
DatabaseSystems

Database
Systems

15-445/645 SPRING 2026

15-445/645 SPRING 2026

ANDY PAVLO

ANDY PAVLO
JIGNESH PATEL

JIGNESH PATEL

Buffer Pool

Memory Management

Lecture #04

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LAST CLASS

Problem #1: How the DBMS represents the database
in files on disk.

Problem #2: How the DBMS manages its memory
and move data back-and-forth from disk.

2

← Today

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATABASE STORAGE

Spatial Control:
→ Where to write pages on disk.
→ The goal is to keep pages that are used together often as

physically close together as possible on disk.

Temporal Control:
→ When to read pages into memory, and when to write them

back to disk if they get changed.
→ The goal is to minimize the number of stalls from having to

read data from disk.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

4

Disk

Memory

D
at

ab
as

e
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2 Execution
Engine

Frames

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

4

Disk

Memory

D
at

ab
as

e
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2

Directory

Execution
Engine

Frames

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

4

Disk

Memory

D
at

ab
as

e
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2

Directory

Execution
Engine

Frames2
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

4

Disk

Memory

D
at

ab
as

e
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2

Directory

Pointer to Page #2

Execution
Engine

Frames2
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

4

Disk

Memory

D
at

ab
as

e
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Directory

Execution
Engine

Frames2
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

4

Disk

Memory

D
at

ab
as

e
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Directory

Execution
Engine

Frames

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK-ORIENTED DBMS

4

Disk

Memory

D
at

ab
as

e
F

il
e

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
oo

l

4
Header

5
Header

Get Page #2

Directory

Pointer to Page #2

Execution
Engine

Frames2
Header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OTHER MEMORY POOLS

The DBMS needs memory for tasks and information
other than tuples and indexes.

These other memory pools may not always backed by
disk. Depends on implementation.
→ Sorting + Join Buffers
→ Query Caches
→ Maintenance Buffers
→ Log Buffers
→ Dictionary Caches

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TODAY'S AGENDA

Buffer Pool Manager

Memory-Mapped Files?

Replacement Policies

Disk I/O Scheduling

Optimizations

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BUFFER POOL ORGANIZATION

Memory region organized as an array
of fixed-size pages. Each array entry is
called a frame.

When the DBMS requests a page, it
places an exact copy of that page into
one of these frames.

Dirty pages are buffered and not
written to disk immediately
→ Write-Back Cache

7

Buffer
Pool

frame1

frame2

frame3

frame4

On-Disk File

page1 page2 page3 page4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BUFFER POOL ORGANIZATION

Memory region organized as an array
of fixed-size pages. Each array entry is
called a frame.

When the DBMS requests a page, it
places an exact copy of that page into
one of these frames.

Dirty pages are buffered and not
written to disk immediately
→ Write-Back Cache

7

Buffer
Pool

frame1

frame2

frame3

frame4

page1

On-Disk File

page1 page2 page3 page4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BUFFER POOL ORGANIZATION

Memory region organized as an array
of fixed-size pages. Each array entry is
called a frame.

When the DBMS requests a page, it
places an exact copy of that page into
one of these frames.

Dirty pages are buffered and not
written to disk immediately
→ Write-Back Cache

7

Buffer
Pool

frame1

frame2

frame3

frame4

page1

page3

On-Disk File

page1 page2 page3 page4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

frame1

frame2

frame3

frame4

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.
→ Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

8

On-Disk File

Buffer
Pool

page1

page3

Page
Table

page1 page2 page3 page4

page1
meta-data

page3
meta-data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

frame1

frame2

frame3

frame4

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.
→ Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

8

On-Disk File

Buffer
Pool

page1

page3

Page
Table

page1 page2 page3 page4

page1
meta-data

page3
meta-data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

frame1

frame2

frame3

frame4

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.
→ Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

8

On-Disk File

Buffer
Pool

page1

page3

Page
Table

page1 page2 page3 page4

page1
meta-data

page3
meta-data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

frame1

frame2

frame3

frame4

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.
→ Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

8

On-Disk File

Buffer
Pool

page1

page3

Page
Table

page2
meta-data

page2

page1 page2 page3 page4

page1
meta-data

page3
meta-data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

frame1

frame2

frame3

frame4

BUFFER POOL META-DATA

The page table keeps track of pages
that are currently in memory.
→ Usually a fixed-size hash table protected

with latches to ensure thread-safe access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

8

On-Disk File

Buffer
Pool

page1

page3

Page
Table

page2
meta-data

page2

page1 page2 page3 page4

page1
meta-data

page3
meta-data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOCKS VS. LATCHES

Locks:
→ Protects the database's logical contents from other transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of the DBMS's internal data

structures from other workers (e.g., threads).
→ Held for operation duration.
→ Do not need to be able to rollback changes.

9

←Mutex

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAGE TABLE VS. PAGE DIRECTORY

The page directory is the mapping from page ids to
page locations in the database files.
→ All changes must be recorded on disk to allow the DBMS to

find on restart.

The page table is the mapping from page ids to a copy
of the page in buffer pool frames.
→ This is an in-memory data structure that does not need to be

stored on disk.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1page1

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1page1

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1

page3

page1

page3

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple
threads to access mmap files to hide
page fault stalls?

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1

page3???
page1

page3

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MEMORY MAPPED I/O PROBLEMS

Problem #1: Transaction Safety
→ OS can flush dirty pages at any time.

Problem #2: I/O Stalls
→ DBMS doesn't know which pages are in memory. The OS will

stall a thread on page fault.

