1 Hp

page2

page3

page4

pageb

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PRE-FETCHING

The DBMS can also prefetch pages

based on a query plan.
— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

Buffer Pool
page3

page4

pageb

Disk Pages

pageo

page1

page2

page3

page4

Q1 My

pageb

39

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1

PRE-FETCHING

SELECT * FROM A
WHERE val BETWEEN 100 AND 250

Buffer Pool

Lﬁﬂklkgym

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PRE-FETCHING

index-page0
index-pagel index-page4
index-page2||index-page3||index-page5||index-page6
0----------- »99 100-------- »199 200------- »299 300------- »399

Buffer Pool

Lﬁﬂklkgym

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

index-page@

PRE-FETCHING

index-pagel index-page4
index-page2||index-page3||index-page5||index-page6
0----------- »99 100-------- »199 200------- »299 300------- »399

Buffer Pool

Lﬁﬂkl&gym

index-page0

index-page1

index-page0

index-page2

index-page3

index-page4

index-page5

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

index-pagel index-page4

index-page@

PRE-FETCHING

index-page2

index-page3

index-page5

index-page6

0 - »99 100-------- »199 200-----—-»299 300-------»399

Buffer Pool

Lﬁﬂkl&gym

index-page0

index-page1

o1 mp

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PRE-FETCHING

index-page@
index-page1 index-page4
index-page2 iindex—page3||index—pageSi index-page6
0----------- »99 100-------- »199 200------- »299 300------- »399

=

Buffer Pool

Lﬁﬂkl&gym

index-page0

index-page1

o1 mp

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PRE-FETCHING

index-page@
index-pagel index-page4
index-page2 iindex—page3||index—pageSi index-page6
0----------- »99 100-------- »199 200------- »299 300------- »399

=

Buffer Pool

Disk Pages

index-page0

01 # index-page1

index-page2

index-page0

index-page1

index-page3

index-page4

index-page5

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SCAN SHARING =

Allow multiple queries to attach to a single cursor that

scans a table.
— Also called synchronized scans.
— This is different from result caching.

Examples:

— Fully supported in DB2, MSSQL, Teradata, and Postgres.
— Oracle only supports cursor sharing for identical queries.

Microsol

TERADATA Z=SGL server

==l ORACLE @ PostgreSQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SCAN SHARING =

Allow multiple queries to attach to a single cursor that

scans a table.
— Also called synchronized scans.
— This is different from result caching.

Examples:

— Fully supported in DB2, MSSQL, Teradata, and Postgres.
— Oracle only supports cursor sharing for identical queries.

Microsol

TERADATA Z=SGL server

==l ORACLE @ PostgreSQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

SCAN SHARING

Allow multiple queries to attach to a single cursor that

scans a table.
— Also called synchronized scans. |
— This is different from result caching.

E] For a textual match to occur, the text of the S

character-for-character identical, including spaces, case, and comments. For example, the

following statements cannot use the same shared SQL area:

SELECT * FROM employees;

[copy
SELECT * FROM Employees;
SELECT * FROM employees;

ORACLE

WO TTrY € E—

reSQL

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html

Q1

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

A EEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEER
.

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

Disk Pages

Q1 ‘(pageo

page1

page2

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

fusssssmssssEEEEsEEEEEsEEEEEsEEEEEEEEES

Disk Pages

Q1 ‘(pageo

page1

page2

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

pageo

pagel

page2

Disk Pages

pageo

page1

Q1 mp

page2

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

pageo

pagel

page2

Disk Pages

pageo

page1

page2

Q1 mp

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

pagel

page2

Disk Pages

pageo

page1

page2

Q1 mp

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

pagel

page2

Disk Pages

pageo

page1

page2

Q1 mp

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1
Q2

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

page3

pagel

page2

Disk Pages

pageo

page1

page2

Q1 mp

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1
Q2

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

page3

pagel

page2

Disk Pages

2y

pageo

page1

page2

Q1 mp

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1
Q2

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

page3

pagel

page2

Disk Pages

pageo

page1

page2

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1
Q2

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

page3

page4

pageb

Disk Pages

pageo

page1

page2

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1
Q2

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

page3

page4

pageb

Disk Pages

02 ‘{ page0

page1

page2

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1
Q2

SCAN SHARING

SELECT SUM(val) FROM A

SELECT AVG(val) FROM A

Buffer Pool

pageo

pagel

page2

Disk Pages

pageo

page1

Q2 W

page2

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1

SCAN SHARING

SELECT SUM(val) FROM A

Buffer Pool

pageo

pagel

page2

Disk Pages

pageo

page1

Q2 W

page2

page3

page4

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Q1

Q2°

SCAN SHARING

SELECT SUM(val) FROM A

SELECT * FROM A LIMIT 100

Buffer Pool

Disk Pages

pageo

page1

page2

pageo

page3

pagel

page4

page2

pageb

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CONTIONOUS SCAN SHARING

Instead of trying to be clever, the
DBMS continuously scans the

database files repeatedly.

