

Carnegie Mellon University

Database Systems

15-445/645 SPRING 2026

ANDY PAVLO

JIGNESH PATEL

Lecture #06

Database Storage:
Column Stores +
Data Compression

ADMINISTRIVIA

Project #1 is due Sunday Feb 15th @ 11:59pm

- Recitation Video + Slides ([@64](#))
- Perf Recitation on Wednesday Feb 4th @ 6:30pm ([@79](#))

Homework #2 is due Sunday Feb 8th @ 11:59pm

UPCOMING DATABASE TALKS

Redpanda Oxla (DB Seminar)

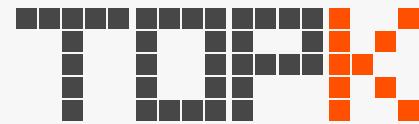
- Monday Feb 2nd @ 4:30pm ET
- Zoom

Amazon Aurora DSQL (DB Seminar)

- Monday Feb 9th @ 4:30pm ET
- Zoom

TopK (DB Seminar)

- Monday Feb 16th @ 4:30pm ET
- Zoom



LAST CLASS

We discussed storage architecture alternatives to the slotted page storage scheme.

- Log-structured storage
- Index-organized storage

These approaches are ideal for write-heavy
(**INSERT/UPDATE/DELETE**) workloads.

But the most important query for some workloads may be read (**SELECT**) performance...

TODAY'S AGENDA

Database Workloads

Storage Models

Data Compression

DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)

- Fast operations that only read/update a small amount of data each time.

On-Line Analytical Processing (OLAP)

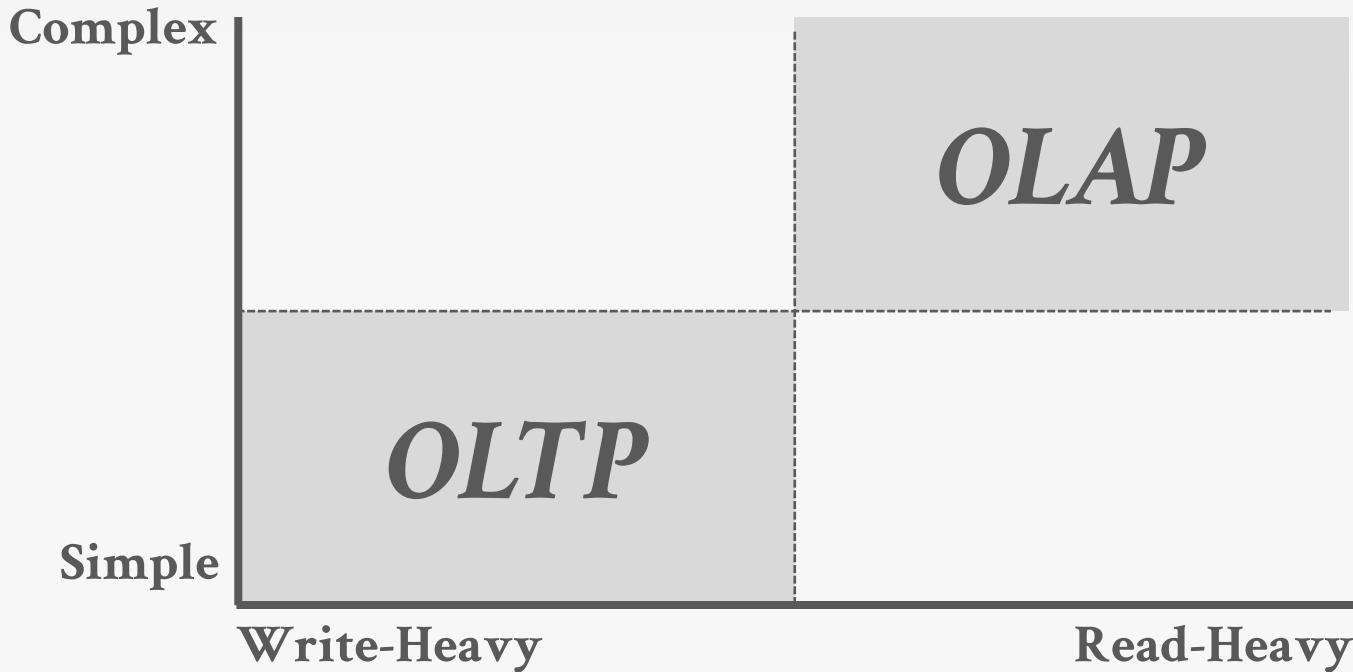
- Complex queries that read a lot of data to compute aggregates.

Hybrid Transaction + Analytical Processing

- OLTP + OLAP together on the same database instance

DATABASE WORKLOADS

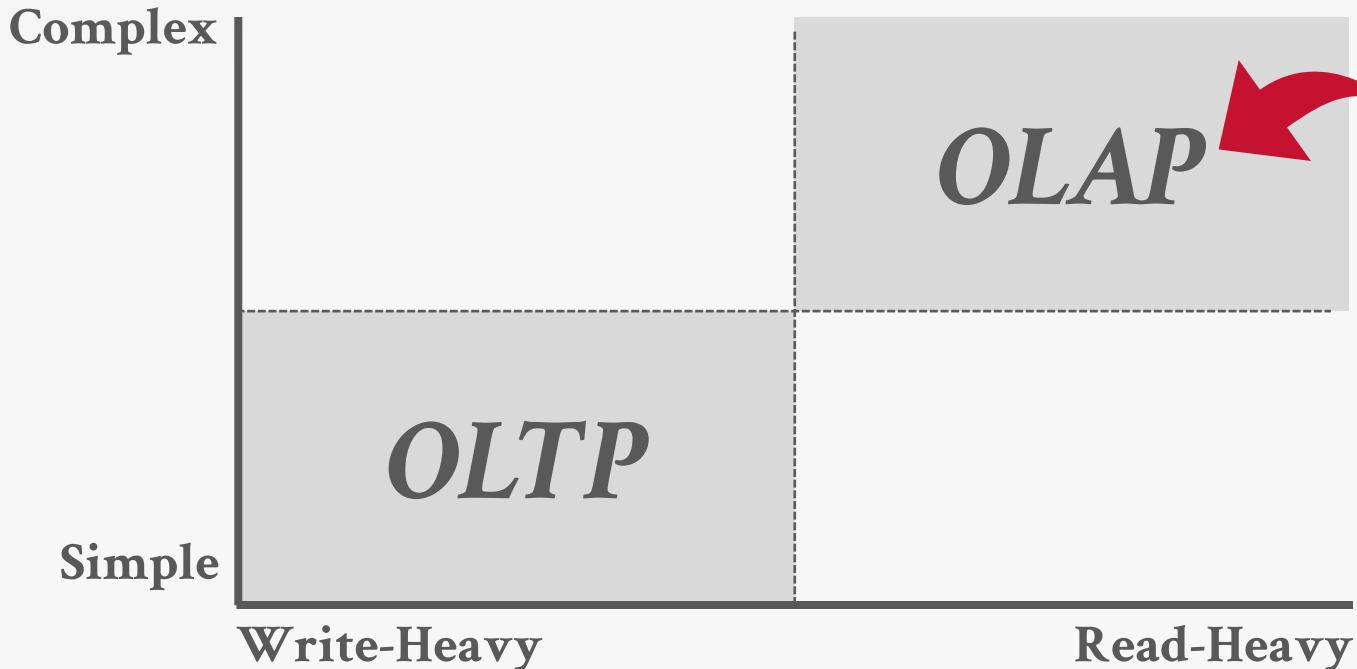
Operation Complexity



Workload Focus

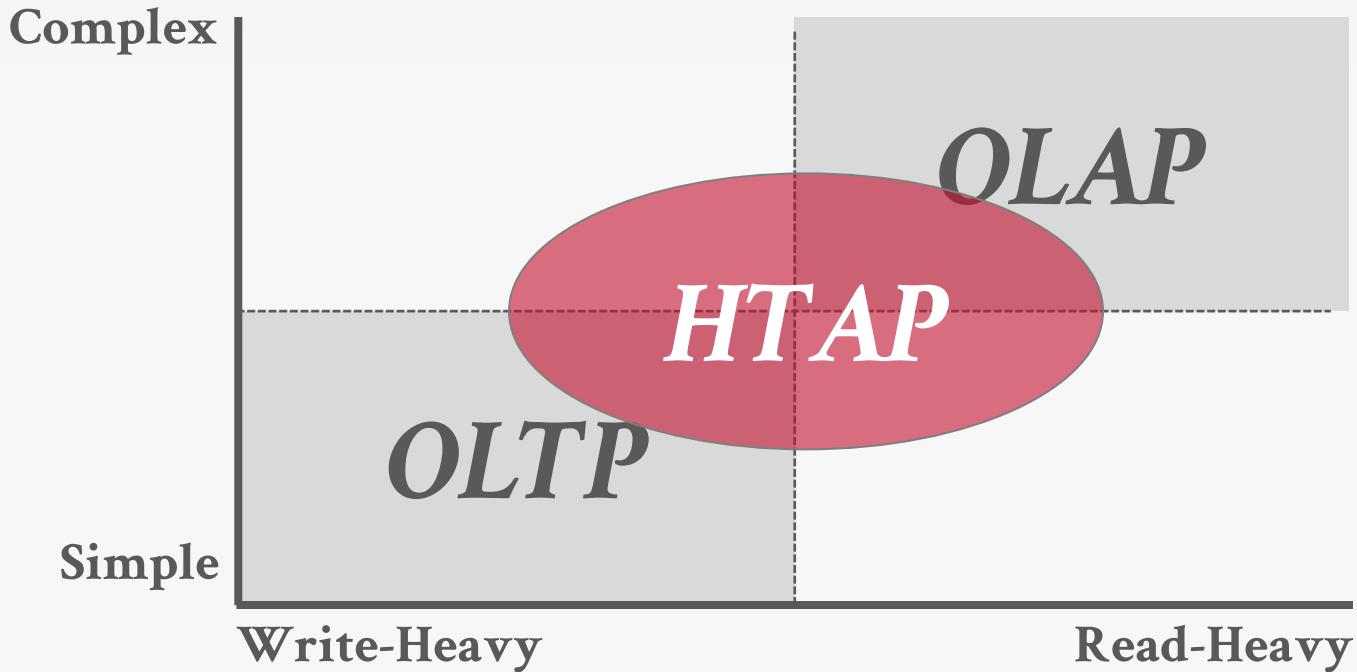
DATABASE WORKLOADS

Operation Complexity



DATABASE WORKLOADS

Operation Complexity



Workload Focus

Source: [Mike Stonebraker](#)

WIKIPEDIA EXAMPLE


```
CREATE TABLE useracct (
    userID INT PRIMARY KEY,
    userName VARCHAR UNIQUE,
    :
);
```

```
CREATE TABLE pages (
    pageID INT PRIMARY KEY,
    title VARCHAR UNIQUE,
    latest INT
    ↗ REFERENCES revisions (revID),
);
```

```
CREATE TABLE revisions (
    revID INT PRIMARY KEY,
    userID INT REFERENCES useracct (userID),
    pageID INT REFERENCES pages (pageID),
    content TEXT,
    updated DATETIME
);
```

OBSERVATION

The relational model does not specify that the DBMS must store all a tuple's attributes together in a single page.