Problem #3: Error Handling
→ Difficult to validate pages. Any access can cause a SIGBUS that

the DBMS must handle.

Problem #4: Performance Issues
→ OS data structure contention. TLB shootdowns.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

There are some solutions to some of
these problems:
→ madvise: Tell the OS how you expect to

read certain pages.
→ mlock: Tell the OS that memory ranges

cannot be paged out.
→ msync: Tell the OS to flush memory

ranges out to disk.

Using these syscalls to get the OS to
behave correctly is just as onerous as
managing memory yourself.

13

Full Usage

Partial Usage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

There are some solutions to some of
these problems:
→ madvise: Tell the OS how you expect to

read certain pages.
→ mlock: Tell the OS that memory ranges

cannot be paged out.
→ msync: Tell the OS to flush memory

ranges out to disk.

Using these syscalls to get the OS to
behave correctly is just as onerous as
managing memory yourself.

13

Full Usage

Partial Usage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

DBMS (almost) always wants to control things itself
and can do a better job than the OS.
→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

The OS is not your friend.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

DBMS (almost) always wants to control things itself
and can do a better job than the OS.
→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

The OS is not your friend.

14

https://db.cs.cmu.edu/mmap-cidr2022

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/mmap-cidr2022/
https://db.cs.cmu.edu/mmap-cidr2022

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WHY NOT USE THE OS?

DBMS (almost) always wants to control things itself
and can do a better job than the OS.
→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

The OS is not your friend.

14

https://db.cs.cmu.edu/mmap-cidr2022

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/mmap-cidr2022/
https://db.cs.cmu.edu/mmap-cidr2022
https://news.ycombinator.com/item?id=44704294

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BUFFER REPLACEMENT POLICIES

When the DBMS needs to free up a frame to make
room for a new page, it must decide which page to evict
from the buffer pool.

Goals:
→ Correctness
→ Accuracy
→ Speed
→ Meta-data overhead

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LEAST-RECENTLY USED (1965)

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce

the search time on eviction.

16

Disk Pages

page0

page1

page2

page0 page1 page2

Newest←Oldest

L
R

U
 L

is
t

Q1

Buffer Pool

page0

page1

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LEAST-RECENTLY USED (1965)

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce

the search time on eviction.

16

Disk Pages

page0

page1

page2

Newest←Oldest

L
R

U
 L

is
t

Q1

page1 page0 page2

Buffer Pool

page0

page1

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LEAST-RECENTLY USED (1965)

Maintain a single timestamp of when
each page was last accessed. When the
DBMS needs to evict a page, select the
one with the oldest timestamp.
→ Keep the pages in sorted order to reduce

the search time on eviction.

16

Disk Pages

page0

page1

page2

Newest←Oldest

L
R

U
 L

is
t

Q1

page1 page0 page2

Buffer Pool

page0

page1

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CLOCK (1969)

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:
→ As the hand visits each page, check if its

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.

17

page1

page3

page4 page2

access=0

access=0

access=0

access=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CLOCK (1969)

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:
→ As the hand visits each page, check if its

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.

17

page1

page3

page4 page2

access=0

access=0

access=0

access=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CLOCK (1969)

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:
→ As the hand visits each page, check if its

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.

17

page1

page3

page4 page2

access=1

access=0

access=0

access=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CLOCK (1969)

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:
→ As the hand visits each page, check if its

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.

17

page1

page3

page4 page2

access=0

access=0

access=0

access=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CLOCK (1969)

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:
→ As the hand visits each page, check if its

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.

17

page1

page3

page4 page2

access=0

access=0

access=0

access=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CLOCK (1969)

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:
→ As the hand visits each page, check if its

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.

17

page1

page3

page4 page2

access=0

access=0

access=0

access=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CLOCK (1969)

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:
→ As the hand visits each page, check if its

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.

17

page1

page3

page4

access=0

access=0

access=0

access=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CLOCK (1969)

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:
→ As the hand visits each page, check if its

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.

17

page1

page3

page4

access=0

access=0

access=1

access=1
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CLOCK (1969)

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:
→ As the hand visits each page, check if its

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.

17

page1

page3

page4

access=0

access=0

access=0

access=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CLOCK (1969)

Approximation of LRU that does not
need a separate timestamp per page.
→ Each page has an access bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps over
pages in order:
→ As the hand visits each page, check if its

access bit is set to 1.
→ If yes, set it to zero. If no, then evict.

17

page1

page3

page4

access=0

access=0

access=0

access=0
page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OBSERVATION

LRU + CLOCK replacement policies are susceptible to
sequential flooding.
→ A query performs a sequential scan that reads every page in a

table one or more times (e.g., nested-loop joins).
→ This pollutes the buffer pool with pages that are read once and

then never again.

In OLAP workloads, the most recently used page is often
the best page to evict.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

SEQUENTIAL FLOODING

19

page0

page1

page2

page3

SELECT * FROM A WHERE id = 1Q1

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

page0

SEQUENTIAL FLOODING

19

page0

page1

page2

page3

SELECT * FROM A WHERE id = 1Q1

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

page0

SEQUENTIAL FLOODING

19

page0

page1

page2

page3

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2
Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

page0

page1

page2

SEQUENTIAL FLOODING

19

page0

page1

page2

page3

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

page0

page1

page2

SEQUENTIAL FLOODING

19

page0

page1

page2

page3

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

page1

page2

SEQUENTIAL FLOODING

19

page0

page1

page2

page3

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2

page3 Q2

SELECT * FROM A WHERE id = 1Q3
Q3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LEAST-FREQUENTLY USED (1971)

LRU + CLOCK only track when a page was last
accessed, but not how often a page is accessed.