— One continuous cursor per table.

— Queries "hop" on board the cursor while it
is running and then disconnect once they
have enough data.

Not viable if you pay per IOP.

Only done in academic prototypes. ciescando

Disk Pages

pageo

pagel

page2

page3

page4

pageb

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dbdb.io/db/crescando

BUFFER POOL BYPASS

The sequential scan operator will not store fetched

pages in the buffer pool to avoid overhead.

— Memory is local to running query.

— Works well if operator needs to read a large sequence of pages
that are contiguous on disk.

— Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.

Microsoft”

ORACLE Z$0Lserver INnformizx

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm

CONCLUSION

The DBMS can almost always manage memory better
than the OS.

Leverage the semantics about the query plan to make

better decisions:
— Evictions

— Allocations

— Pre-fetching

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NEXT CLASS

Back to Storage Structures!
Log-Structured Storage
Index-Organized Storage
Catalogs

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PROJECT #1

You will build the first component of

your storage manager.

— ARC Replacement Policy
— Disk Scheduler
— Buffer Pool Manager Instance

We provide you with the basic APIs
for these components. B us T ub

Due Date:
Sunday Feb 15" @ 11:59pm

https://15445.courses.cs.cmu.edu/spring2026/projectl

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://github.com/cmu-db/bustub
https://15445.courses.cs.cmu.edu/spring2026/project1

TASK #1 - ARC REPLACEMENT POLICY

Build a data structure that tracks the usage of pages
using the ARC policy. Dynamically adjust whether to
favor recency or frequency in eviction decisions.

General Hints:

— Your eviction algorithm needs to check the "pinned" status of
each page.

— You are allowed to use STL containers for internal lists (e.g.,
MRU, MFU).

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

TASK #2 - DISK SCHEDULER

Create a background worker to

read/write pages from disk.
— Single request queue but each request can
contain multiple requested pages.
— Simulates asynchronous IO using
std: : promise for callbacks.
[t's up to you to decide how you want
to batch, reorder, and issue read/write

requests to the local disk.
Make sure it is thread-safe!

Disk Scheduler

Database
(On-Disk)

page0

pagel

page2

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

TASK #3 - BUFFER POOL MANAGER =

— Implement page guards.
— Use whatever data structure you want
for the page table.

Use your ARC replacer to manage Buffer Pool Database
. (In-Memory) (On-Disk)
the allocation of pages. | s
— Need to maintain internal data » S |mp ||_Pageo
structures to track allocated + free pages. - § pagel
=2
| S

« page2

Make sure you get the order of
operations correct when pinning!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

THINGS TO NOTE .

Do not change any file other than the ones listed in the
project specification. Other changes will not be graded.

The projects are cumulative, and we do not provide
solutions.

Post any questions on Piazza or come to office hours,
but we will not help you debug.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CODE QUALITY

We will automatically check whether you are writing

good code.
— Google C++ Style Guide
— Doxygen Javadoc Style

You need to run these targets before you submit your

implementation to Gradescope.

— make format
— make check-clang-tidy-p1

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
http://www.doxygen.nl/manual/docblocks.html
http://www.doxygen.nl/manual/docblocks.html

EXTRA CREDIT

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class will

receive extra credit for this assignment.
— #1: 50% bonus points

— #2-10: 25% bonus points

— #11-20: 10% bonus points

The student with the most bonus points at the end of

the semester will be added to the BusTub trophy!
— [have been struggling to buy a trophy worthy of us...

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

@ PLAGIARISM WARNING @@

The homework and projects must be your own original

work. They are not group assignments.
— You may not copy source code from other people or the web.
— You are allowed to use generative Al tools.

Plagiarism is not tolerated. You will get lit up.
— Please ask instructors (not T'As!) if you are unsure.

See CMU's Policy on Academic Integrity for additional
information.