This may not actually be the best layout for some workloads...

OLTP

On-line Transaction Processing:

- Simple queries that read/update a small amount of data that is related to a single entity in the database.

This is usually the kind of application that people build first.

```
SELECT P.* , R.*  
  FROM pages AS P  
INNER JOIN revisions AS R  
    ON P.latest = R.revID  
 WHERE P.pageID = ?
```

```
UPDATE useracct  
  SET lastLogin = NOW(),  
      hostname = ?  
 WHERE userID = ?
```

```
INSERT INTO revisions  
VALUES ( ?, ?, ..., ? )
```

OLAP

On-line Analytical Processing:

- Complex queries that read large portions of the database spanning multiple entities.

You execute these workloads on the data you have collected from your OLTP application(s).

```
SELECT COUNT(U.lastLogin),  
       EXTRACT(month FROM  
              U.lastLogin) AS month  
  FROM useracct AS U  
 WHERE U.hostname LIKE '%.gov'  
 GROUP BY  
       EXTRACT(month FROM U.lastLogin)
```

STORAGE MODELS

A DBMS's **storage model** specifies how it physically organizes tuples on disk and in memory.

- Can have different performance characteristics based on the target workload (OLTP vs. OLAP).
- Influences the design choices of the rest of the DBMS.

Choice #1: N-ary Storage Model (NSM)

Choice #2: Decomposition Storage Model (DSM)

Choice #3: Hybrid Storage Model (PAX)

N-ARY STORAGE MODEL (NSM)

The DBMS stores (almost) all attributes for a single tuple contiguously in a single page.
→ Also commonly known as a row store

Ideal for OLTP workloads where queries are more likely to access individual entities and execute write-heavy workloads.

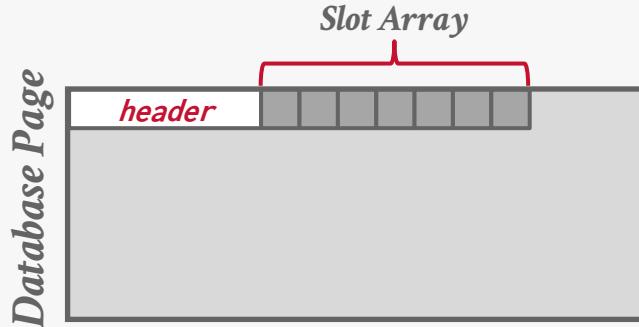
NSM database page sizes are typically some constant multiple of 4 KB hardware pages.

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a tuple's fixed-length and variable-length attributes contiguously in a single slotted page.

The tuple's **record id** (page#, slot#) is how the DBMS uniquely identifies a physical tuple.

	Col A	Col B	Col C
Row #0	a0	b0	c0
Row #1	a1	b1	c1
Row #2	a2	b2	c2
Row #3	a3	b3	c3
Row #4	a4	b4	c4
Row #5	a5	b5	c5

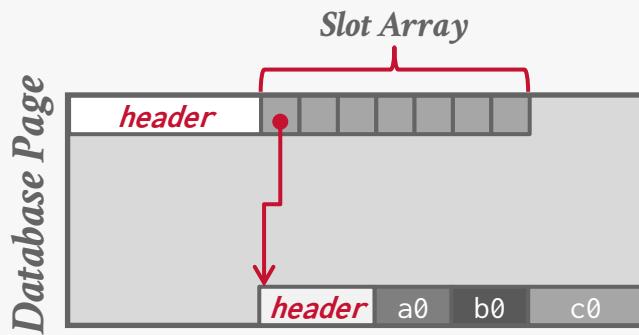


NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a tuple's fixed-length and variable-length attributes contiguously in a single slotted page.

The tuple's **record id** (page#, slot#) is how the DBMS uniquely identifies a physical tuple.

	Col A	Col B	Col C
Row #0	a0	b0	c0
Row #1	a1	b1	c1
Row #2	a2	b2	c2
Row #3	a3	b3	c3
Row #4	a4	b4	c4
Row #5	a5	b5	c5

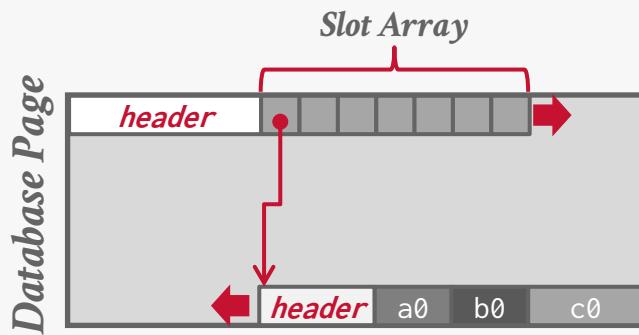


NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a tuple's fixed-length and variable-length attributes contiguously in a single slotted page.

The tuple's **record id** (page#, slot#) is how the DBMS uniquely identifies a physical tuple.

	Col A	Col B	Col C
Row #0	a0	b0	c0
Row #1	a1	b1	c1
Row #2	a2	b2	c2
Row #3	a3	b3	c3
Row #4	a4	b4	c4
Row #5	a5	b5	c5

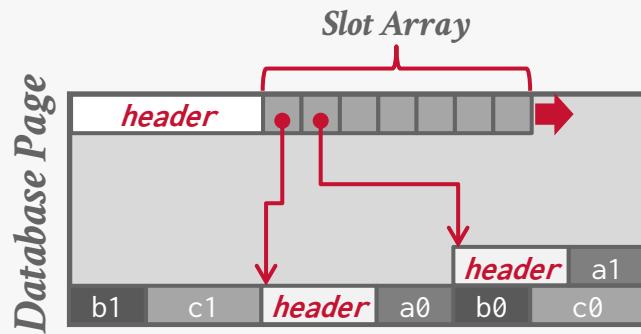


NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a tuple's fixed-length and variable-length attributes contiguously in a single slotted page.

The tuple's **record id** (page#, slot#) is how the DBMS uniquely identifies a physical tuple.

	Col A	Col B	Col C
Row #0	a0	b0	c0
Row #1	a1	b1	c1
Row #2	a2	b2	c2
Row #3	a3	b3	c3
Row #4	a4	b4	c4
Row #5	a5	b5	c5

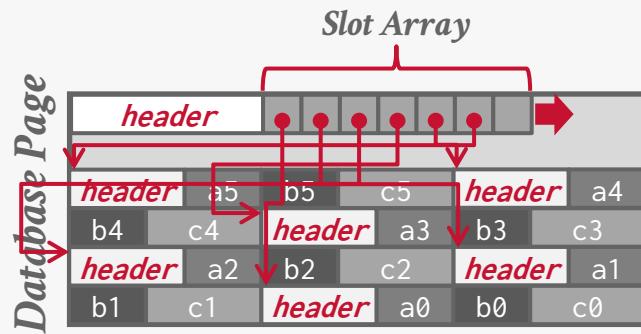


NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a tuple's fixed-length and variable-length attributes contiguously in a single slotted page.

The tuple's **record id** (page#, slot#) is how the DBMS uniquely identifies a physical tuple.

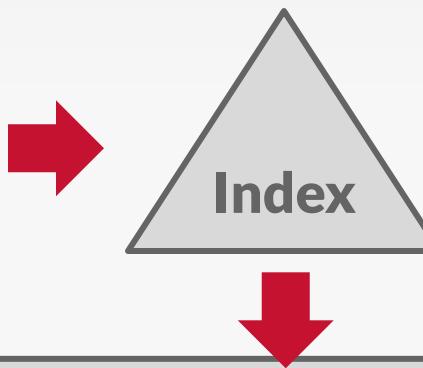
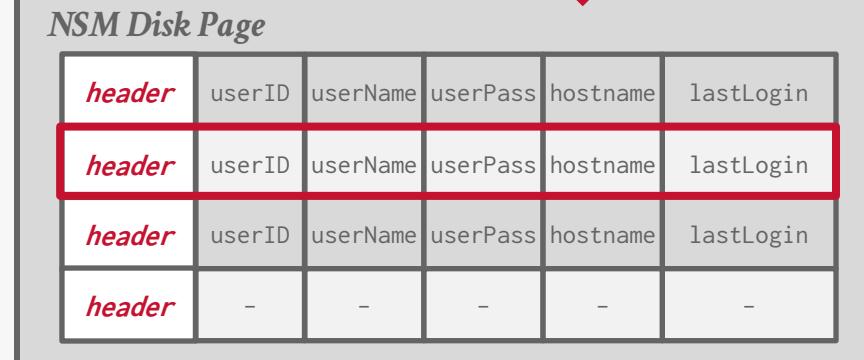
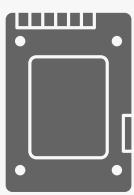
	Col A	Col B	Col C
Row #0	a0	b0	c0
Row #1	a1	b1	c1
Row #2	a2	b2	c2
Row #3	a3	b3	c3
Row #4	a4	b4	c4
Row #5	a5	b5	c5



NSM: OLTP EXAMPLE

```
SELECT * FROM useracct  
WHERE userName = ?  
AND userPass = ?
```

Lectures #8-9



Disk
Database File

NSM: OLTP EXAMPLE

```
SELECT * FROM useracct
  WHERE userName = ?
    AND userPass = ?
```

```
INSERT INTO useracct
  VALUES (?,?,...?)
```

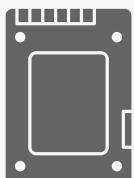
Lectures #8-9

Index

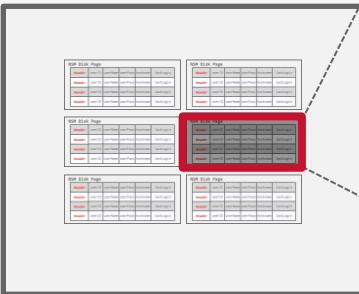
NSM Disk Page

header	userID	userName	userPass	hostname	lastLogin
header					
header					
header					

Database File

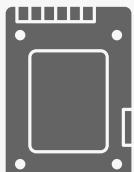


Disk



NSM: OLAP EXAMPLE

```
SELECT COUNT(U.lastLogin),  
       EXTRACT(month FROM U.lastLogin) AS month  
  FROM useracct AS U  
 WHERE U.hostname LIKE '%.gov'  
 GROUP BY EXTRACT(month FROM U.lastLogin)
```

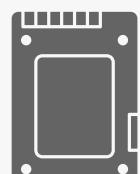


Disk

Database File

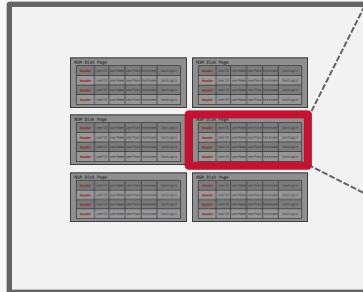
NSM: OLAP EXAMPLE

```
SELECT COUNT(U.lastLogin),
       EXTRACT(month FROM U.lastLogin) AS month
  FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)
```