To identify popular pages, maintain an access count for
each page and then evict page with the lowest count.

But LFU introduces more problems:
→ Logarithmic implementation complexity relative to cache size.
→ Ignores time and accumulates stale pages with high frequency

counts that may no longer be relevant.

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LRU-K (1993)

Track history of last K accesses to each
page as timestamps and compute the
interval between subsequent accesses.
→ Can distinguish between reference types

Use this history to estimate the next
time that page is going to be accessed.
→ Replace page with the oldest Kth access.
→ Balances recency vs. frequency of access.

Maintain in-memory "ghost list" for
recently evicted pages to prevent
them from always being evicted.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://doi.org/10.1145/170036.170081

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page1

page2

page0

page1

page2

Time 1

Time 2

Time 3

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page1

page2

page0

page1

page2

Time 1

Time 2

Time 3

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1

Time 4

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page1

page2

page0

page1

page2

Time 1

Time 2

Time 3

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1
Time 4

page2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page1

page2

page0

page1

page2

Time 1

Time 2

Time 3

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1
Time 4

page2

Eviction Policy:
CurrentTime – kth LastAccess = Backward Distance
Use oldest access time to break ties.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page1

page2

page0

page1

page2

Time 1

Time 2

Time 3

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1
Time 4

page2

4

∞

∞

Eviction Policy:
CurrentTime – kth LastAccess = Backward Distance
Use oldest access time to break ties.

Time=5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page1

page2

page0

page1

page2

Time 1

Time 2

Time 3

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1
Time 4

page2

4

∞

∞

Eviction Policy:
CurrentTime – kth LastAccess = Backward Distance
Use oldest access time to break ties.

Time=5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page2

page0

page2

Time 1

Time 3

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1
Time 4

page3page3

page2

Time 5

4

∞

∞

Eviction Policy:
CurrentTime – kth LastAccess = Backward Distance
Use oldest access time to break ties.

Time=5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page2

page0

page2

Time 1

Time 3

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1

Time 4

page3page3

page2

Time 5

Eviction Policy:
CurrentTime – kth LastAccess = Backward Distance
Use oldest access time to break ties.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page2

page0

page2

Time 1

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1

Time 4

page3page3 Time 5

page1 Time 6 page1

∞

∞

Eviction Policy:
CurrentTime – kth LastAccess = Backward Distance
Use oldest access time to break ties.

Time=6

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page2

page0

page2

Time 1

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1

Time 4

page3page3 Time 5

page1 Time 6 Time 2 page1

∞

∞

Eviction Policy:
CurrentTime – kth LastAccess = Backward Distance
Use oldest access time to break ties.

Time=6

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page2

page0

page2

Time 1

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1

Time 4

page3page3 Time 5

page1 Time 6 Time 2 page1

∞

Eviction Policy:
CurrentTime – kth LastAccess = Backward Distance
Use oldest access time to break ties.

5

Time=7

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page0

page2

page0

page2

Time 1

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1

Time 4

page3page3 Time 5

page1 Time 6 Time 2 page1

∞

Eviction Policy:
CurrentTime – kth LastAccess = Backward Distance
Use oldest access time to break ties.

5

Time=7

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

Disk Pages

Page LastAccess #1 LastAccess #2

page0

page1

page2

page3

page4

page5

LRU-K (1993)

22

Page History

page4

page0

page2

page0

page2

Time 1

SELECT * FROM A WHERE
 id IN (1, 31, 11, 41);

Q1

Q1

Time 4

page1 Time 6 Time 2 page1

∞

Eviction Policy:
CurrentTime – kth LastAccess = Backward Distance
Use oldest access time to break ties.

5

page4 Time 7

Time=7

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk Pages

page0

page1

page2

page3

page4

page5

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").
→ New pages are always inserted to the head

of the old list.
→ If pages in the old list is accessed again,

then insert into the head of the young list.

23

Newest←Oldest

Young List

page6 page2 page8page9 page3page5page4

Old ListHEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk Pages

page0

page1

page2

page3

page4

page5

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").
→ New pages are always inserted to the head

of the old list.
→ If pages in the old list is accessed again,

then insert into the head of the young list.

23

Newest←Oldest

Young List

Q1

page6 page2 page8page9 page3page5page4

Old ListHEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk Pages

page0

page1

page2

page3

page4

page5

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").
→ New pages are always inserted to the head

of the old list.
→ If pages in the old list is accessed again,

then insert into the head of the young list.

23

Newest←Oldest

Young List

Q1

page6 page2 page8page9 page3page5page4

Old ListHEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk Pages

page0

page1

page2

page3

page4

page5

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").
→ New pages are always inserted to the head

of the old list.
→ If pages in the old list is accessed again,

then insert into the head of the young list.

23

Newest←Oldest

Young List

Q1

page9 page3page5page4

Old List

page1 page6 page2

HEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk Pages

page0

page1

page2

page3

page4

page5

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").
→ New pages are always inserted to the head

of the old list.
→ If pages in the old list is accessed again,

then insert into the head of the young list.

23

Newest←Oldest

Young List

page9 page3page5page4

Old List

page1 page6 page2

Q2

HEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk Pages

page0

page1

page2

page3

page4

page5

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").
→ New pages are always inserted to the head

of the old list.
→ If pages in the old list is accessed again,

then insert into the head of the young list.

