
DatabaseSystems

Database
Systems

15-445/645 SPRING 2026

15-445/645 SPRING 2026

ANDY PAVLO

ANDY PAVLO
JIGNESH PATEL

JIGNESH PATEL

Database Storage:

Index-Organized +

Log-Structured Storage

Lecture #05

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ADMINISTRIVIA

Project #1 is due Sunday Feb 15th @ 11:59pm
→ Recitation Wednesday Jan 28th @ 6:30pm (@64)

Homework #2 is due Sunday Feb 8th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://piazza.com/class/mjxpbw9kyzv4mo/post/64

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

UPCOMING DATABASE EVENTS

CMU-DB Reading Group
→ Tuesdays @ 12:00pm
→ GHC 9115
→ Free food!

Database Seminar Series (Zoom)
→ PostgreSQL vs. The World
→ Mondays @ 4:30pm
→ Starting Feb 2nd

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://piazza.com/class/mjxpbw9kyzv4mo/post/64

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LAST CLASS

We introduced the buffer pool manager as the location
of where the DBMS stores copies of database pages it
retrieves from non-volatile storage.

This is for a disk-oriented architecture where the
DBMS assumes that the primary storage location of the
database is on non-volatile disk.

We then discussed a page-oriented storage scheme for
organizing tuples across heap files.

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAGE LAYOUT

For any page storage architecture, we now need to
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.
→ We will also assume that each tuple fits in a single page.

Approach #1: Slotted Page Storage

Approach #2: Index-organized Storage

Approach #3: Log-structured Storage

5

← Today

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TODAY'S AGENDA

Slotted Page Storage

Index-Organized Storage

Log-Structured Storage

System Catalogs

DB Flash Talk: SingleStore

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.singlestore.com/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common page layout
scheme is called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

7

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common page layout
scheme is called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

7

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common page layout
scheme is called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

7

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common page layout
scheme is called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

7

Header

Tuple #4

Tuple #2 Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGES

The most common page layout
scheme is called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

7

Header

Tuple #4

Tuple #2 Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array
1 2 3 4 5 6 7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Record Id Sizes

RECORD IDS

ROWID

The DBMS assigns each logical tuple a
unique record identifier that
represents its physical location in the
database.
→ Example: File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary key

and stores them as a hidden attribute.

Applications should never rely on
these IDs to mean anything.

8

TID 4-bytes

CTID 6-bytes

ROWID 8-bytes

%%physloc%% 8-bytes

RDB$DB_KEY 8-bytes

ROWID 10-bytes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.sqlite.org/rowidtable.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGE STORAGE: READS

Get an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.

The DBMS relies on indexes to find individual tuples
because the tables are inherently unsorted.

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGE STORAGE: READS

For a given key(s), an index provides a
mapping from that key(s) to one or
more tuples with that value via their
Record Ids.

The DBMS has to first access the
pages for the index then read the
page(s) for the tuple(s).

But what if the DBMS could keep
tuples sorted automatically using
an index?

10

D
at

ab
as

e
P

ag
e

header

b0a0 c0headerb1 c1
a1headerb2a2 c2header

b3a3 c3headerb4 c4
a4header

recordId=456

SELECT * FROM A WHERE key = 123;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

INDEX-ORGANIZED STORAGE

DBMS stores a table's tuples as the value of an index
data structure.
→ Leaf nodes page layout are similar to slotted page layout.
→ Tuples are typically sorted in page based on key.

11

Header key→
offset

Tuple #2 Tuple #6Tuple #3

key→
offset

key→
offset

Inner
Nodes

Leaf
Nodes

Key→Offset Array

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGE STORAGE: WRITES

Insert a new tuple:
→ Check page directory to find a page with a free slot.
→ Retrieve the page from disk (if not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.
→ If new data fits, overwrite existing data.

Otherwise, mark existing tuple as deleted and insert new
version in a different page.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SLOTTED PAGE STORAGE

HDF Google Colossu S3 Expres

Problem #1: Fragmentation
→ Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/O
→ DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O
→ Worse case scenario when updating multiple tuples is that each

tuple is on a separate page.

