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ADMINISTRIVIA

Project #1 is due Sunday Feb 15" @ 11:59pm
— Recitation Wednesday Jan 28™ @ 6:30pm (@64)

Homework #2 is due Sunday Feb 8" @ 11:59pm
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UPCOMING DATABASE EVENTS

CMU-DB Reading Group Carnegie

— Tuesdays @ 12:00pm Mellon
— GHC 9115 Database

— Free food!

Database Seminar Series (Zoom)
— PostgreSQL vs. The World

— Mondays @ 4:30pm

— Starting Feb 24
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LAST CLASS

We introduced the buffer pool manager as the location
of where the DBMS stores copies of database pages it
retrieves from non-volatile storage.

This is for a disk-oriented architecture where the
DBMS assumes that the primary storage location of the
database is on non-volatile disk.

We then discussed a page-oriented storage scheme for
organizing tuples across heap files.
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PAGE LAYOUT

For any page storage architecture, we now need to

decide how to organize the data inside of the page.

— We are still assuming that we are only storing tuples in a
row-oriented storage model.

— We will also assume that each tuple fits in a single page.

Approach #1: Slotted Page Storage
Approach #2: Index-organized Storage | < Today

Approach #3: Log-structured Storage
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TODAY'S AGENDA

Slotted Page Storage
Index-Organized Storage
Log-Structured Storage

System Catalogs
$DB Flash Talk: SingleStore
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SLOTTED PAGES

The most common page layout
scheme is called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:

— The # of used slots

— The offset of the starting location of the
last slot used.

Slot /}rray

Header

v 23 456 7"

v v
Tuple #4 Tuple #3
Tuple #2 Tuple #1

|
Fixed- and Var-length

Tuple Data
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RECORD IDS

The DBMS assigns each logical tuple a
unique record identifier that
represents its physical location in the

database.

— Example: File Id, Page Id, Slot #

— Most DBMSs do not store ids in tuple.

— SQLite uses ROWID as the true primary key
and stores them as a hidden attribute.

Applications should never rely on
these IDs to mean anything.

Record Id Sizes
INGR=S TID 4-bytes
@ PostgreSQL  CTID 6-bytes

?SQLite

SOL Server
@) Firebird

ORACLE

ROWID 8-bytes
%%physloc%k% 8-bytes
RDB$DB_KEY 8-bytes

ROWID 10-bytes
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SLOTTED PAGE STORAGE: READS

Get an existing tuple using its record id:

— Check page directory to find location of page.
— Retrieve the page from disk (if not in memory).
— Find offset in page using slot array.

The DBMS relies on indexes to find individual tuples
because the tables are inherently unsorted.
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SLOTTED PAGE STORAGE: READS -

For a given key(s), an index provides a

lllllllllllllllllll

mapping from that key(s) to one or ¥

more tuples with that value via their ; | Y

Record Ids.

The DBMS has to first access the | |

pages for the index then read the ‘ iTdease
recor =

page(s) for the tuple(s).

pd
~

But what if the DBMS could keep
tuples sorted automatically using
an index?

- a4

b4 c4 a3 b3 c3

| header BV YIE———>| header BEY
b1 o | header BE MY )

Database Page
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INDEX-ORGANIZED STORAGE .

DBMS stores a table's tuples as the value of an index WSQLite

data structure. NMysaL.
— Leaf nodes page layout are similar to slotted page layout.

— Tuples are typically sorted in page based on key. ORACLE
ZSOL server
Key=Offset Array
. |

"

Inner 5 5 5
Nodes Jﬁ :[| Header olf('?s,et olf(‘fe‘Zet o';get
\
Leaf ’_/ N ’_,/ N
Nodes || | || ‘1’ ‘1’

Tuple #3 | Tuple #2 | Tuple #6
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SLOTTED PAGE STORAGE: WRITES

Insert a new tuple:

— Check page directory to find a page with a free slot.
— Retrieve the page from disk (if not in memory).
— Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
— Check page directory to find location of page.
— Retrieve the page from disk (if not in memory).
— Find offset in page using slot array.
— If new data fits, overwrite existing data.
Otherwise, mark existing tuple as deleted and insert new
version in a different page.

12
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SLOTTED PAGE STORAGE

Problem #1: Fragmentation
— Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/0O

— DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O

— Worse case scenario when updating multiple tuples is that each
tuple is on a separate page.

What if the DBMS cannot overwrite data in pages

and could only create new pages?
— Examples: HDFES, Google Colossus, S3 Express

13
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LOG-STRUCTURED STORAGE =

Instead of storing tuples in pages and updating the in-
place, the DBMS maintains a log that records changes

to tuples.

— Each log entry represents a tuple PUT/DELETE operation.
— Originally proposed as log-structure merge trees (LSM Trees)
in 1996.

The DBMS applies changes to an in-memory data
structure (MemTable) and then writes out the changes
sequentially to disk as sorted-string tables (SSTables).