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

	Introduction
	Slide 1: Buffer Pool Memory Management
	Slide 2: LAST CLASS
	Slide 3: DATABASE STORAGE
	Slide 4: DISK-ORIENTED DBMS
	Slide 5: DISK-ORIENTED DBMS
	Slide 6: DISK-ORIENTED DBMS
	Slide 7: DISK-ORIENTED DBMS
	Slide 8: DISK-ORIENTED DBMS
	Slide 9: DISK-ORIENTED DBMS
	Slide 10: DISK-ORIENTED DBMS
	Slide 11: OTHER MEMORY POOLS
	Slide 12: TODAY'S AGENDA

	Buffer Pool Manager
	Slide 13: BUFFER POOL ORGANIZATION
	Slide 14: BUFFER POOL ORGANIZATION
	Slide 15: BUFFER POOL ORGANIZATION
	Slide 16: BUFFER POOL META-DATA
	Slide 17: BUFFER POOL META-DATA
	Slide 18: BUFFER POOL META-DATA
	Slide 19: BUFFER POOL META-DATA
	Slide 20: BUFFER POOL META-DATA
	Slide 21: LOCKS VS. LATCHES
	Slide 22: PAGE TABLE VS. PAGE DIRECTORY

	MMAP
	Slide 23: WHY NOT USE THE OS?
	Slide 24: WHY NOT USE THE OS?
	Slide 25: WHY NOT USE THE OS?
	Slide 26: WHY NOT USE THE OS?
	Slide 27: WHY NOT USE THE OS?
	Slide 28: WHY NOT USE THE OS?
	Slide 29: MEMORY MAPPED I/O PROBLEMS
	Slide 30: WHY NOT USE THE OS?
	Slide 31: WHY NOT USE THE OS?
	Slide 32: WHY NOT USE THE OS?
	Slide 33: WHY NOT USE THE OS?
	Slide 34: WHY NOT USE THE OS?

	Buffer Replacement Policies
	Slide 35: BUFFER REPLACEMENT POLICIES
	Slide 36: LEAST-RECENTLY USED (1965)
	Slide 37: LEAST-RECENTLY USED (1965)
	Slide 38: LEAST-RECENTLY USED (1965)
	Slide 39: CLOCK (1969)
	Slide 40: CLOCK (1969)
	Slide 41: CLOCK (1969)
	Slide 42: CLOCK (1969)
	Slide 43: CLOCK (1969)
	Slide 44: CLOCK (1969)
	Slide 45: CLOCK (1969)
	Slide 46: CLOCK (1969)
	Slide 47: CLOCK (1969)
	Slide 48: CLOCK (1969)
	Slide 49: OBSERVATION
	Slide 50: SEQUENTIAL FLOODING
	Slide 51: SEQUENTIAL FLOODING
	Slide 52: SEQUENTIAL FLOODING
	Slide 53: SEQUENTIAL FLOODING
	Slide 54: SEQUENTIAL FLOODING
	Slide 55: SEQUENTIAL FLOODING
	Slide 56: LEAST-FREQUENTLY USED (1971)
	Slide 57: LRU-K (1993)
	Slide 58: LRU-K (1993)
	Slide 59: LRU-K (1993)
	Slide 60: LRU-K (1993)
	Slide 61: LRU-K (1993)
	Slide 62: LRU-K (1993)
	Slide 63: LRU-K (1993)
	Slide 64: LRU-K (1993)
	Slide 65: LRU-K (1993)
	Slide 66: LRU-K (1993)
	Slide 67: LRU-K (1993)
	Slide 68: LRU-K (1993)
	Slide 69: LRU-K (1993)
	Slide 70: LRU-K (1993)
	Slide 71: MYSQL APPROXIMATE LRU-K
	Slide 72: MYSQL APPROXIMATE LRU-K
	Slide 73: MYSQL APPROXIMATE LRU-K
	Slide 74: MYSQL APPROXIMATE LRU-K
	Slide 75: MYSQL APPROXIMATE LRU-K
	Slide 76: MYSQL APPROXIMATE LRU-K
	Slide 77: MYSQL APPROXIMATE LRU-K
	Slide 78: ARC: ADAPTIVE REPLACEMENT CACHE (2003)
	Slide 79: ARC: ADAPTIVE REPLACEMENT CACHE (2003)
	Slide 80: ARC: LOOKUP PROTOCOL
	Slide 81: ARC: LOOKUP PROTOCOL
	Slide 82: ARC: LOOKUP PROTOCOL
	Slide 83: ARC: LOOKUP PROTOCOL
	Slide 84: ARC: LOOKUP PROTOCOL
	Slide 85: ARC: LOOKUP PROTOCOL
	Slide 86: ARC: LOOKUP PROTOCOL
	Slide 87: ARC: LOOKUP PROTOCOL
	Slide 88: ARC: LOOKUP PROTOCOL
	Slide 89: ARC: LOOKUP PROTOCOL
	Slide 90: ARC: LOOKUP PROTOCOL
	Slide 91: ARC: LOOKUP PROTOCOL
	Slide 92: ARC: LOOKUP PROTOCOL
	Slide 93: ARC: LOOKUP PROTOCOL
	Slide 94: ARC: LOOKUP PROTOCOL
	Slide 95: ARC: LOOKUP PROTOCOL
	Slide 96: ARC: LOOKUP PROTOCOL
	Slide 97: ARC: LOOKUP PROTOCOL
	Slide 98: ARC: LOOKUP PROTOCOL
	Slide 99: ARC: LOOKUP PROTOCOL
	Slide 100: ARC: LOOKUP PROTOCOL
	Slide 101: ARC: LOOKUP PROTOCOL
	Slide 102: ARC: LOOKUP PROTOCOL
	Slide 103: ARC: LOOKUP PROTOCOL
	Slide 104: ARC: LOOKUP PROTOCOL
	Slide 105: ARC: LOOKUP PROTOCOL
	Slide 106: ARC: LOOKUP PROTOCOL
	Slide 107: ARC: LOOKUP PROTOCOL
	Slide 108: ARC: LOOKUP PROTOCOL
	Slide 109: ARC: LOOKUP PROTOCOL
	Slide 110: ARC: LOOKUP PROTOCOL
	Slide 111: ARC: LOOKUP PROTOCOL
	Slide 112: ARC: LOOKUP PROTOCOL
	Slide 113: ARC: LOOKUP PROTOCOL
	Slide 114: BETTER POLICIES: LOCALIZATION
	Slide 115: BETTER POLICIES: PRIORITY HINTS
	Slide 116: BETTER POLICIES: PRIORITY HINTS
	Slide 117: BETTER POLICIES: PRIORITY HINTS
	Slide 118: BETTER POLICIES: PRIORITY HINTS
	Slide 119: BETTER POLICIES: PRIORITY HINTS