23

Newest←Oldest

Young List

page9 page3page5page4

Old List

page1 page6 page2

Q2

HEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk Pages

page0

page1

page2

page3

page4

page5

MYSQL APPROXIMATE LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").
→ New pages are always inserted to the head

of the old list.
→ If pages in the old list is accessed again,

then insert into the head of the young list.

23

Newest←Oldest

Young List Old List

page1 page6 page2

Q2

page5 page9page4page1 page3

HEAD HEAD

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: ADAPTIVE REPLACEMENT CACHE (2003)

Adaptive replacement policy algorithm developed by
IBM Research in the early 2000s.
→ Only implemented in IBM DB2, PostgreSQL, and ZFS.
→ Rewritten in PostgreSQL to avoid IBM's patent.

Support both recency (MRU) and frequency (MFU) by
maintaining two lists and then adjusts the size of them
based on workload access patterns.

Maintain ghost lists to remember recent evictions and
adapt quickly.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Adaptive_replacement_cache
https://en.wikipedia.org/wiki/ZFS
http://web.archive.org/web/20191030120515/http:/www.varlena.com/GeneralBits/96.php

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: ADAPTIVE REPLACEMENT CACHE (2003)

MRU List (T1):
→ Holds pages that have been accessed once recently.

MRU Ghost List (B1):
→ History of pages recently evicted from T1 (i.e., recency misses).

MFU List (T2):
→ Holds pages that have been accessed at least twice.

MFU Ghost List (B2):
→ History of pages recently evicted from T2 (i.e., frequency

misses).

Target Size Parameter (p):
→ Adaptively adjusts how much to favor recency (T1) vs.

frequency (T2).

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

P=0

Target Size = P

Target Size = #frames - P

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page0

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page0 page1

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page2

page0 page1 page2

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page2

page0 page1 page2

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page2

page0

page1 page2

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page2

page0

page1 page2

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page2

page0

page1 page2

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page2

page0

page1 page2

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page2

page0

page1 page2

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page2

page0

page1

page2

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page2

page0

page1

page2

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page2

page3

page0

page1

page2 page3

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page2

page3

page0

page1

page2 page3

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page2

page3

page0 page1

page2 page3

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page2

page3

page0 page1

page2 page3

P=0

Target Size = 0

Target Size = 3

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page2

page3

page0 page1

page2 page3

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page2

page3

page0 page1

page2 page3

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page3

page0 page1

page2 page3

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page3

page0 page1

page2

page3

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page3

page0 page1

page2

page3

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page3

page0 page1

page2

page3

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page3

page0 page1

page2

page3

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page3

page0 page1

page2

page3

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page4

page0 page1

page2 page3

page4

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page4

page0 page1

page2 page3

page4

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page4

page0 page1 page2

page3

page4

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page4

page0 page1 page2

page3

page4

P=1

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page4

page0 page1 page2

page3

page4

P=2

Target Size = 1

Target Size = 2

Oldest←Newest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page4

page0 page1 page2

page3

page4

P=2

Oldest←Newest

Target Size = 2

Target Size = 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page4

page0

page1 page2

page3

page4

P=2

Oldest←Newest

Target Size = 2

Target Size = 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

26

Disk Pages

page0

page1

page2

page3

page4

page5

MRU List
T1

MRU Ghost
B1

MFU List
T2

MFU Ghost
B2 Buffer Pool

page0

page1

page4

page2

page0

page1 page2

page3

page4

P=2

Oldest←Newest

Target Size = 2

Target Size = 1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ARC: LOOKUP PROTOCOL

Cache Miss, Page Found in B1 (Ghost of T1):
→ Increase target size p (favor more recency pages).
→ Move page into T2 (since it’s now accessed again).

Cache Miss, Page Found in B2 (Ghost of T2):
→ Decrease target size p (favor more frequency pages).
→ Move page into T2.

Cache Miss, Page Not in Cache or Ghost Lists:
→ If T1 + B1 is full, evict from B1 or T1.
→ If T2 + B2 is full, evict from B2 or T2.
→ Insert new page into T1.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BETTER POLICIES: LOCALIZATION

The DBMS chooses which pages to evict on a per query
basis. This minimizes the pollution of the buffer pool
from each query.
→ Keep track of the pages that a query has accessed.

Example: Postgres assigns a limited number of buffer of
buffer pool pages to a query and uses it as a circular ring
buffer.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.postgresql.org/docs/devel/glossary.html#GLOSSARY-BUFFER-ACCESS-STRATEGY
https://www.postgresql.org/docs/devel/glossary.html#GLOSSARY-BUFFER-ACCESS-STRATEGY

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

It can provide hints to the buffer pool on whether a
page is important or not.

29

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

Priority
High

Low

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

It can provide hints to the buffer pool on whether a
page is important or not.

29

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

Priority
High

Low

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

It can provide hints to the buffer pool on whether a
page is important or not.

29

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

INSERT INTO A VALUES (id++)Q1

MIN MAXid

Priority
High

Low

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

It can provide hints to the buffer pool on whether a
page is important or not.

29

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A WHERE id = ?Q2

INSERT INTO A VALUES (id++)Q1

MIN MAXid

Priority
High

Low

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BETTER POLICIES: PRIORITY HINTS

The DBMS knows about the context of each page
during query execution.

It can provide hints to the buffer pool on whether a
page is important or not.

29

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A WHERE id = ?Q2

INSERT INTO A VALUES (id++)Q1

MIN MAXid

Priority
High

Low

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DIRTY PAGES

Fast Path: If a page in the buffer pool is not dirty, then
the DBMS can simply "drop" it.