Disk

Database File

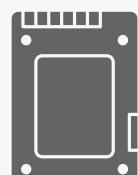


NSM Disk Page

<i>header</i>	userID	userName	userPass	hostname	lastLogin
<i>header</i>					
<i>header</i>					
<i>header</i>					

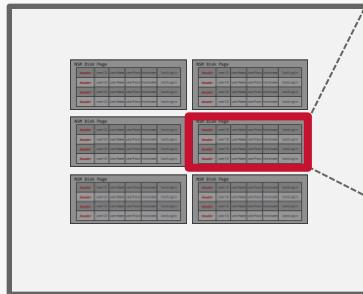
NSM: OLAP EXAMPLE

```
SELECT COUNT(U.lastLogin),
       EXTRACT(month FROM U.lastLogin) AS month
  FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)
```



Disk

Database File



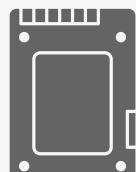
NSM Disk Page

<i>header</i>	userID	userName	userPass	hostname	lastLogin
<i>header</i>					
<i>header</i>					
<i>header</i>					

NSM: OLAP EXAMPLE

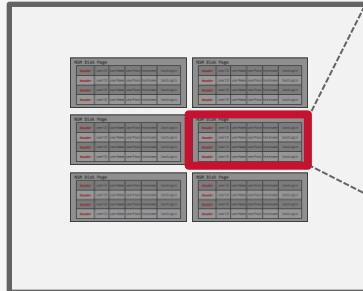
```

SELECT COUNT(U.lastLogin),
       EXTRACT(month FROM U.lastLogin) AS month
  FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)
  
```



Disk

Database File

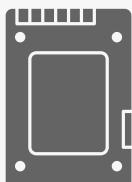


NSM Disk Page

<i>header</i>	userID	userName	userPass	hostname	lastLogin
<i>header</i>					lastLogin
<i>header</i>					lastLogin
<i>header</i>					lastLogin

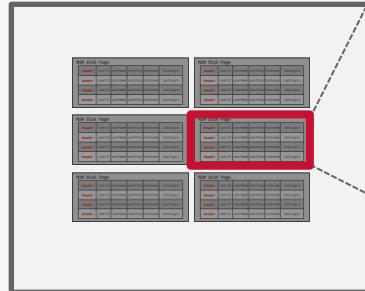
NSM: OLAP EXAMPLE

```
SELECT COUNT(U.lastLogin),
       EXTRACT(month FROM U.lastLogin) AS month
  FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)
```



Disk

Database File



NSM Disk Page

header	userID	userName	userPass	hostname	lastLogin
header					lastLogin
header					lastLogin
header					lastLogin

Useless Data!

NSM: SUMMARY

Advantages

- Fast inserts, updates, and deletes.
- Good for queries that need the entire tuple (OLTP).
- Can use index-oriented physical storage for clustering.

Disadvantages

- Not good for scanning large portions of the table and/or a subset of the attributes.
- Terrible memory locality in access patterns.
- Not ideal for compression because of multiple value domains within a single page.

DECOMPOSITION STORAGE MODEL (DSM)

Store a single attribute for all tuples contiguously in a block of data.
→ Also known as a "column store"

Ideal for OLAP workloads where read-only queries perform large scans over a subset of the table's attributes.

DBMS is responsible for combining/splitting a tuple's attributes when reading/writing.

A DECOMPOSITION STORAGE MODEL

George F. Copeland
Satyap N. Khoshafian
Microelectronics And Technology Computer Corporation
9430 Research Blvd
Austin, Texas 78759

Abstract

This report examines the relative advantages of a storage model based on decomposition of community view relations into binary relations containing one attribute (one attribute) over conventional n-ary storage models.

There seems to be a general consensus among the database community that the n-ary approach is better. This conclusion is usually based on a comparison of the performance of two classes of database systems. The purpose of this report is not to claim that decomposition is better. Instead, we compare the two approaches to see what is well-founded and that neither is clearly better until a complete analysis is made along the lines of the decomposition of a database system. The purpose of this report is to move further in both scope and depth toward analyzing the two approaches. Such elements as simplicity, generality, storage requirements, update performance and retrieval performance

Some database systems use a fully transposed storage model, for example, RHM (Lorie and Symonds 1976), RDB (Wingate 1977), RDBM (Turner et al 1978), and others (Burstall and Thomas 1981, Tsai 1982, and others (Bilmes and Turner 1982) and (Tankska 1983). This approach stores all values of the same attribute of a conceptual schema relation together. Several studies have compared the performance of transposed storage models with n-ary storage models. Several studies have compared the performance of transposed storage models with n-ary storage models. (Bilmes and Turner 1978, and others (Bilmes and Turner 1979, Mehta and Neverov 1979, and others (Bilmes and Turner 1980, and others (Bilmes and Turner 1984). In this report, we describe the advantages of fully transposed storage models, such as a transposed storage model with surrogates included. The RHM pairs each attribute value with the surrogate value and stores the pairs together in a binary relation. For example, the above relation would be stored as

sl1 sl2 val	sl1 sl2 val	sl1 sl2 val
a1 v1	a1 v1	a1 v1
a2 v2	a2 v2	a2 v2
a3 v3	a3 v3	a3 v3

In addition, the RHM stores two copies of each attribute relation. One copy is clustered on the attribute value and the other is clustered on the surrogate. These statements apply only to base (i.e., extensional) data. To support the relational model, the DBM needs to add attributes need an n-ary representation. If a richer data model than normalized relations is supported, then inheritance and other results need a correspondingly richer representation.

This report compares these two storage models based on several criteria. Section 2 compares the relative complexity and generality of the two storage models. Section 3 compares their storage requirements. Section 4 compares their update performance. Section 5 compares their retrieval performance. Finally, Section 6 provides a summary and suggests some refinements for the DSM.

1 INTRODUCTION

Most database systems use an n-ary storage model (DSM) for a set of records. This approach stores all values of the same attribute of a conceptual schema relation together.

Also, various inverted file or cluster indexes might be added for direct access storage. The key question is: is this the attributes of the conceptual schema record are stored together. For example, the conceptual schema relation

sl1 sl2 sl3
a1 v1
a2 v2
a3 v3

contains a surrogate for record identity and three attributes per record. The DSM would store sl1, v1, v2 and v3 together for each record.

2 SIMPLICITY AND GENERALITY

This Section compares the two storage models based on several criteria. Section 2 compares the relative complexity and generality of the two storage models. Section 3 compares their storage requirements. Section 4 compares their update performance. Section 5 compares their retrieval performance. Finally, Section 6 provides a summary and suggests some refinements for the DSM.

Permit me to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage in violation of the copyright laws of the publication and no other person is given a copy that copies is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM 0-89791-160-1/85/005/0268 \$00.75

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g., nulls) in separate arrays of **fixed-length** values.

- Most systems identify unique physical tuples using offsets into these arrays.
- Need to handle variable-length values...

Maintain separate pages per attribute with a dedicated header area for meta-data about entire column.

	Col A	Col B	Col C
Row #0	a0	b0	c0
Row #1	a1	b1	c1
Row #2	a2	b2	c2
Row #3	a3	b3	c3
Row #4	a4	b4	c4
Row #5	a5	b5	c5

Page #1	header		null bitmap			
	a0	a1	a2	a3	a4	a5

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g., nulls) in separate arrays of **fixed-length** values.

- Most systems identify unique physical tuples using offsets into these arrays.
- Need to handle variable-length values...

Maintain separate pages per attribute with a dedicated header area for meta-data about entire column.

	Col A	Col B	Col C
Row #0	a0	b0	c0
Row #1	a1	b1	c1
Row #2	a2	b2	c2
Row #3	a3	b3	c3
Row #4	a4	b4	c4
Row #5	a5	b5	c5

Page #1	header		null bitmap			
	a0	a1	a2	a3	a4	a5
Page #2	header		null bitmap			
	b0	b1	b2	b3	b4	b5

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g., nulls) in separate arrays of **fixed-length** values.

- Most systems identify unique physical tuples using offsets into these arrays.
- Need to handle variable-length values...

Maintain separate pages per attribute with a dedicated header area for meta-data about entire column.

	Col A	Col B	Col C
Row #0	a0	b0	c0
Row #1	a1	b1	c1
Row #2	a2	b2	c2
Row #3	a3	b3	c3
Row #4	a4	b4	c4
Row #5	a5	b5	c5

Page #1	header		null bitmap			
	a0	a1	a2	a3	a4	a5
Page #2	header		null bitmap			
	b0	b1	b2	b3	b4	b5
Page #3	header		null bitmap			
	c0	c1	c2	c3	c4	c5

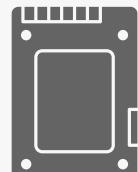
DSM: OLAP EXAMPLE

<i>header</i>	userID	userName	userPass	hostname	lastLogin
<i>header</i>	userID	userName	userPass	hostname	lastLogin
<i>header</i>	userID	userName	userPass	hostname	lastLogin
<i>header</i>	userID	userName	userPass	hostname	lastLogin

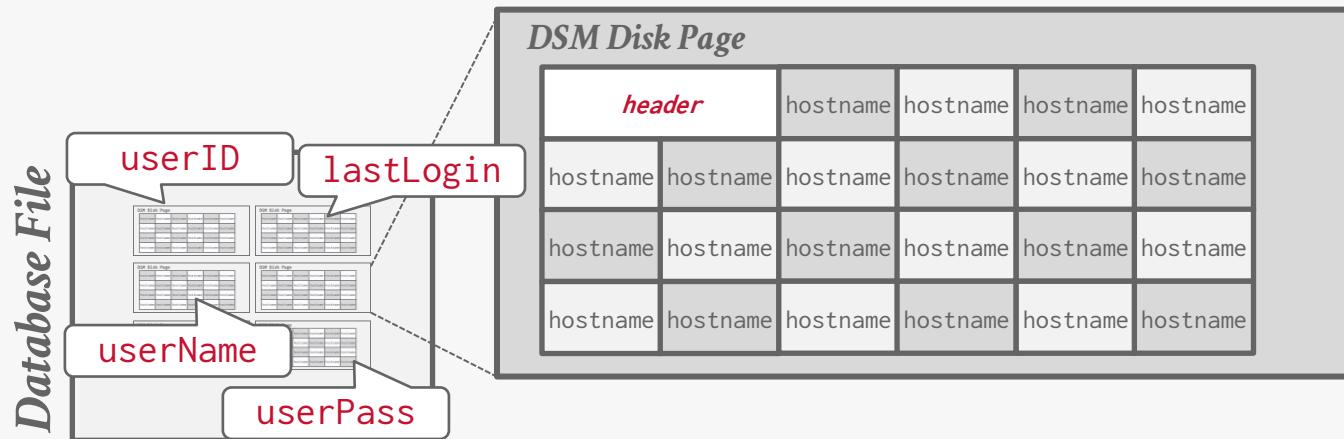
DSM: OLAP EXAMPLE

<i>header</i>	userID	userName	userPass	hostname	lastLogin
<i>header</i>	userID	userName	userPass	hostname	lastLogin
<i>header</i>	userID	userName	userPass	hostname	lastLogin
<i>header</i>	userID	userName	userPass	hostname	lastLogin