What if the DBMS cannot overwrite data in pages
and could only create new pages?
→ Examples: HDFS, Google Colossus, S3 Express

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://docs.aws.amazon.com/AmazonS3/latest/userguide/directory-buckets-objects-append.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED STORAGE

Instead of storing tuples in pages and updating the in-
place, the DBMS maintains a log that records changes
to tuples.
→ Each log entry represents a tuple PUT/DELETE operation.
→ Originally proposed as log-structure merge trees (LSM Trees)

in 1996.

The DBMS applies changes to an in-memory data
structure (MemTable) and then writes out the changes
sequentially to disk as sorted-string tables (SSTables).

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

PUT (key101,a1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

PUT (key101,a1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

PUT (key102,b1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

PUT (key101,a2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

PUT (key103,c1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→

H
igh

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→

H
igh

SSTableLevel #0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→

H
igh

SSTableLevel #0 SSTable Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→

H
igh

SSTableLevel #0

Level #1

SSTable

SSTable

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→

H
igh

Level #0

Level #1 SSTable

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→

H
igh

SSTableLevel #0

Level #1

SSTable

SSTableSSTable

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→

H
igh

SSTable

Level #0

Level #1

Level #2

SSTableSSTable

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey L

ow
→

H
igh

SSTable

Level #0

Level #1

Level #2

Newest→Oldest

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MemTable

LOG-STRUCTURED STORAGE

15

Disk

Memory

SSTable

SSTable

Level #0

Level #1

Level #2

SSTable

GET (key101)

• Min/Max Key
Per SSTable

• Key Filter
Per Level

SummaryTable

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED STORAGE

Key-value storage that appends log
records on disk to represent changes
to tuples (PUT, DELETE).
→ Each log record must contain the tuple's

unique identifier.
→ Put records contain the tuple contents.
→ Deletes marks the tuple as deleted.

As the application makes changes to
the database, the DBMS appends log
records to the end of the file without
checking previous log records.

16

K
ey L

ow
→

H
igh

SSTable

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.

17

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.

17

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.

17

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

DEL (key100)

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.

17

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

DEL (key100)

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.

17

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

DEL (key100)

PUT (key101,a3)

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.

17

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

DEL (key100)

PUT (key101,a3)

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.

17

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.

17

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.

17

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.

17

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

PUT (key104,d2)

Newest→Oldest

+

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Newest→Oldest

SSTable
a→r

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Newest→Oldest

SSTable
a→r

SSTable
e→t

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Newest→Oldest

SSTable
a→r

SSTable
e→t

SSTable
b→q

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Level #1

N
ew

est→
O

ldest

Newest→Oldest

Key Low→High

SSTable
a→r

SSTable
e→t

SSTable
b→q

SSTable
a→m

SSTable
n→z

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Level #1

N
ew

est→
O

ldest

Newest→Oldest

Key Low→High

SSTable
a→m

SSTable
n→z

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Level #1

N
ew

est→
O

ldest

Newest→Oldest

Key Low→High

SSTable
a→m

SSTable
n→z

SSTable
b→k

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Level #1

N
ew

est→
O

ldest

Newest→Oldest

Key Low→High

SSTable
a→m

SSTable
n→z

SSTable
b→k

SSTable
g→z

SSTable
f→x

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Level #1

N
ew

est→
O

ldest

Newest→Oldest

Key Low→High

SSTable
a→m

SSTable
n→z

SSTable
b→k

SSTable
g→z

SSTable
f→x

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Level #1

N
ew

est→
O

ldest

Newest→Oldest

Key Low→High

SSTable
a→h

SSTable
i→r

SSTable
s→z

SSTable
b→k

SSTable
g→z

SSTable
f→x

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Level #1

N
ew

est→
O

ldest

Newest→Oldest

Key Low→High

SSTable
a→h

SSTable
i→r

SSTable
s→z

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Level #1

Level #2

N
ew

est→
O

ldest

Newest→Oldest

Key Low→High

SSTable
a→h

SSTable
i→r

SSTable
s→z

SSTable
a→r

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping

on key ranges (except Level #0).
→ Level #0 contains SSTables recently

flushed from memory and contain
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

18

Level #0

Level #1

Level #2

N
ew

est→
O

ldest

Newest→Oldest

Key Low→High

SSTable
s→z

SSTable
a→r

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Universal
Compaction
→ SSTables reside in a single "universal"

level (i.e., no multi-level hierarchy).
→ DBMS triggers compaction when too

many SSTables overlap in key ranges or
exceed size thresholds.