Slow Path: If a page is dirty, then the DBMS must
write back to disk to ensure that its changes are
persisted.

Trade-off between fast evictions versus dirty writing
pages that will not be read again in the future.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BACKGROUND WRITING

The DBMS periodically walks through the page table
and preemptively write dirty pages to disk.
→ Also called page cleaning or "buffer flushing".

When a dirty page is safely flushed, the DBMS can
either evict the page or just reset its dirty flag.

Need to be careful the system does not write dirty pages
before their log records are written…

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dl.acm.org/doi/10.5555/882460.882626

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OBSERVATION

OS/hardware tries to maximize disk bandwidth by
reordering and batching I/O requests.

But they do not know which I/O requests are more
important than others.

Many DBMSs tell you to switch Linux to use the
deadline or noop (FIFO) scheduler.
→ Example: Oracle, Vertica, MySQL

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://docs.oracle.com/en/database/oracle/oracle-database/23/ladbi/setting-the-disk-io-scheduler-on-linux.html#GUID-B59FCEFB-20F9-4E64-8155-7A61B38D8CDF
https://docs.vertica.com/23.3.x/en/setup/set-up-on-premises/before-you-install/manually-configured-os-settings/io-scheduling/
https://dev.mysql.com/doc/refman/8.0/en/innodb-linux-native-aio.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DISK I/O SCHEDULING

The DBMS maintain internal queue(s) to track page
read/write requests from the entire system.

Compute priorities based on several factors:
→ Sequential vs. Random I/O
→ Critical Path Task vs. Background Task
→ Table vs. Index vs. Log vs. Ephemeral Data
→ Transaction Information
→ User-based SLAs

The OS doesn't know these things and is going to get in
the way of our beautiful DBMS…

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OS PAGE CACHE

O_DIRECT

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own
filesystem cache (aka page cache,
buffer cache).

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

34

DBMS

Filesystem

OS Page Cache

User-space

Kernel-space

read(...)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://linux.die.net/man/2/open

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OS PAGE CACHE

O_DIRECT

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own
filesystem cache (aka page cache,
buffer cache).

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

34

DBMS

Filesystem

OS Page Cache

User-space

Kernel-space

read(...)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://linux.die.net/man/2/open

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OS PAGE CACHE

O_DIRECT

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own
filesystem cache (aka page cache,
buffer cache).

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

34

DBMS

Filesystem

OS Page Cache

User-space

Kernel-space

read(...)

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://linux.die.net/man/2/open
https://www.linkedin.com/posts/krishnakumar-r-bb7b949_postgres-postgresql-kernel-activity-7191224981924552705-i-7R/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OS PAGE CACHE

O_DIRECT

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own
filesystem cache (aka page cache,
buffer cache).

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

34

DBMS

Filesystem

OS Page Cache

User-space

Kernel-space

read(...)

9

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://linux.die.net/man/2/open
https://www.linkedin.com/posts/krishnakumar-r-bb7b949_postgres-postgresql-kernel-activity-7191224981924552705-i-7R/
https://pganalyze.com/blog/postgres-18-async-io

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

FSYNC PROBLEMS

If the DBMS calls write, what happens?

If the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

FSYNC PROBLEMS

If the DBMS calls write, what happens?

If the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?
→ Linux marks the dirty pages as clean.
→ If the DBMS calls fsync again, then Linux tells you that the

flush was successful. Since the DBMS thought the OS was its
friend, it assumed the write was successful…

35

Don't
Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

FSYNC PROBLEMS

If the DBMS calls write, what happens?

If the DBMS calls fsync, what happens?

If fsync fails (EIO), what happens?
→ Linux marks the dirty pages as clean.
→ If the DBMS calls fsync again, then Linux tells you that the

flush was successful. Since the DBMS thought the OS was its
friend, it assumed the write was successful…

35

Don't
Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BUFFER POOL OPTIMIZATIONS

Multiple Buffer Pools

Pre-Fetching

Scan Sharing

Buffer Pool Bypass

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MULTIPLE BUFFER POOLS

The DBMS does not always have a single buffer pool
for the entire system.
→ Multiple buffer pool instances
→ Per-database buffer pool
→ Per-page type buffer pool

Partitioning memory across multiple pools helps reduce
latch contention and improve locality.
→ Avoids contention on LRU tracking meta-data.

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids

and then maintain a mapping from objects
to specific buffer pools.

38

Buffer Pool #1 Buffer Pool #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids

and then maintain a mapping from objects
to specific buffer pools.

38

Buffer Pool #1 Buffer Pool #2

<ObjectId, PageId, SlotNum>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids

and then maintain a mapping from objects
to specific buffer pools.

38

Buffer Pool #1 Buffer Pool #2

<ObjectId, PageId, SlotNum>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids

and then maintain a mapping from objects
to specific buffer pools.

38

Buffer Pool #1 Buffer Pool #2

<ObjectId, PageId, SlotNum>

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids

and then maintain a mapping from objects
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

38

Buffer Pool #1 Buffer Pool #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

GET RECORD #123Q1

MULTIPLE BUFFER POOLS

Approach #1: Object Id
→ Embed an object identifier in record ids

and then maintain a mapping from objects
to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.