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree

LOG-STRUCTURED STORAGE =

L)

[V] [V]



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LOG-STRUCTURED STORAGE =
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LOG-STRUCTURED STORAGE =
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LOG-STRUCTURED STORAGE =

() PUT (key101,a,)

[v] [v] » PUT (key1®2,b1)
|
)

PUT (key103,c,)
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LOG-STRUCTURED STORAGE =

PUT (key101,a,)

» PUT (key102,b,)

PUT (key103,c,)

Y31 j—mo7 £a)[



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LOG-STRUCTURED STORAGE =

PUT (key101,a,)

» PUT (key102,b,)

PUT (key103,c,)

YSr1g<mo7 £y

Level #0 | SSTable



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LOG-STRUCTURED STORAGE =

PUT (key101,a,)

» PUT (key102,b,)

PUT (key103,c,)

Y31 j—mo7 £a)[

Level #0 | sstable || sSTable
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LOG-STRUCTURED STORAGE =
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Y31 j—mo7 £a)[

Level #0
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LOG-STRUCTURED STORAGE =

GET (key101) » MemT able

‘ L)

SummaryTable

* Min/Max Key (
Per SSTable ]
J

* Key Filter
Per Level

> Level #2 SSTable
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LOG-STRUCTURED STORAGE =

Key-value storage that appends log il SST able
records on disk to represent changes
to tuples (PUT, DELETE).

— Each log record must contain the tuple's
unique identifier.

— Put records contain the tuple contents.

— Deletes marks the tuple as deleted.

DEL (key100)

PUT (keyl01,a,)

PUT (key102,b,)

PUT (key103,c;)

=
<
h
=
g
)
=
)

As the application makes changes to

the database, the DBMS appends log
records to the end of the file without
checking previous log records.
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LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space

and speed up reads.

— Keep "latest” values for each key using a sort-merge algorithm.

DEL (key100)

PUT (key101,a,)

PUT (key102,b.)

PUT (key103,c,)

Newest—Oldest

+

PUT (key101,a,)

PUT (key102,b,)

DEL (key103)

PUT (key104,d,)

=

17
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LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space
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LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space

and speed up reads.
— Keep "latest” values for each key using a sort-merge algorithm.

[ SST able [l SST able [ SST able
DEL (key100) ‘ PUT (key101,a,) DEL (key100)
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PUT (key102,b,) + DEL (key103) »
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LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space

and speed up reads.
— Keep "latest” values for each key using a sort-merge algorithm.

DEL (key100) PUT (keXLaZ) DEL (key100)
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PUT (key103,c,) PUT (key104,d,)
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LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space

and speed up reads.
— Keep "latest” values for each key using a sort-merge algorithm.

[l SSTable W SSTable [ SSTable
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LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space

and speed up reads.
— Keep "latest” values for each key using a sort-merge algorithm.

DEL (key100) PUT (keXLaZ) DEL (key100)
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LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space

and speed up reads.
— Keep "latest” values for each key using a sort-merge algorithm.

[l SSTable [l SSTable [l SSTable
DEL (key100) PUT (keXLaZ) DEL (key100)
PUT (key1@1,a,) PUT (kez2,b1) PUT (key101,a;)
PUT (key102,b,) + DEL (keX3) PUT (key102,b,)
PUT (key103,c,) * PUT (key104,d,) PUT (key103,c,)

PUT (key104,d,)

Newest—Oldest

17
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LOG-STRUCTURED COMPACTION STRATGEGIES™

Approach #1: Leveled Compaction
— Data is organized into levels with

SSTable size limit per level. Level #0 | %120t
— SSTables in a level are non-overlapping

on key ranges (except Level #0).
— Level #0 contains SSTables recently

flushed from memory and contain

overlapping ranges.
— Compactions merge a file from a level

into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.
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<l
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into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
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LOG-STRUCTURED COMPACTION STRATGEGIES™

Approach #1: Leveled Compaction Newest>Oldest
— Data is organized into levels with
Level #0| 33[2P'¢

SSTable size limit per level.
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2
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flushed from memory and contain N Level #1| S°1able || SSTable
(2]

overlapping ranges.

— Compactions merge a file from a level
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LOG-STRUCTURED COMPACTION STRATGEGIES™

Approach #1: Leveled Compaction

— Data is organized into levels with
SSTable size limit per level.

Level #0

— SSTables in a level are non-overlapping §
on key ranges (except Level #0). S

— Level #0 contains SSTables recently é
flushed from memory and contain M Level #1

overlapping ranges.

— Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Better for read-heavy workloads.

_ Newest—Oldest 2

Newest—Oldest
SSTable SSTable SSTable
f>x g>z bk

SSTable
a>h

SSTable
i»r

SSTable
S3z

1
Key Low—High
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LOG-STRUCTURED COMPACTION STRATGEGIES™

Approach #1: Leveled Compaction
— Data is organized into levels with

Level #0

SSTable size limit per level.

— SSTables in a level are non-overlapping
on key ranges (except Level #0).