DSM: OLAP EXAMPLE



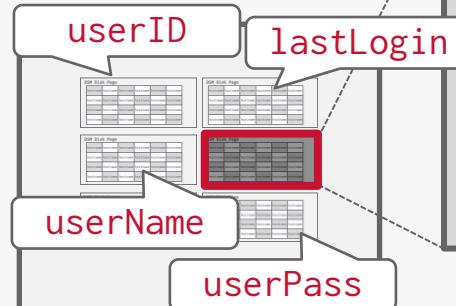
Disk



DSM: OLAP EXAMPLE

```
SELECT COUNT(U.lastLogin),  
       EXTRACT(month FROM U.lastLogin) AS month  
  FROM useracct AS U  
 WHERE U.hostname LIKE '%.gov'  
 GROUP BY EXTRACT(month FROM U.lastLogin)
```


Database File

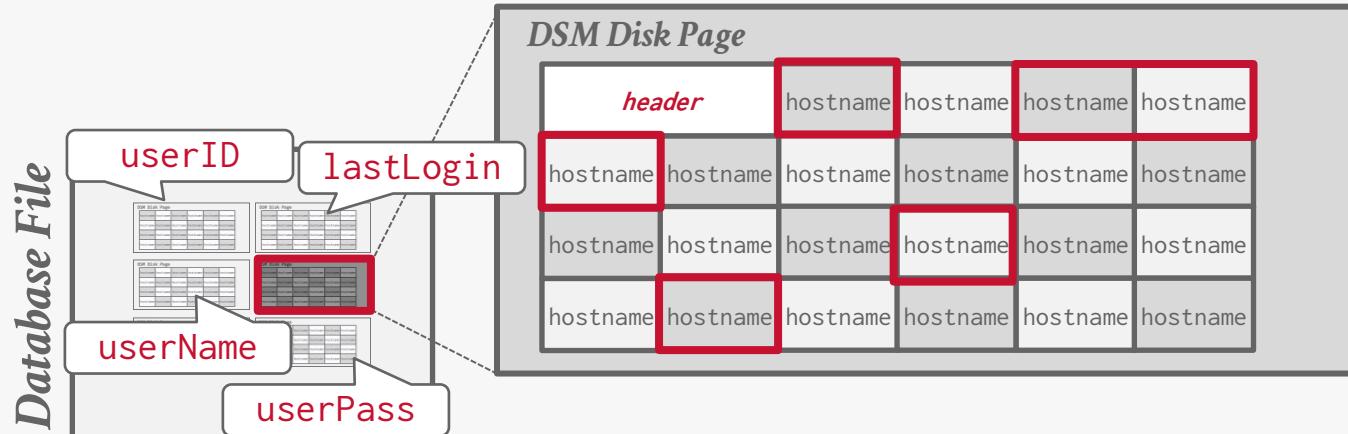


DSM Disk Page

<i>header</i>	hostname	hostname	hostname	hostname	hostname
hostname	hostname	hostname	hostname	hostname	hostname
hostname	hostname	hostname	hostname	hostname	hostname
hostname	hostname	hostname	hostname	hostname	hostname
hostname	hostname	hostname	hostname	hostname	hostname

DSM: OLAP EXAMPLE

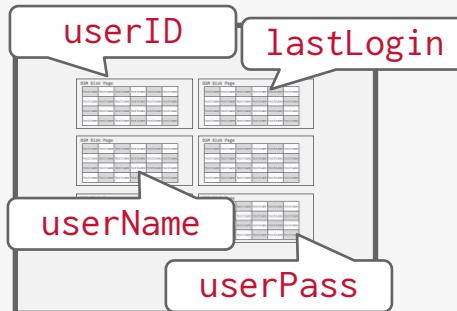
```
SELECT COUNT(U.lastLogin),  
       EXTRACT(month FROM U.lastLogin) AS month  
  FROM useracct AS U  
 WHERE U.hostname LIKE '%.gov'  
 GROUP BY EXTRACT(month FROM U.lastLogin)
```



DSM: OLAP EXAMPLE

```
SELECT COUNT(U.lastLogin),  
       EXTRACT(month FROM U.lastLogin) AS month  
  FROM useracct AS U  
 WHERE U.hostname LIKE '%.gov'  
 GROUP BY EXTRACT(month FROM U.lastLogin)
```

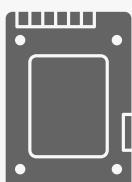

Database File



DSM: OLAP EXAMPLE

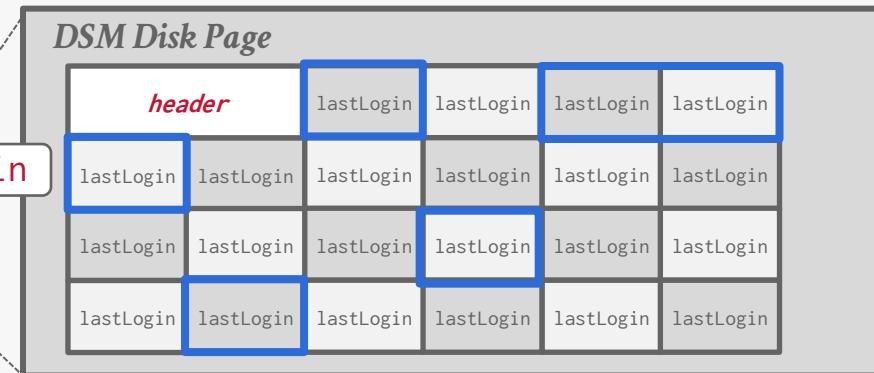
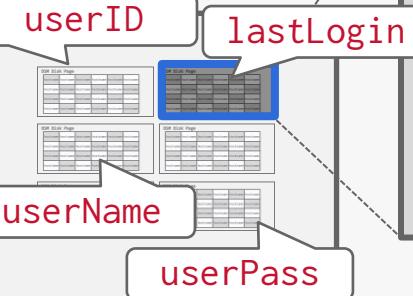
```

SELECT COUNT(U.lastLogin),
       EXTRACT(month FROM U.lastLogin) AS month
  FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)
  
```



Disk

Database File



DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets

→ Each value is the same length for an attribute.

Offsets

	A	B	C	D
0				
1				
2				
3				

Embedded Ids

	A	B	C	D
0	0	0	0	0
1	1	1	1	1
2	2	2	2	2
3	3	3	3	3

DSM: VARIABLE-LENGTH DATA

Padding variable-length fields to ensure they are fixed-length is wasteful, especially for large attributes.

A better approach is to use *dictionary compression* to convert repetitive variable-length data into fixed-length values (typically 32-bit integers).

→ More on this later in this lecture...

DECOMPOSITION STORAGE MODEL (DSM)

Advantages

- Reduces the amount wasted I/O per query because the DBMS only reads the data that it needs.
- Faster query processing because of increased locality and cached data reuse ([Lecture #14](#)).
- Better data compression because data from the same domain are physically collocated.

Disadvantages

- Slow for point queries, inserts, updates, and deletes because of tuple splitting/stitching/reorganization.

OBSERVATION

OLAP queries almost never access a single column in a table by itself.

→ At some point during query execution, the DBMS must get other columns and stitch the original tuple back together.

But we still need to store data in a columnar format to get the storage + execution benefits.

We need a columnar scheme that stores attributes separately but keeps each tuple's attributes physically close to each other...

PAX STORAGE MODEL

Partition Attributes Across (PAX) is a hybrid storage model that vertically partitions attributes within a database page.

→ Examples: Parquet (2013), ORC (2013), Arrow (2016), Nimble (2023), Vortex (2025).

The goal is to get the benefit of faster processing on columnar storage while retaining the spatial locality benefits of row storage.

Weaving Relations for Cache Performance

Anastassia Ailamaki [‡]
Carnegie Mellon University
nataissa@cs.cmu.edu

David J. DeWitt
Univ. of Wisconsin-Madison
dewitt@cs.wisc.edu

Mark D. Hill
Univ. of Wisconsin-Madison
markhill@cs.wisc.edu

Marios Skounakis
Univ. of Wisconsin-Madison
marios@cs.wisc.edu

Abstract

Relational database systems have traditionally optimized for I/O performance and organized records sequentially on disk pages using the *N-way Storage Model* (NSM) (a.k.a., *slotted pages*). Recent research, however, indicates cache utilization is becoming increasingly important on modern platforms. In this paper, we first demonstrate that *in-page data placement* is the key to high cache performance and that NSM exhibits low cache utilization on modern platforms. Next, we propose a new partitioning model, called *Partition Attributes Across*, that significantly improves cache performance by grouping together all values of each attribute within each page. Because PAX only affects layout *inside* the pages, it does not affect I/O or storage needs, and does not affect the data placement of other attributes when compared to NSM. According to our experiments, when compared to NSM (a) PAX exhibits superior cache and memory bandwidth utilization, saving at least 75% of NSM's stall time due to data cache accesses, (b) range selection queries and updates on memory-resident relations execute 17-23% faster, and (c) TPC-H queries involving I/O execute 11-48% faster.

1 Introduction

The communication between the CPU and the secondary storage (I/O) has been traditionally recognized as the major database performance bottleneck. To optimize data transfer to and from mass storage, relational DBMSs have long organized data sequentially on disk pages using the *N-way Storage Model* (NSM). NSM stores records sequentially starting from the beginning of each disk page, and uses an offset (slot) table at the end of the page to locate the beginning of each record [27].

Unfortunately, most queries use only a portion of each record. To address this shortcoming, the *Dimension Storage Model* (DSM) was proposed in 1985 [10]. DSM partitions an *n*-attribute relation vertically into *n* sub-relations, each of which is accessed only when the corresponding attribute is needed. Queries that involve multiple attributes from a relation, however, must spend

tremendous additional time to join the participating sub-relations together. Except for SybaseIQ [33], today's relational DBMSs use NSM for general-purpose data placement [20][29][32].

Recent research has demonstrated that modern data-base workloads, such as decision support systems and spatial applications, are often bound by delays related to the memory hierarchy [11][12][13][14][15][16][17][18][19][20][21][22][23]. When running commercial database systems on a modern processor, data requests that miss in the cache hierarchy (i.e., requests for data that are not found in any of the caches and are transferred from main memory) are a key memory system bottleneck [1]. In addition, only a fraction of data is transferred to the cache, which is useful to query the item that the query processing algorithm requests, and the transfer unit between the memory and the processor are typically not the same size. Loading the cache with useless data (a) wastes bandwidth, (b) pollutes the cache, and (c) possibly forces replacement of information that may be needed later, which incurs even more delays. The challenge is to repair NSM's cache behavior without compromising its advantages over DSM.