38

Buffer Pool #1 Buffer Pool #2

HASH(123) % n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

39

Buffer Pool

Disk Pages

page0

page1

page2

page3

page4

page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

39

Buffer Pool

page0

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

39

Buffer Pool

page0

page1

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

39

Buffer Pool

page0

page1

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

39

Buffer Pool

page1

page2

page3

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

39

Buffer Pool

page1

page2

page3

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

The DBMS can also prefetch pages
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

39

Buffer Pool

page3

page4

page5

Disk Pages

page0

page1

page2

page3

page4

page5Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

40

Buffer Pool

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

SELECT * FROM A
 WHERE val BETWEEN 100 AND 250

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

40

Buffer Pool

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

40

Buffer Pool

index-page0

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

40

Buffer Pool

index-page0

index-page1

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

40

Buffer Pool

index-page0

index-page1

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PRE-FETCHING

40

Buffer Pool

index-page0

index-page1

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

0 99 100 199 200 299 300 399

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SCAN SHARING

Allow multiple queries to attach to a single cursor that
scans a table.
→ Also called synchronized scans.
→ This is different from result caching.

Examples:
→ Fully supported in DB2, MSSQL, Teradata, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SCAN SHARING

Allow multiple queries to attach to a single cursor that
scans a table.
→ Also called synchronized scans.
→ This is different from result caching.

Examples:
→ Fully supported in DB2, MSSQL, Teradata, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SCAN SHARING

Allow multiple queries to attach to a single cursor that
scans a table.
→ Also called synchronized scans.
→ This is different from result caching.

Examples:
→ Fully supported in DB2, MSSQL, Teradata, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

SCAN SHARING

42

SELECT SUM(val) FROM AQ1 Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page0

SCAN SHARING

42

SELECT SUM(val) FROM AQ1 Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page0

page1

page2

SCAN SHARING

42

SELECT SUM(val) FROM AQ1 Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page0

page1

page2

SCAN SHARING

42

SELECT SUM(val) FROM AQ1 Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page0

page1

page2

SCAN SHARING

42

SELECT SUM(val) FROM AQ1 Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page1

page2

SCAN SHARING

42

SELECT SUM(val) FROM AQ1

page3

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page1

page2

SCAN SHARING

42

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

page3

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page1

page2

SCAN SHARING

42

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

page3

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page1

page2

SCAN SHARING

42

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

page3 Q2

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

SCAN SHARING

42

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

page3

Q2

page4

page5

Disk Pages

page0

page1

page2

page3

page4

page5Q1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

SCAN SHARING

42

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2

page3

page4

page5

Disk Pages

page0

page1

page2

page3

page4

page5

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page0

page1

page2

SCAN SHARING

42

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2
Disk Pages

page0

page1

page2

page3

page4

page5

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page0

page1

page2

SCAN SHARING

42

SELECT SUM(val) FROM AQ1 Disk Pages

page0

page1

page2

page3

page4

page5

Q2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Buffer Pool

page0

page1

page2

SCAN SHARING

42

SELECT SUM(val) FROM AQ1

SELECT * FROM A LIMIT 100Q2’

Disk Pages

page0

page1

page2

page3

page4

page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CONTIONOUS SCAN SHARING

Instead of trying to be clever, the
DBMS continuously scans the
database files repeatedly.
→ One continuous cursor per table.
→ Queries "hop" on board the cursor while it

is running and then disconnect once they
have enough data.

Not viable if you pay per IOP.

Only done in academic prototypes.

43

13

Disk Pages

page0

page1

page2

page3

page4

page5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dbdb.io/db/crescando

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BUFFER POOL BYPASS

The sequential scan operator will not store fetched
pages in the buffer pool to avoid overhead.
→ Memory is local to running query.
→ Works well if operator needs to read a large sequence of pages

that are contiguous on disk.
→ Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CONCLUSION

The DBMS can almost always manage memory better
than the OS.

Leverage the semantics about the query plan to make
better decisions:
→ Evictions
→ Allocations
→ Pre-fetching

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NEXT CLASS

Back to Storage Structures!

Log-Structured Storage

Index-Organized Storage

Catalogs

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PROJECT #1

You will build the first component of
your storage manager.
→ ARC Replacement Policy
→ Disk Scheduler
→ Buffer Pool Manager Instance

We provide you with the basic APIs
for these components.

Due Date:
Sunday Feb 15th @ 11:59pm

47

https://15445.courses.cs.cmu.edu/spring2026/project1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://github.com/cmu-db/bustub
https://15445.courses.cs.cmu.edu/spring2026/project1

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TASK #1 – ARC REPLACEMENT POLICY

Build a data structure that tracks the usage of pages
using the ARC policy. Dynamically adjust whether to
favor recency or frequency in eviction decisions.

General Hints:
→ Your eviction algorithm needs to check the "pinned" status of

each page.
→ You are allowed to use STL containers for internal lists (e.g.,

MRU, MFU).

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TASK #2 – DISK SCHEDULER

Create a background worker to
read/write pages from disk.
→ Single request queue but each request can

contain multiple requested pages.
→ Simulates asynchronous IO using

std::promise for callbacks.

It's up to you to decide how you want
to batch, reorder, and issue read/write
requests to the local disk.

Make sure it is thread-safe!

49

Database
(On-Disk)

page0

page1

page2

D
is

k
Sc

he
du

le
r

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TASK #3 – BUFFER POOL MANAGER

Use your ARC replacer to manage
the allocation of pages.
→ Need to maintain internal data

structures to track allocated + free pages.
→ Implement page guards.
→ Use whatever data structure you want

for the page table.

Make sure you get the order of
operations correct when pinning!