Better for insert-heavy workloads and
time-oriented queries

19

SSTable
c→y

SSTable
l→m

SSTable
a→t

SSTable
r→x

Newest→Oldest

SSTable
a→q

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Universal
Compaction
→ SSTables reside in a single "universal"

level (i.e., no multi-level hierarchy).
→ DBMS triggers compaction when too

many SSTables overlap in key ranges or
exceed size thresholds.

Better for insert-heavy workloads and
time-oriented queries

19

SSTable
c→y

SSTable
l→m

SSTable
a→t

SSTable
r→x

Newest→Oldest

SSTable
a→q

SSTable
a→x

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Universal
Compaction
→ SSTables reside in a single "universal"

level (i.e., no multi-level hierarchy).
→ DBMS triggers compaction when too

many SSTables overlap in key ranges or
exceed size thresholds.

Better for insert-heavy workloads and
time-oriented queries

19

SSTable
c→y

SSTable
l→m

SSTable
a→t

SSTable
r→x

Newest→Oldest

SSTable
a→q

SSTable
a→x

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Universal
Compaction
→ SSTables reside in a single "universal"

level (i.e., no multi-level hierarchy).
→ DBMS triggers compaction when too

many SSTables overlap in key ranges or
exceed size thresholds.

Better for insert-heavy workloads and
time-oriented queries

19

SSTable
c→y

Newest→Oldest

SSTable
a→q

SSTable
a→x

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Universal
Compaction
→ SSTables reside in a single "universal"

level (i.e., no multi-level hierarchy).
→ DBMS triggers compaction when too

many SSTables overlap in key ranges or
exceed size thresholds.

Better for insert-heavy workloads and
time-oriented queries

19

SSTable
c→y

SSTable
a→y

Newest→Oldest

SSTable
a→q

SSTable
a→x

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Universal
Compaction
→ SSTables reside in a single "universal"

level (i.e., no multi-level hierarchy).
→ DBMS triggers compaction when too

many SSTables overlap in key ranges or
exceed size thresholds.

Better for insert-heavy workloads and
time-oriented queries

19

SSTable
a→y

Newest→Oldest

SSTable
a→q

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Log-structured storage managers are more common
today than in previous decades.
→ This is partly due to the proliferation of RocksDB.

What are some downsides of this approach?
→ Write-Amplification.
→ Compaction is expensive.

DISCUSSION

20

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SYSTEM CATALOGS

A DBMS stores meta-data about databases in its
internal catalogs.
→ Tables, columns, indexes, views
→ Users, permissions
→ Internal statistics

Almost every DBMS stores the database's catalog inside
itself (i.e., as tables).
→ Wrap object abstraction around tuples.
→ Specialized code for "bootstrapping" catalog tables.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SYSTEM CATALOGS

You can query the DBMS’s internal
INFORMATION_SCHEMA catalog to get info about the
database.
→ ANSI standard set of read-only views that provide info about all

the tables, views, columns, and procedures in a database

DBMSs also have non-standard shortcuts to retrieve
this information.

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ACCESSING TABLE SCHEMA

List all the tables in the current database:

23

SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_catalog = '<db name>';

SQL - 92

\d; Postgres

SHOW TABLES; MySQL

.tables SQLite

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ACCESSING TABLE SCHEMA

List all the tables in the student table:

24

SELECT *
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_name = 'student'

SQL - 92

\d student; Postgres

DESCRIBE student; MySQL

.schema student SQLite

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

SCHEMA CHANGES

ADD COLUMN:
→ Slow: Copy tuples into new pages and modify to add column.
→ Fast: Record meta-data on default value and incrementally

update tuples to include new column.

DROP COLUMN:
→ Mark column as "deprecated", clean up later.
→ New tuples omit the dropped column.