This paper introduces and evaluates *Partition Attributes Across* (PAX), a new layout for data records that combines the best of the two worlds and exhibits performance superior to both placement schemes. Eliminating the need to read from and write to the same page as in NSM, PAX stores the same data on each page as NSM. Within each page, however, PAX groups all the values of a particular attribute together on a minipage. During a sequential scan (e.g., to apply a predicate on a fraction of the records), the full width of the cache resources, no worse than each minipage, of a single attribute's values are loaded into the cache together. At the same time, all parts of the record are on the same page. To reconstruct a record one needs to perform a *mini-join* among minipages, which incurs minimal cost because it does not have to look beyond the page.

[‡] Work done while author was at the University of Wisconsin-Madison.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise is permitted only under a license or under special permission granted by the Endowment. Proceedings of the 27th VLDB Conference, Roma, Italy, 2001

[†] Work done while author was at the University of Wisconsin-Madison.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise is permitted only under a license or under special permission granted by the Endowment. Proceedings of the 27th VLDB Conference, Roma, Italy, 2001

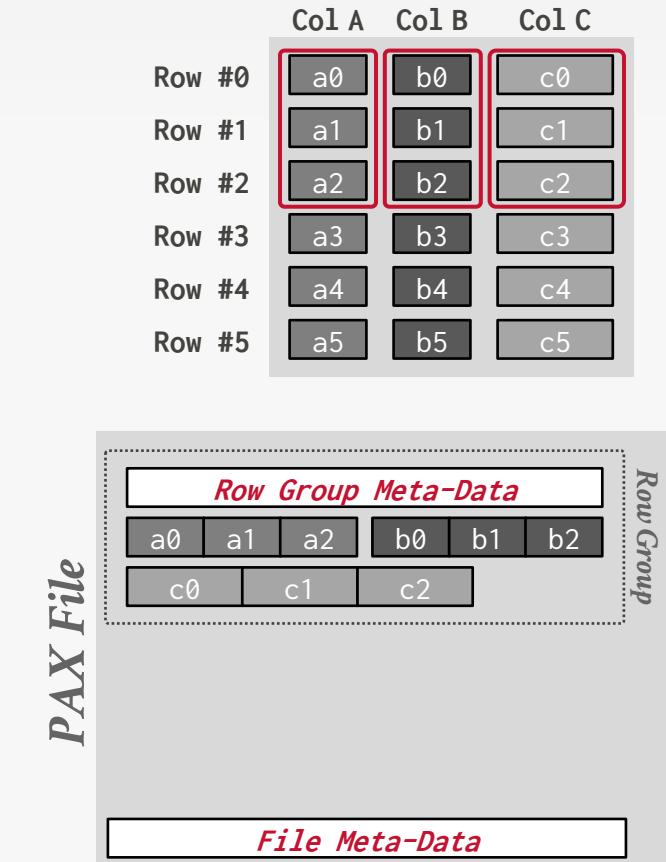
PAX: PHYSICAL ORGANIZATION

Horizontally partition data into *row groups*. Then vertically partition their attributes into *column chunks*.

Global meta-data directory contains offsets to the file's row groups.

→ This is stored in the footer if the file is immutable (Parquet, Orc).

Each row group contains its own meta-data header about its contents.



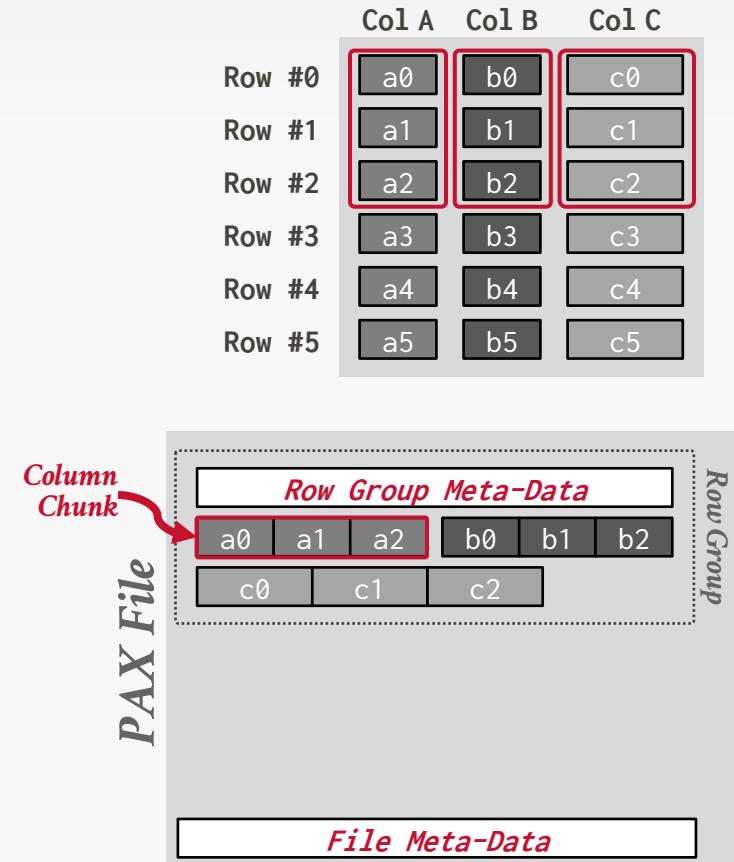
PAX: PHYSICAL ORGANIZATION

Horizontally partition data into *row groups*. Then vertically partition their attributes into *column chunks*.

Global meta-data directory contains offsets to the file's row groups.

→ This is stored in the footer if the file is immutable (Parquet, Orc).

Each row group contains its own meta-data header about its contents.



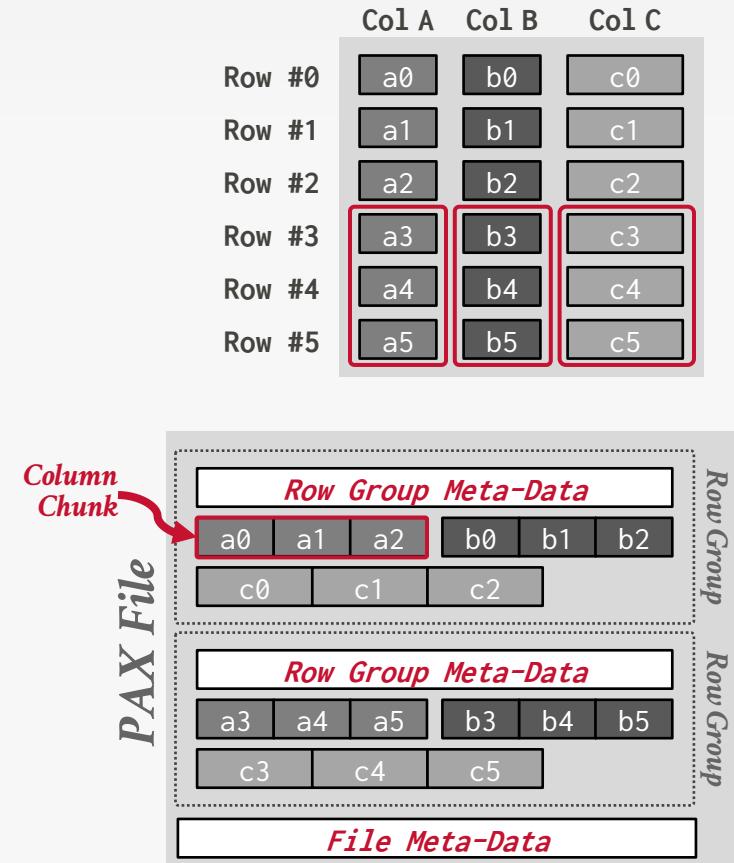
PAX: PHYSICAL ORGANIZATION

Horizontally partition data into *row groups*. Then vertically partition their attributes into *column chunks*.

Global meta-data directory contains offsets to the file's row groups.

→ This is stored in the footer if the file is immutable (Parquet, Orc).

Each row group contains its own meta-data header about its contents.



PAX: PHYSICAL ORGANIZATION

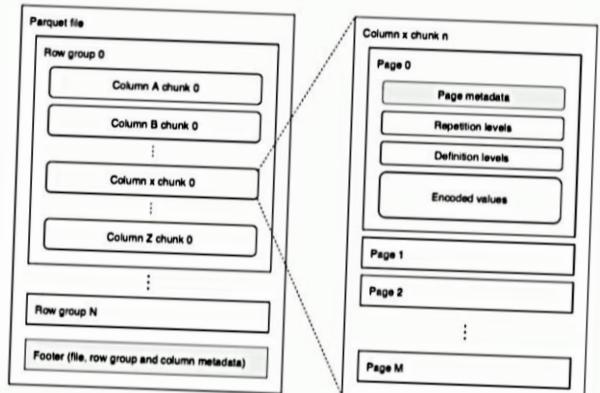
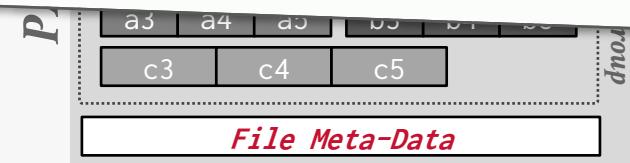
Horizontally partitioned into **row groups**. Then vertically partitioned into **column attributes** into **column groups**.

Global meta-data directory contains offsets to the file's row groups → This is stored in the immutable (Parquet, Avro, ORC) footer.

Each row group contains a meta-data header about its contents.

Parquet: data organization

- Data organization
 - Row-groups (default 128MB)
 - Column chunks
 - Pages (default 1MB)
 - Metadata
 - Min
 - Max
 - Count
 - Rep/def levels
 - Encoded values



OBSERVATION

I/O is the main bottleneck if the DBMS fetches data from disk during query execution.

The DBMS can compress pages to increase the utility of the data moved per I/O operation.

Key trade-off is speed vs. compression ratio

- Compressing the database reduces DRAM requirements.
- It may decrease CPU costs during query execution.

DATABASE COMPRESSION

Goal #1: Must produce fixed-length values.

→ Only exception is var-length data stored in separate pool.

Goal #2: Postpone decompression for as long as possible during query execution.

→ Also known as late materialization.

Goal #3: Must be a lossless scheme.

→ People (typically) don't like losing data.

→ Any lossy compression must be performed by application.

COMPRESSION GRANULARITY

Choice #1: Block-level

- Compress a block of tuples for the same table.

Choice #2: Tuple-level

- Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

- Compress a single attribute within one tuple (overflow).
- Can target multiple attributes for the same tuple.

Choice #4: Column-level

- Compress multiple values for one or more attributes stored for multiple tuples (DSM-only).

NAÏVE COMPRESSION

Compress data using a general-purpose algorithm.

Scope of compression is based on input provided.

