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ADMINISTRIVIA

Project #1 is due Sunday Feb 15th @ 11:59pm
→ Recitation Wednesday Jan 28th @ 6:30pm (@64)

Homework #2 is due Sunday Feb 8th @ 11:59pm
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UPCOMING DATABASE EVENTS

CMU-DB Reading Group
→ Tuesdays @ 12:00pm
→ GHC 9115
→ Free food!

Database Seminar Series (Zoom)
→ PostgreSQL vs. The World
→ Mondays @ 4:30pm 
→ Starting Feb 2nd 
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LAST CLASS

We introduced the buffer pool manager as the location 
of where the DBMS stores copies of database pages it 
retrieves from non-volatile storage.

This is for a disk-oriented architecture where the 
DBMS assumes that the primary storage location of the 
database is on non-volatile disk.

We then discussed a page-oriented storage scheme for 
organizing tuples across heap files.
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PAGE LAYOUT

For any page storage architecture, we now need to 
decide how to organize the data inside of the page.
→ We are still assuming that we are only storing tuples in a

row-oriented storage model.
→ We will also assume that each tuple fits in a single page.

Approach #1: Slotted Page Storage

Approach #2: Index-organized Storage

Approach #3: Log-structured Storage
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TODAY'S AGENDA

Slotted Page Storage

Index-Organized Storage

Log-Structured Storage

System Catalogs

DB Flash Talk: SingleStore
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SLOTTED PAGES

The most common page layout 
scheme is called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.
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Record Id Sizes

RECORD IDS

ROWID

The DBMS assigns each logical tuple a 
unique record identifier that 
represents its physical location in the 
database.
→ Example: File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary key 

and stores them as a hidden attribute.

Applications should never rely on 
these IDs to mean anything.

8

TID 4-bytes

CTID 6-bytes

ROWID 8-bytes

%%physloc%% 8-bytes

RDB$DB_KEY 8-bytes

ROWID 10-bytes

https://db.cs.cmu.edu/
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https://www.sqlite.org/rowidtable.html
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SLOTTED PAGE STORAGE: READS

Get an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.

The DBMS relies on indexes to find individual tuples 
because the tables are inherently unsorted.
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SLOTTED PAGE STORAGE: READS

For a given key(s), an index provides a 
mapping from that key(s) to one or 
more tuples with that value via their 
Record Ids.

The DBMS has to first access the 
pages for the index then read the 
page(s) for the tuple(s).

But what if the DBMS could keep 
tuples sorted automatically using 
an index?
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INDEX-ORGANIZED STORAGE

DBMS stores a table's tuples as the value of an index 
data structure.
→ Leaf nodes page layout are similar to slotted page layout.
→ Tuples are typically sorted in page based on key.
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SLOTTED PAGE STORAGE: WRITES

Insert a new tuple:
→ Check page directory to find a page with a free slot.
→ Retrieve the page from disk (if not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.
→ If new data fits, overwrite existing data.

Otherwise, mark existing tuple as deleted and insert new 
version in a different page.

12
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SLOTTED PAGE STORAGE

HDF Google Colossu S3 Expres

Problem #1: Fragmentation
→ Pages are not fully utilized (unusable space, empty slots).

Problem #2: Useless Disk I/O
→ DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O
→ Worse case scenario when updating multiple tuples is that each 

tuple is on a separate page.

What if the DBMS cannot overwrite data in pages 
and could only create new pages?
→ Examples: HDFS, Google Colossus, S3 Express
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LOG-STRUCTURED STORAGE

Instead of storing tuples in pages and updating the in-
place, the DBMS maintains a log that records changes 
to tuples.
→ Each log entry represents a tuple PUT/DELETE operation.
→ Originally proposed as log-structure merge trees (LSM Trees) 

in 1996. 

The DBMS applies changes to an in-memory data 
structure (MemTable) and then writes out the changes 
sequentially to disk as sorted-string tables (SSTables).
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MemTable

LOG-STRUCTURED STORAGE
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MemTable
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LOG-STRUCTURED STORAGE

Key-value storage that appends log 
records on disk to represent changes 
to tuples (PUT, DELETE).
→ Each log record must contain the tuple's 

unique identifier.
→ Put records contain the tuple contents.
→ Deletes marks the tuple as deleted.