Buffer Pool
(In-Memory)

page6

page2

page4

Database
(On-Disk)

page0

page1

page2

D
is

k
Sc

he
du

le
r

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

THINGS TO NOTE

Do not change any file other than the ones listed in the
project specification. Other changes will not be graded.

The projects are cumulative, and we do not provide
solutions.

Post any questions on Piazza or come to office hours,
but we will not help you debug.

51

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CODE QUALITY

We will automatically check whether you are writing
good code.
→ Google C++ Style Guide
→ Doxygen Javadoc Style

You need to run these targets before you submit your
implementation to Gradescope.
→ make format
→ make check-clang-tidy-p1

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
http://www.doxygen.nl/manual/docblocks.html
http://www.doxygen.nl/manual/docblocks.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTRA CREDIT

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class will
receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

The student with the most bonus points at the end of
the semester will be added to the BusTub trophy!
→ I have been struggling to buy a trophy worthy of us…

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PLAGIARISM WARNING

The homework and projects must be your own original
work. They are not group assignments.
→ You may not copy source code from other people or the web.
→ You are allowed to use generative AI tools.

Plagiarism is not tolerated. You will get lit up.
→ Please ask instructors (not TAs!) if you are unsure.

See CMU's Policy on Academic Integrity for additional
information.

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

	Introduction
	Slide 1: Buffer Pool Memory Management
	Slide 2: LAST CLASS
	Slide 3: DATABASE STORAGE
	Slide 4: DISK-ORIENTED DBMS
	Slide 5: DISK-ORIENTED DBMS
	Slide 6: DISK-ORIENTED DBMS
	Slide 7: DISK-ORIENTED DBMS
	Slide 8: DISK-ORIENTED DBMS
	Slide 9: DISK-ORIENTED DBMS
	Slide 10: DISK-ORIENTED DBMS
	Slide 11: OTHER MEMORY POOLS
	Slide 12: TODAY'S AGENDA

	Buffer Pool Manager
	Slide 13: BUFFER POOL ORGANIZATION
	Slide 14: BUFFER POOL ORGANIZATION
	Slide 15: BUFFER POOL ORGANIZATION
	Slide 16: BUFFER POOL META-DATA
	Slide 17: BUFFER POOL META-DATA
	Slide 18: BUFFER POOL META-DATA
	Slide 19: BUFFER POOL META-DATA
	Slide 20: BUFFER POOL META-DATA
	Slide 21: LOCKS VS. LATCHES
	Slide 22: PAGE TABLE VS. PAGE DIRECTORY

	MMAP
	Slide 23: WHY NOT USE THE OS?
	Slide 24: WHY NOT USE THE OS?
	Slide 25: WHY NOT USE THE OS?
	Slide 26: WHY NOT USE THE OS?
	Slide 27: WHY NOT USE THE OS?
	Slide 28: WHY NOT USE THE OS?
	Slide 29: MEMORY MAPPED I/O PROBLEMS
	Slide 30: WHY NOT USE THE OS?
	Slide 31: WHY NOT USE THE OS?
	Slide 32: WHY NOT USE THE OS?
	Slide 33: WHY NOT USE THE OS?
	Slide 34: WHY NOT USE THE OS?