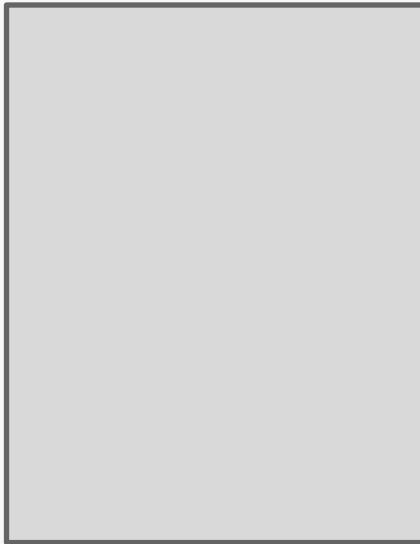
→ Examples: Deflate (1990), LZO (1996), LZ4 (2011), Snappy (2011), Oracle OZIP (2014), Zstd (2015), Lizard (2017)

Considerations

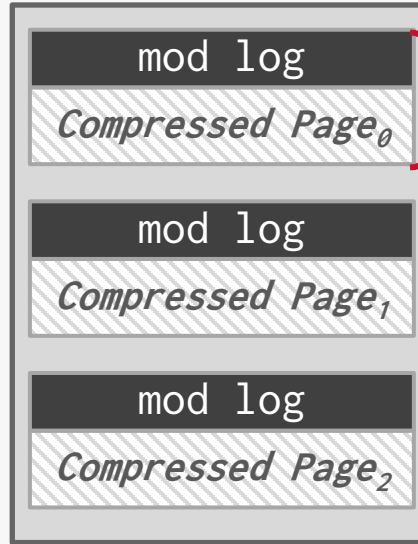
- Computational overhead
- Compress vs. decompress speed.