As the application makes changes to 
the database, the DBMS appends log 
records to the end of the file without 
checking previous log records.
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SSTable

LOG-STRUCTURED COMPACTION

Periodically compact data files to reduce wasted space 
and speed up reads.
→ Keep "latest" values for each key using a sort-merge algorithm.
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LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Leveled Compaction
→ Data is organized into levels with

SSTable size limit per level.
→ SSTables in a level are non-overlapping 

on key ranges (except Level #0).
→ Level #0 contains SSTables recently 

flushed from memory and contain 
overlapping ranges.

→ Compactions merge a file from a level
into the next lower level, maintaining 
sorted, non-overlapping key ranges.

Better for read-heavy workloads.
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LOG-STRUCTURED COMPACTION STRATGEGIES

Approach #1: Universal 
Compaction
→ SSTables reside in a single "universal" 

level (i.e., no multi-level hierarchy).
→ DBMS triggers compaction when too 

many SSTables overlap in key ranges or 
exceed size thresholds.

Better for insert-heavy workloads and 
time-oriented queries
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Log-structured storage managers are more common 
today than in previous decades.
→ This is partly due to the proliferation of RocksDB.

What are some downsides of this approach?
→ Write-Amplification.
→ Compaction is expensive.

DISCUSSION
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SYSTEM CATALOGS

A DBMS stores meta-data about databases in its 
internal catalogs.
→ Tables, columns, indexes, views
→ Users, permissions
→ Internal statistics

Almost every DBMS stores the database's catalog inside 
itself (i.e., as tables).
→ Wrap object abstraction around tuples.
→ Specialized code for "bootstrapping" catalog tables.

21
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SYSTEM CATALOGS

You can query the DBMS’s internal 
INFORMATION_SCHEMA catalog to get info about the 
database.
→ ANSI standard set of read-only views that provide info about all 

the tables, views, columns, and procedures in a database

DBMSs also have non-standard shortcuts to retrieve 
this information.

22
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ACCESSING TABLE SCHEMA

List all the tables in the current database:

23

SELECT *
  FROM INFORMATION_SCHEMA.TABLES
 WHERE table_catalog = '<db name>';

SQL - 92

\d; Postgres

SHOW TABLES; MySQL

.tables SQLite
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ACCESSING TABLE SCHEMA

List all the tables in the student table:

24

SELECT *
  FROM INFORMATION_SCHEMA.TABLES
 WHERE table_name = 'student'

SQL - 92

\d student; Postgres

DESCRIBE student; MySQL

.schema student SQLite
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SCHEMA CHANGES

ADD COLUMN:
→ Slow: Copy tuples into new pages and modify to add column.
→ Fast: Record meta-data on default value and incrementally 

update tuples to include new column.

DROP COLUMN:
→ Mark column as "deprecated", clean up later.
→ New tuples omit the dropped column.

CHANGE COLUMN:
→ Rename: Update meta-data in catalog.
→ Type: Check whether new type is binary compatible with 

existing values. If no, rewrite tuples.
→ Constraints: Scan entire table to see if it violates constraint.
→ Default: Update meta-data in catalog.

25
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INDEXES

CREATE INDEX:
→ Scan the entire table and populate the index.
→ Must record changes made by txns that modified the table while 

another txn was building the index.
→ When the scan completes, lock the table and resolve changes 

that were missed after the scan started.

DROP INDEX:
→ Drop the index logically from the catalog.
→ It only becomes "invisible" when the txn that dropped it 

commits. All existing txns will still have to update it.

26
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CONCLUSION

Log-structured storage is an alternative approach to the 
tuple-oriented architecture.
→ Ideal for write-heavy workloads because it maximizes 

sequential disk I/O.

The storage manager is not entirely independent from 
the rest of the DBMS.

27
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NEXT CLASS

Breaking your preconceived notion that a DBMS stores 
everything as rows…

28
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