	Buffer Replacement Policies
	Slide 35: BUFFER REPLACEMENT POLICIES
	Slide 36: LEAST-RECENTLY USED (1965)
	Slide 37: LEAST-RECENTLY USED (1965)
	Slide 38: LEAST-RECENTLY USED (1965)
	Slide 39: CLOCK (1969)
	Slide 40: CLOCK (1969)
	Slide 41: CLOCK (1969)
	Slide 42: CLOCK (1969)
	Slide 43: CLOCK (1969)
	Slide 44: CLOCK (1969)
	Slide 45: CLOCK (1969)
	Slide 46: CLOCK (1969)
	Slide 47: CLOCK (1969)
	Slide 48: CLOCK (1969)
	Slide 49: OBSERVATION
	Slide 50: SEQUENTIAL FLOODING
	Slide 51: SEQUENTIAL FLOODING
	Slide 52: SEQUENTIAL FLOODING
	Slide 53: SEQUENTIAL FLOODING
	Slide 54: SEQUENTIAL FLOODING
	Slide 55: SEQUENTIAL FLOODING
	Slide 56: LEAST-FREQUENTLY USED (1971)
	Slide 57: LRU-K (1993)
	Slide 58: LRU-K (1993)
	Slide 59: LRU-K (1993)
	Slide 60: LRU-K (1993)
	Slide 61: LRU-K (1993)
	Slide 62: LRU-K (1993)
	Slide 63: LRU-K (1993)
	Slide 64: LRU-K (1993)
	Slide 65: LRU-K (1993)
	Slide 66: LRU-K (1993)
	Slide 67: LRU-K (1993)
	Slide 68: LRU-K (1993)
	Slide 69: LRU-K (1993)
	Slide 70: LRU-K (1993)
	Slide 71: MYSQL APPROXIMATE LRU-K
	Slide 72: MYSQL APPROXIMATE LRU-K
	Slide 73: MYSQL APPROXIMATE LRU-K
	Slide 74: MYSQL APPROXIMATE LRU-K
	Slide 75: MYSQL APPROXIMATE LRU-K
	Slide 76: MYSQL APPROXIMATE LRU-K
	Slide 77: MYSQL APPROXIMATE LRU-K
	Slide 78: ARC: ADAPTIVE REPLACEMENT CACHE (2003)
	Slide 79: ARC: ADAPTIVE REPLACEMENT CACHE (2003)
	Slide 80: ARC: LOOKUP PROTOCOL
	Slide 81: ARC: LOOKUP PROTOCOL
	Slide 82: ARC: LOOKUP PROTOCOL
	Slide 83: ARC: LOOKUP PROTOCOL
	Slide 84: ARC: LOOKUP PROTOCOL
	Slide 85: ARC: LOOKUP PROTOCOL
	Slide 86: ARC: LOOKUP PROTOCOL
	Slide 87: ARC: LOOKUP PROTOCOL
	Slide 88: ARC: LOOKUP PROTOCOL
	Slide 89: ARC: LOOKUP PROTOCOL
	Slide 90: ARC: LOOKUP PROTOCOL
	Slide 91: ARC: LOOKUP PROTOCOL
	Slide 92: ARC: LOOKUP PROTOCOL
	Slide 93: ARC: LOOKUP PROTOCOL
	Slide 94: ARC: LOOKUP PROTOCOL
	Slide 95: ARC: LOOKUP PROTOCOL
	Slide 96: ARC: LOOKUP PROTOCOL
	Slide 97: ARC: LOOKUP PROTOCOL
	Slide 98: ARC: LOOKUP PROTOCOL
	Slide 99: ARC: LOOKUP PROTOCOL
	Slide 100: ARC: LOOKUP PROTOCOL
	Slide 101: ARC: LOOKUP PROTOCOL
	Slide 102: ARC: LOOKUP PROTOCOL
	Slide 103: ARC: LOOKUP PROTOCOL
	Slide 104: ARC: LOOKUP PROTOCOL
	Slide 105: ARC: LOOKUP PROTOCOL
	Slide 106: ARC: LOOKUP PROTOCOL
	Slide 107: ARC: LOOKUP PROTOCOL
	Slide 108: ARC: LOOKUP PROTOCOL
	Slide 109: ARC: LOOKUP PROTOCOL
	Slide 110: ARC: LOOKUP PROTOCOL
	Slide 111: ARC: LOOKUP PROTOCOL
	Slide 112: ARC: LOOKUP PROTOCOL
	Slide 113: ARC: LOOKUP PROTOCOL
	Slide 114: BETTER POLICIES: LOCALIZATION
	Slide 115: BETTER POLICIES: PRIORITY HINTS
	Slide 116: BETTER POLICIES: PRIORITY HINTS
	Slide 117: BETTER POLICIES: PRIORITY HINTS
	Slide 118: BETTER POLICIES: PRIORITY HINTS
	Slide 119: BETTER POLICIES: PRIORITY HINTS

	Background Writing
	Slide 120: DIRTY PAGES
	Slide 121: BACKGROUND WRITING

	Disk I/O Scheduling
	Slide 122: OBSERVATION
	Slide 123: DISK I/O SCHEDULING
	Slide 124: OS PAGE CACHE
	Slide 125: OS PAGE CACHE
	Slide 126: OS PAGE CACHE
	Slide 127: OS PAGE CACHE
	Slide 128: FSYNC PROBLEMS
	Slide 129: FSYNC PROBLEMS
	Slide 130: FSYNC PROBLEMS

	Optimizations
	Slide 131: BUFFER POOL OPTIMIZATIONS
	Slide 132: MULTIPLE BUFFER POOLS
	Slide 133: MULTIPLE BUFFER POOLS
	Slide 134: MULTIPLE BUFFER POOLS
	Slide 135: MULTIPLE BUFFER POOLS
	Slide 136: MULTIPLE BUFFER POOLS
	Slide 137: MULTIPLE BUFFER POOLS
	Slide 138: MULTIPLE BUFFER POOLS
	Slide 139: PRE-FETCHING
	Slide 140: PRE-FETCHING
	Slide 141: PRE-FETCHING
	Slide 142: PRE-FETCHING
	Slide 143: PRE-FETCHING
	Slide 144: PRE-FETCHING
	Slide 145: PRE-FETCHING
	Slide 146: PRE-FETCHING
	Slide 147: PRE-FETCHING
	Slide 148: PRE-FETCHING
	Slide 149: PRE-FETCHING
	Slide 150: PRE-FETCHING
	Slide 151: PRE-FETCHING
	Slide 152: SCAN SHARING
	Slide 153: SCAN SHARING
	Slide 154: SCAN SHARING
	Slide 155: SCAN SHARING
	Slide 156: SCAN SHARING
	Slide 157: SCAN SHARING
	Slide 158: SCAN SHARING
	Slide 159: SCAN SHARING
	Slide 160: SCAN SHARING
	Slide 161: SCAN SHARING
	Slide 162: SCAN SHARING
	Slide 163: SCAN SHARING
	Slide 164: SCAN SHARING
	Slide 165: SCAN SHARING
	Slide 166: SCAN SHARING
	Slide 167: SCAN SHARING
	Slide 168: SCAN SHARING
	Slide 169: CONTIONOUS SCAN SHARING
	Slide 170: BUFFER POOL BYPASS

	Conclusion
	Slide 171: CONCLUSION
	Slide 172: NEXT CLASS

	Project #1
	Slide 173: PROJECT #1
	Slide 174: TASK #1 – ARC REPLACEMENT POLICY
	Slide 175: TASK #2 – DISK SCHEDULER
	Slide 176: TASK #3 – BUFFER POOL MANAGER
	Slide 177: THINGS TO NOTE
	Slide 178: CODE QUALITY
	Slide 179: EXTRA CREDIT
	Slide 180: PLAGIARISM WARNING