MYSQL INNODB COMPRESSION

Buffer Pool

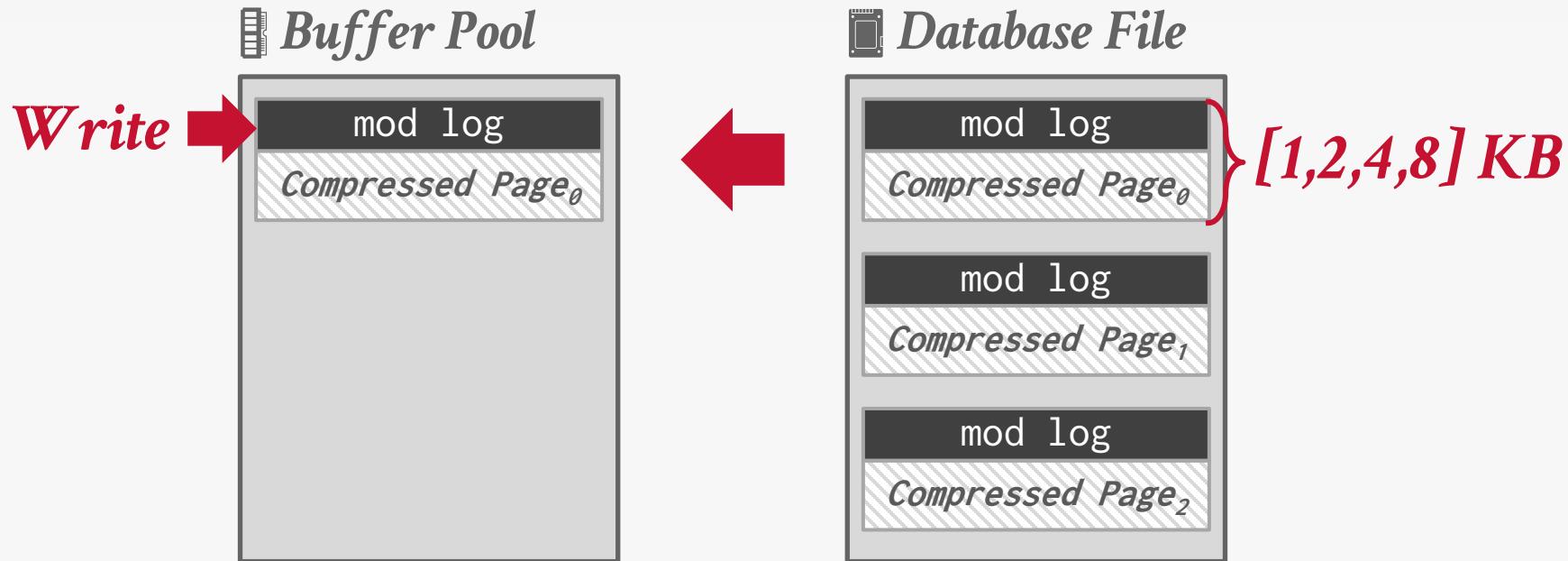


Database File

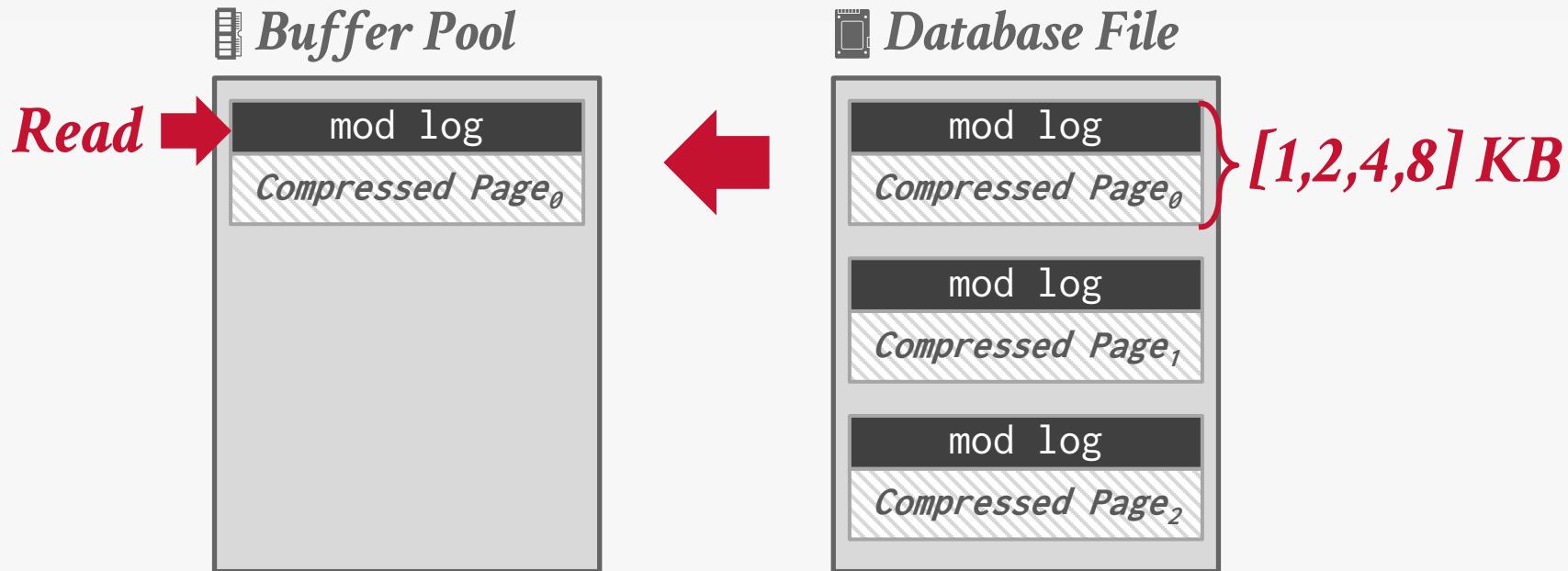


[1,2,4,8] KB

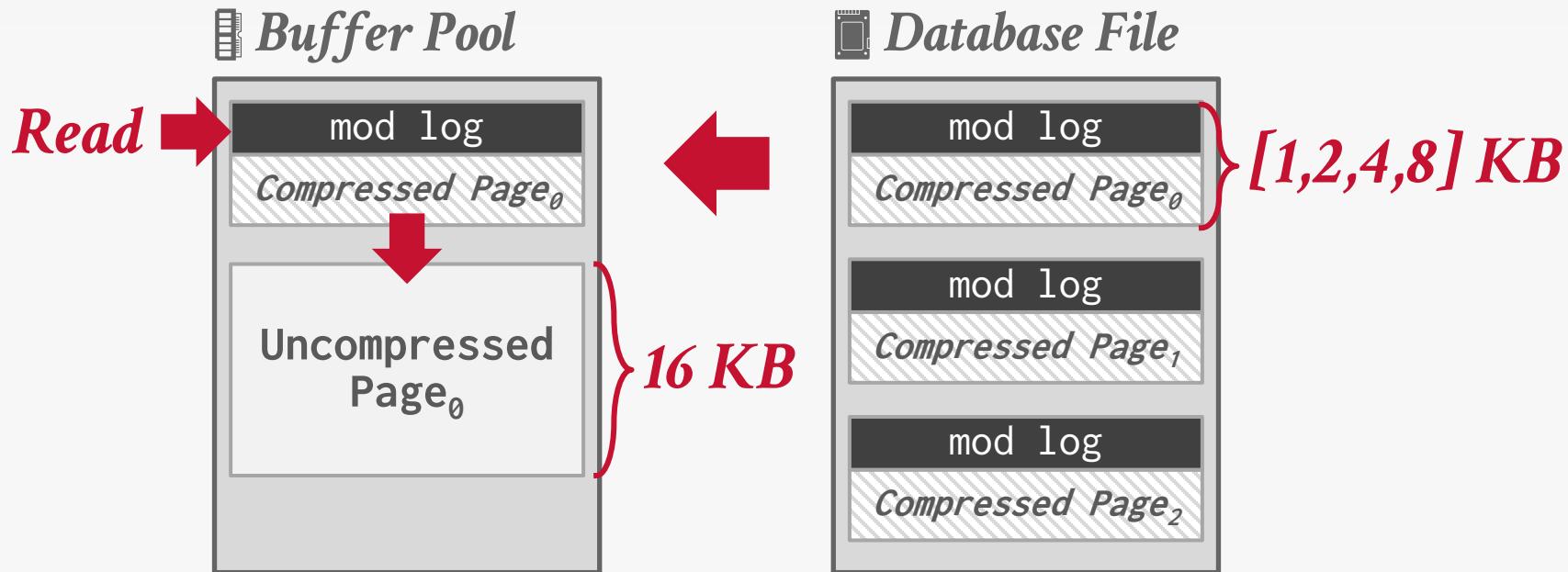
MYSQL INNODB COMPRESSION



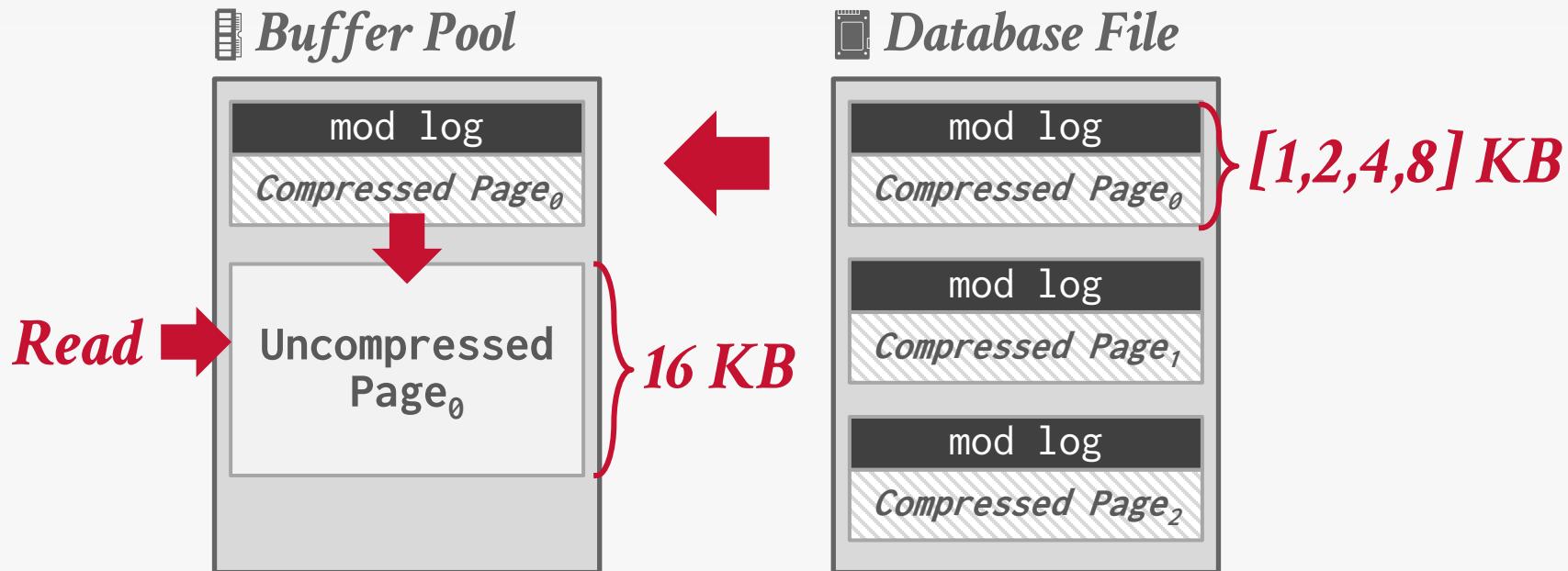
MYSQL INNODB COMPRESSION



MYSQL INNODB COMPRESSION



MYSQL INNODB COMPRESSION



NAÏVE COMPRESSION

Compressed data is an opaque box to the DBMS and thus the system must decompress data first before it can be read and (potentially) modified.

→ This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level meaning or semantics of the data.

OBSERVATION

Ideally, the DBMS can operate on compressed data without decompressing it first.

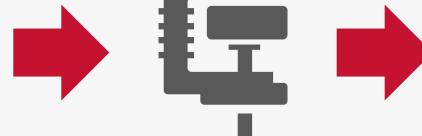
Database Magic!

```
SELECT * FROM users  
WHERE name = 'Andy'
```



```
SELECT * FROM users  
WHERE name = XX
```

NAME	SALARY
Andy	99999
Jignesh	88888



Compress

NAME	SALARY
XX	AA
YY	BB

COMPRESSION GRANULARITY

Choice #1: Block-level

- Compress a block of tuples for the same table.

Choice #2: Tuple-level

- Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

- Compress a single attribute within one tuple (overflow).
- Can target multiple attributes for the same tuple.

Choice #4: Column-level

- Compress multiple values for one or more attributes stored for multiple tuples (DSM-only).

COLUMNAR COMPRESSION

- Run-length Encoding
- Bit-Packing Encoding
- Bitmap Encoding
- Delta / Frame-of-Reference Encoding
- Incremental Encoding
- Dictionary Encoding

RUN-LENGTH ENCODING

Compress runs of the same value in a single column into triplets:

- The value of the attribute.
- The start position in the column segment.
- The # of elements in the run.

Requires the columns to be sorted intelligently to maximize compression opportunities.

RUN-LENGTH ENCODING

Original Data

id	isDead
1	Y
2	Y
3	Y
4	N
6	Y
7	N
8	Y
9	Y

RUN-LENGTH ENCODING

Original Data

id	isDead
1	Y
2	Y
3	Y
4	N
6	Y
7	N
8	Y
9	Y

Compressed Data

id	isDead
1	(Y, 0, 3)
2	(N, 3, 1)
3	(Y, 4, 1)
4	(N, 5, 1)
6	(Y, 6, 2)
7	
8	
9	

RLE Triplet
- Value
- Offset
- Length

RUN-LENGTH ENCODING

```
SELECT isDead, COUNT(*)  
  FROM users  
 GROUP BY isDead
```


Compressed Data

id	isDead
1	(Y, 0, 3)
2	(N, 3, 1)
3	(Y, 4, 1)
4	(N, 5, 1)
6	(Y, 6, 2)
7	
8	
9	

RLE Triplet
- Value
- Offset
- Length

RUN-LENGTH ENCODING

Original Data

id	isDead
1	Y
2	Y
3	Y
4	N
6	Y
7	N
8	Y
9	Y

Compressed Data

id	isDead
1	(Y, 0, 3)
2	(N, 3, 1)
3	(Y, 4, 1)
4	(N, 5, 1)
6	(Y, 6, 2)
7	
8	
9	

RLE Triplet
- *Value*
- *Offset*
- *Length*

RUN-LENGTH ENCODING

Sorted Data

id	isDead
1	Y
2	Y
3	Y
6	Y
8	Y
9	Y
4	N
7	N

Compressed Data

id	isDead
1	(Y,0,6)
2	(N,7,2)
3	
6	
8	
9	
4	
7	

BIT PACKING

If the values for an integer attribute is smaller than the range of its given data type size, then reduce the number of bits to represent each value.

Use bit-shifting tricks to operate on multiple values in a single word.

Original Data

int32
13
191
56
92
81
120
231
172

BIT PACKING

If the values for an integer attribute is smaller than the range of its given data type size, then reduce the number of bits to represent each value.

Use bit-shifting tricks to operate on multiple values in a single word.

Original Data

int32
13
191
56
92
81
120
231
172

*Original:
8 × 32-bits =
256 bits*

00000000 00000000 00000000 00001101
00000000 00000000 00000000 10111111
00000000 00000000 00000000 00111000
00000000 00000000 00000000 01011100
00000000 00000000 00000000 01010001
00000000 00000000 00000000 01111000
00000000 00000000 00000000 11100111
00000000 00000000 00000000 10101100

BIT PACKING

If the values for an integer attribute is smaller than the range of its given data type size, then reduce the number of bits to represent each value.

Use bit-shifting tricks to operate on multiple values in a single word.

Original Data

int32
13
191
56
92
81
120
231
172

*Original:
 $8 \times 32\text{-bits} = 256\text{ bits}$*

00000000 00000000 00000000 00001101
00000000 00000000 00000000 10111111
00000000 00000000 00000000 00111000
00000000 00000000 00000000 01011100
00000000 00000000 00000000 01010001
00000000 00000000 00000000 01111000
00000000 00000000 00000000 11100111
00000000 00000000 00000000 10101100

BIT PACKING

If the values for an integer attribute is smaller than the range of its given data type size, then reduce the number of bits to represent each value.

Use bit-shifting tricks to operate on multiple values in a single word.

Original Data

int32	
13	00001101
191	10111111
56	00111000
92	01011100
81	01010001
120	01111000
231	11100111
172	10101100

*Original:
8 × 32-bits =
256 bits*

*Compressed:
8 × 8-bits =
64 bits*

PATCHING / MOSTLY ENCODING

A variation of bit packing for when an attribute's values are "mostly" less than the largest size, store them with smaller data type.

→ The remaining values that cannot be compressed are stored in their raw form.

Original Data

Original:
 $8 \times 32\text{-bits} = 256\text{ bits}$

int32
13
191
99999999
92
81
120
231
172

Compressed Data

mostly8	offset	value
13	3	99999999
181		
XXX		
92		
81		
120		
231		
172		

Compressed:
 $(8 \times 8\text{-bits}) + 16\text{-bits} + 32\text{-bits} = 112\text{ bits}$

BITMAP ENCODING

Store a separate bitmap for each unique value for an attribute where an offset in the vector corresponds to a tuple.

- The i^{th} position in the Bitmap corresponds to the i^{th} tuple in the table.
- Typically segmented into chunks to avoid allocating large blocks of contiguous memory.

Only practical if the value cardinality is low.

Some DBMSs provide bitmap indexes.

BITMAP ENCODING

Original Data

id	isDead
1	Y
2	Y
3	Y
4	N
6	Y
7	N
8	Y
9	Y

Compressed Data

id	isDead	Y	N
1	Y	1	0
2	Y	1	0
3	Y	1	0
4	N	0	1
6	Y	1	0
7	N	0	1
8	Y	1	0
9	Y	1	0

BITMAP ENCODING

Original Data

id	isDead
1	Y
2	Y
3	Y
4	N
6	Y
7	N
8	Y
9	Y

Compressed Data

id	isDead	Y	N
1	Y	1	0
2	Y	1	0
3	Y	1	0
4	N	0	1
6	Y	1	0
7	N	0	1
8	Y	1	0
9	Y	1	0

BITMAP ENCODING

Original Data

id	isDead
1	Y
2	Y
3	Y
4	N
6	Y
7	N
8	Y
9	Y

*Original:
8 × 8-bits =
64 bits*

*Compressed:
16 bits + 16 bits =
32 bits*

id	isDead	Y	N
1		1	0
2		1	0
3		1	0
4		0	1
6		1	0
7		0	1
8		1	0
9		1	0

*2 × 8-bits =
16 bits*

*8 × 2-bits =
16 bits*

BITMAP ENCODING: EXAMPLE

```
CREATE TABLE customer (
    id INT PRIMARY KEY,
    name VARCHAR(32),
    email VARCHAR(64),
    address VARCHAR(64),
    zip_code INT
);
```

BITMAP ENCODING: EXAMPLE

Assume we have 10 million tuples.
43,000 zip codes in the US.
→ **10000000 × 32-bits = 40 MB**
→ **10000000 × 43000 = 53.75 GB**

Every time the application inserts a new tuple, the DBMS must extend 43,000 different bitmaps.

```
CREATE TABLE customer (
    id INT PRIMARY KEY,
    name VARCHAR(32),
    email VARCHAR(64),
    address VARCHAR(64),
    zip_code INT
);
```

Compressed data structures for sparse data sets avoid this problem:
→ Roaring Bitmaps

ROARING BITMAPS

Bitmap index that switches which data structure to use for a range of values based local density of bits.