CHANGE COLUMN:
→ Rename: Update meta-data in catalog.
→ Type: Check whether new type is binary compatible with

existing values. If no, rewrite tuples.
→ Constraints: Scan entire table to see if it violates constraint.
→ Default: Update meta-data in catalog.

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

INDEXES

CREATE INDEX:
→ Scan the entire table and populate the index.
→ Must record changes made by txns that modified the table while

another txn was building the index.
→ When the scan completes, lock the table and resolve changes

that were missed after the scan started.

DROP INDEX:
→ Drop the index logically from the catalog.
→ It only becomes "invisible" when the txn that dropped it

commits. All existing txns will still have to update it.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CONCLUSION

Log-structured storage is an alternative approach to the
tuple-oriented architecture.
→ Ideal for write-heavy workloads because it maximizes

sequential disk I/O.

The storage manager is not entirely independent from
the rest of the DBMS.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NEXT CLASS

Breaking your preconceived notion that a DBMS stores
everything as rows…

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

	Introduction
	Slide 1: Database Storage: Index-Organized + Log-Structured Storage
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE EVENTS
	Slide 4: LAST CLASS
	Slide 5: PAGE LAYOUT
	Slide 6: TODAY'S AGENDA

	Slotted Pages
	Slide 7: SLOTTED PAGES
	Slide 8: SLOTTED PAGES
	Slide 9: SLOTTED PAGES
	Slide 10: SLOTTED PAGES
	Slide 11: SLOTTED PAGES
	Slide 12: RECORD IDS
	Slide 13: SLOTTED PAGE STORAGE: READS
	Slide 14: SLOTTED PAGE STORAGE: READS

	Index-Organized Tables
	Slide 15: INDEX-ORGANIZED STORAGE
	Slide 16: SLOTTED PAGE STORAGE: WRITES
	Slide 17: SLOTTED PAGE STORAGE

	Log-Structured
	Slide 18: LOG-STRUCTURED STORAGE
	Slide 19: LOG-STRUCTURED STORAGE
	Slide 20: LOG-STRUCTURED STORAGE
	Slide 21: LOG-STRUCTURED STORAGE
	Slide 22: LOG-STRUCTURED STORAGE
	Slide 23: LOG-STRUCTURED STORAGE
	Slide 24: LOG-STRUCTURED STORAGE
	Slide 25: LOG-STRUCTURED STORAGE
	Slide 26: LOG-STRUCTURED STORAGE
	Slide 27: LOG-STRUCTURED STORAGE
	Slide 28: LOG-STRUCTURED STORAGE
	Slide 29: LOG-STRUCTURED STORAGE
	Slide 30: LOG-STRUCTURED STORAGE
	Slide 31: LOG-STRUCTURED STORAGE
	Slide 32: LOG-STRUCTURED STORAGE
	Slide 33: LOG-STRUCTURED STORAGE
	Slide 34: LOG-STRUCTURED STORAGE
	Slide 35: LOG-STRUCTURED COMPACTION
	Slide 36: LOG-STRUCTURED COMPACTION
	Slide 37: LOG-STRUCTURED COMPACTION
	Slide 38: LOG-STRUCTURED COMPACTION
	Slide 39: LOG-STRUCTURED COMPACTION
	Slide 40: LOG-STRUCTURED COMPACTION
	Slide 41: LOG-STRUCTURED COMPACTION
	Slide 42: LOG-STRUCTURED COMPACTION
	Slide 43: LOG-STRUCTURED COMPACTION
	Slide 44: LOG-STRUCTURED COMPACTION
	Slide 45: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 46: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 47: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 48: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 49: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 50: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 51: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 52: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 53: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 54: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 55: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 56: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 57: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 58: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 59: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 60: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 61: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 62: LOG-STRUCTURED COMPACTION STRATGEGIES
	Slide 63: DISCUSSION

	Catalogs
	Slide 64: SYSTEM CATALOGS
	Slide 65: SYSTEM CATALOGS
	Slide 66: ACCESSING TABLE SCHEMA
	Slide 67: ACCESSING TABLE SCHEMA
	Slide 68: SCHEMA CHANGES
	Slide 69: INDEXES

	Conclusion
	Slide 70: CONCLUSION
	Slide 71: NEXT CLASS