	Background Writing
	Slide 120: DIRTY PAGES
	Slide 121: BACKGROUND WRITING

	Disk I/O Scheduling
	Slide 122: OBSERVATION
	Slide 123: DISK I/O SCHEDULING
	Slide 124: OS PAGE CACHE
	Slide 125: OS PAGE CACHE
	Slide 126: OS PAGE CACHE
	Slide 127: OS PAGE CACHE
	Slide 128: FSYNC PROBLEMS
	Slide 129: FSYNC PROBLEMS
	Slide 130: FSYNC PROBLEMS

	Optimizations
	Slide 131: BUFFER POOL OPTIMIZATIONS
	Slide 132: MULTIPLE BUFFER POOLS
	Slide 133: MULTIPLE BUFFER POOLS
	Slide 134: MULTIPLE BUFFER POOLS
	Slide 135: MULTIPLE BUFFER POOLS
	Slide 136: MULTIPLE BUFFER POOLS
	Slide 137: MULTIPLE BUFFER POOLS
	Slide 138: MULTIPLE BUFFER POOLS
	Slide 139: PRE-FETCHING
	Slide 140: PRE-FETCHING
	Slide 141: PRE-FETCHING
	Slide 142: PRE-FETCHING
	Slide 143: PRE-FETCHING
	Slide 144: PRE-FETCHING
	Slide 145: PRE-FETCHING
	Slide 146: PRE-FETCHING
	Slide 147: PRE-FETCHING
	Slide 148: PRE-FETCHING
	Slide 149: PRE-FETCHING
	Slide 150: PRE-FETCHING
	Slide 151: PRE-FETCHING
	Slide 152: SCAN SHARING
	Slide 153: SCAN SHARING
	Slide 154: SCAN SHARING
	Slide 155: SCAN SHARING
	Slide 156: SCAN SHARING
	Slide 157: SCAN SHARING
	Slide 158: SCAN SHARING
	Slide 159: SCAN SHARING
	Slide 160: SCAN SHARING
	Slide 161: SCAN SHARING
	Slide 162: SCAN SHARING
	Slide 163: SCAN SHARING
	Slide 164: SCAN SHARING
	Slide 165: SCAN SHARING
	Slide 166: SCAN SHARING
	Slide 167: SCAN SHARING
	Slide 168: SCAN SHARING
	Slide 169: CONTIONOUS SCAN SHARING
	Slide 170: BUFFER POOL BYPASS

	Conclusion
	Slide 171: CONCLUSION
	Slide 172: NEXT CLASS

	Project #1
	Slide 173: PROJECT #1
	Slide 174: TASK #1 – ARC REPLACEMENT POLICY
	Slide 175: TASK #2 – DISK SCHEDULER
	Slide 176: TASK #3 – BUFFER POOL MANAGER
	Slide 177: THINGS TO NOTE
	Slide 178: CODE QUALITY
	Slide 179: EXTRA CREDIT
	Slide 180: PLAGIARISM WARNING