— Level #0 contains SSTables recently
flushed from memory and contain
overlapping ranges.

— Compactions merge a file from a level
into the next lower level, maintaining
sorted, non-overlapping key ranges.

Key Low—High

SSTable SSTable SSTable
Level #1 ash ior oy

1SapjO<1SamaN

Better for read-heavy workloads.
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LOG-STRUCTURED COMPACTION STRATGEGIES™

Approach #1: Leveled Compaction
— Data is organized into levels with

Level #0

SSTable size limit per level.

— SSTables in a level are non-overlapping
on key ranges (except Level #0).

— Level #0 contains SSTables recently
flushed from memory and contain
overlapping ranges.

— Compactions merge a file from a level
into the next lower level, maintaining Level #2|  S3Table
sorted, non-overlapping key ranges.

Key Low—High

SSTable SSTable SSTable
Level #1 ash ior oy

1SapjO<1SamaN

Better for read-heavy workloads.
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LOG-STRUCTURED COMPACTION STRATGEGIES™

Approach #1: Universal
Compaction

; g . . SSTable | | SSTable | | SSTable | | SSTable | | SSTable
— SSTables reside in a single "universal” .y 1sm ast rax asq

level (i.e., no multi-level hierarchy).

— DBMS triggers compaction when too
many SSTables overlap in key ranges or
exceed size thresholds.

Better for insert-heavy workloads and
time-oriented queries
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LOG-STRUCTURED COMPACTION STRATGEGIES™

Approach #1; Universal
Compaction

. g . . SSTable | | SSTable | | SSTable | | SSTable | | SSTable
— SSTables reside in a single "universal” .y 1sm ast rax asq
level (i.e., no multi-level hierarchy). \ ' ]
— DBMS triggers compaction when too SSTable
many SSTables overlap in key ranges or X

exceed size thresholds.
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time-oriented queries
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DISCUSSION =

LOg-StI’UCtUI’Gd storage managers are more comimon

today than in previous decades.
— This is partly due to the proliferation of RocksDB.

) EVENT SToRE €& SlateDB ¥ CockroachDB g — (tanbn
I ClickHouse fgiees |/ ClickHouse =3 LW NEON — Qi)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

@ Ievel DB WIREDTIGER @ XTDB W ScyllaDB @ TiDB Q QuestDB WA Weeviete
RO C ks D B £ ¥ cassandra  *7 yugabyteDB @GreptimeDB S peed b U RisingWave

What are some downsides of this approach?
— Write- Amplification.
— Compaction is expensive.
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SYSTEM CATALOGS =

A DBMS stores meta-data about databases in its

internal catalogs.

— Tables, columns, indexes, views
— Users, permissions

— Internal statistics

Almost every DBMS stores the database's catalog inside

itself (i.e., as tables).
— Wrap object abstraction around tuples.
— Specialized code for "bootstrapping" catalog tables.
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SYSTEM CATALOGS =

You can query the DBMS'’s internal
INFORMATION_SCHEMA catalog to get info about the

database.

— ANSI standard set of read-only views that provide info about all
the tables, views, columns, and procedures in a database

DBMSs also have non-standard shortcuts to retrieve
this information.
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ACCESSING TABLE SCHEMA =

List all the tables in the current database:

SELECT * SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_catalog = '<db name>';

\d; Postgres

SHOW TABLES; MySQL

.tables SQLite
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ACCESSING TABLE SCHEMA =

List all the tables in the student table:

SELECT * SQL-92
FROM INFORMATION_SCHEMA.TABLES
WHERE table_name = 'student'

\d student; Postgres

DESCRIBE student; MySQL

.schema student SQlLite
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SCHEMA CHANGES =

ADD COLUMN:

— Slow: Copy tuples into new pages and modify to add column.
— Fast: Record meta-data on default value and incrementally
update tuples to include new column.

DROP COLUMN:

— Mark column as "deprecated", clean up later.
— New tuples omit the dropped column.

CHANGE COLUMN:

— Rename: Update meta-data in catalog.

— Type: Check whether new type is binary compatible with
existing values. If no, rewrite tuples.

— Constraints: Scan entire table to see if it violates constraint.

— Default: Update meta-data in catalog.
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INDEXES

CREATE INDEX:

— Scan the entire table and populate the index.

— Must record changes made by txns that modified the table while
another txn was building the index.

— When the scan completes, lock the table and resolve changes
that were missed after the scan started.

DROP INDEX:

— Drop the index logically from the catalog.
— [t only becomes "invisible" when the txn that dropped it
commits. All existing txns will still have to update it.

26
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CONCLUSION

Log-structured storage is an alternative approach to the

tuple-oriented architecture.
— Ideal for write-heavy workloads because it maximizes
sequential disk I/O.

The storage manager is not entirely independent from
the rest of the DBMS.

27
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NEXT CLASS

Breaking your preconceived notion that a DBMS stores
everything as rows...

28
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