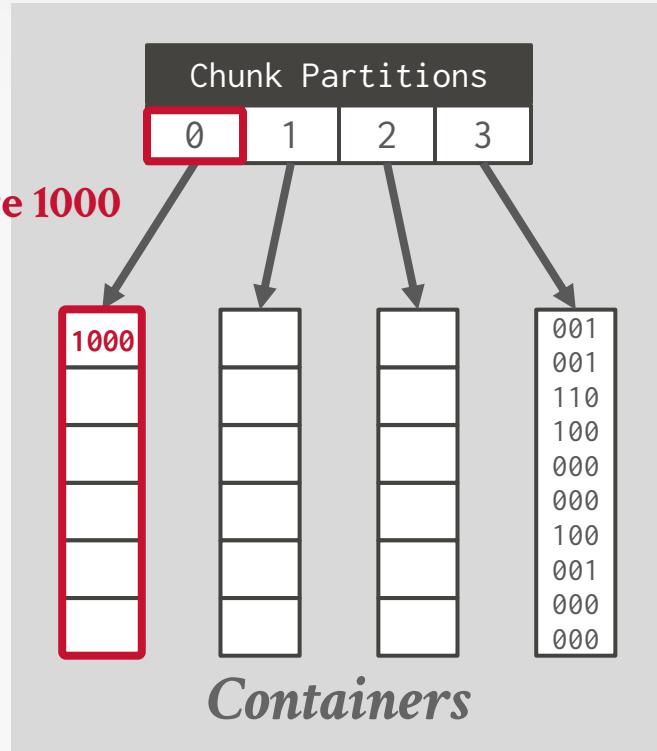
- Dense chunks are stored using uncompressed bitmaps.
- Sparse chunks use bitpacked arrays of 16-bit integers.

Dense chunks can be further compressed with RLE.

There are many open-source implementations that are widely used in different DBMSs.

Weaviate

ROARING BITMAPS



For each value **k**, assign it to a chunk based on **$k/2^{16}$** .

→ Store **k** in the chunk's container.

If # of values in container is less than 4096, store as array.

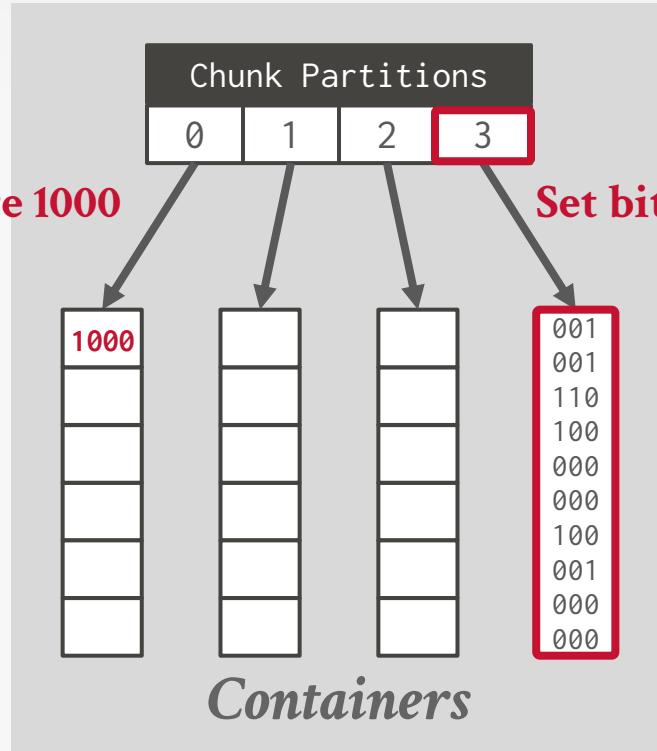
Otherwise, store as Bitmap.

$$k=1000$$

$$1000/2^{16}=0$$

$$1000 \% 2^{16} = 1000$$

ROARING BITMAPS



For each value **k**, assign it to a chunk based on **$k/2^{16}$** .

→ Store **k** in the chunk's container.

If # of values in container is less than 4096, store as array.

Otherwise, store as Bitmap.

$$k=1000$$

$$1000/2^{16}=0$$

$$1000\%2^{16}=1000$$

$$k=199658$$

$$199658/2^{16}=3$$

$$199658\%2^{16}=50$$

DELTA ENCODING

Recording the difference between values that follow each other in the same column.
→ Store base value in-line or in a separate look-up table.

Original Data

time64	temp
12:00	99.5
12:01	99.4
12:02	99.5
12:03	99.6
12:04	99.4

Compressed Data

time64	temp
12:00	99.5
+1	-0.1
+1	+0.1
+1	+0.1
+1	-0.2

DELTA ENCODING

Recording the difference between values that follow each other in the same column.

- Store base value in-line or in a separate look-up table.
- Combine with RLE to get even better compression ratios.

Original Data

time64	temp
12:00	99.5
12:01	99.4
12:02	99.5
12:03	99.6
12:04	99.4

Compressed Data

time64	temp
12:00	99.5
+1	-0.1
+1	+0.1
+1	+0.1
+1	-0.2

DELTA ENCODING

Recording the difference between values that follow each other in the same column.

- Store base value in-line or in a separate look-up table.
- Combine with RLE to get even better compression ratios.

Original Data

time64	temp
12:00	99.5
12:01	99.4
12:02	99.5
12:03	99.6
12:04	99.4

Compressed Data

time64	temp
12:00	99.5
+1	-0.1
+1	+0.1
+1	+0.1
+1	-0.2

Compressed Data

time64	temp
12:00	99.5
(+1, 4)	-0.1
+0.1	+0.1
+0.1	-0.2

DELTA ENCODING

Recording the difference between values that follow each other in the same column.

- Store base value in-line or in a separate look-up table.
- Combine with RLE to get even better compression ratios.

Frame-of-Reference Variant: Use global min value.

Original Data

time64	temp
12:00	99.5
12:01	99.4
12:02	99.5
12:03	99.6
12:04	99.4

$5 \times 64\text{-bits}$
 $= 320 \text{ bits}$

Compressed Data

time64	temp
12:00	99.5
	+1
	+1
	+1
	+1

$64\text{-bits} + (4 \times 16\text{-bits})$
 $= 128 \text{ bits}$

Compressed Data

time64	temp
12:00	99.5
	(+1, 4)
	-0.1
	+0.1
	+0.1
	-0.2

$64\text{-bits} + (2 \times 16\text{-bits})$
 $= 96 \text{ bits}$

DICTIONARY COMPRESSION

Replace frequent values with smaller fixed-length codes and then maintain a mapping (dictionary) from the codes to the original values

- Typically, one code per attribute value.
- Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding and decoding for both point and range queries.

- **Encode/Locate:** For a given uncompressed value, convert it into its compressed form.
- **Decode/Extract:** For a given compressed value, convert it back into its original form.

DICTIONARY: ORDER-PRESERVING

The encoded values need to support the same collation as the original values.

```
SELECT * FROM users
WHERE name LIKE 'And%'
```


Original Data

name
Andrea
Mr. Pickles
Andy
Jignesh
Mr. Pickles


```
SELECT * FROM users
WHERE name BETWEEN 10 AND 20
```

Compressed Data

name	value	code
Andrea	10	10
Andy	40	20
Jignesh	20	30
Mr. Pickles	30	40
	40	

Sorted
Dictionary

ORDER-PRESERVING ENCODING

```
SELECT name FROM users
WHERE name LIKE 'And%'
```


Still must perform scan on column

```
SELECT DISTINCT name
FROM users
WHERE name LIKE 'And%'
```


Only need to access dictionary

Original Data

name
Andrea
Mr. Pickles
Andy
Jignesh
Mr. Pickles

Compressed Data

name	value	code
Andrea	10	
Mr. Pickles	40	
Andy	20	
Jignesh	30	
Mr. Pickles	40	

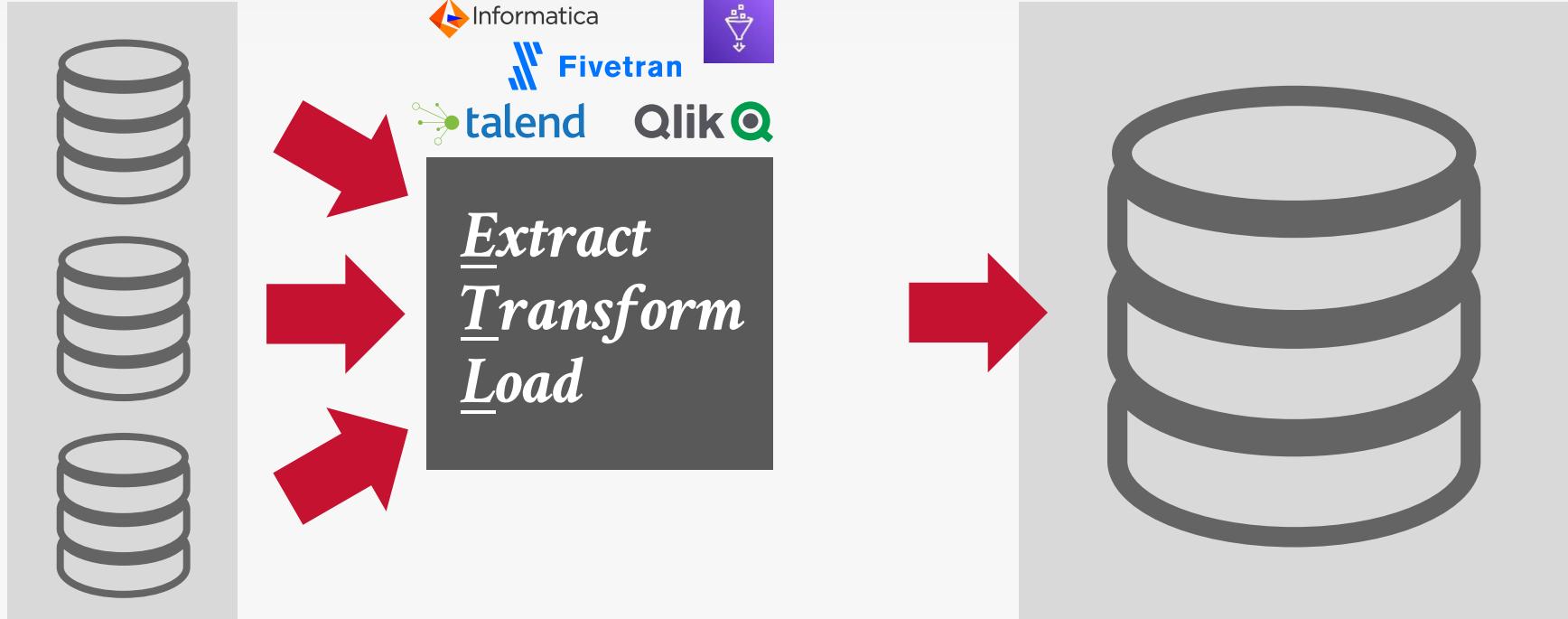
Sorted Dictionary

OBSERVATION

Since an OLAP DBMS is superior for analytical queries than an OLTP DBMSs, one should always use an OLAP DBMS for them.

But if new data arrives at the OLTP DBMS, then we need a way to transfer data between them...

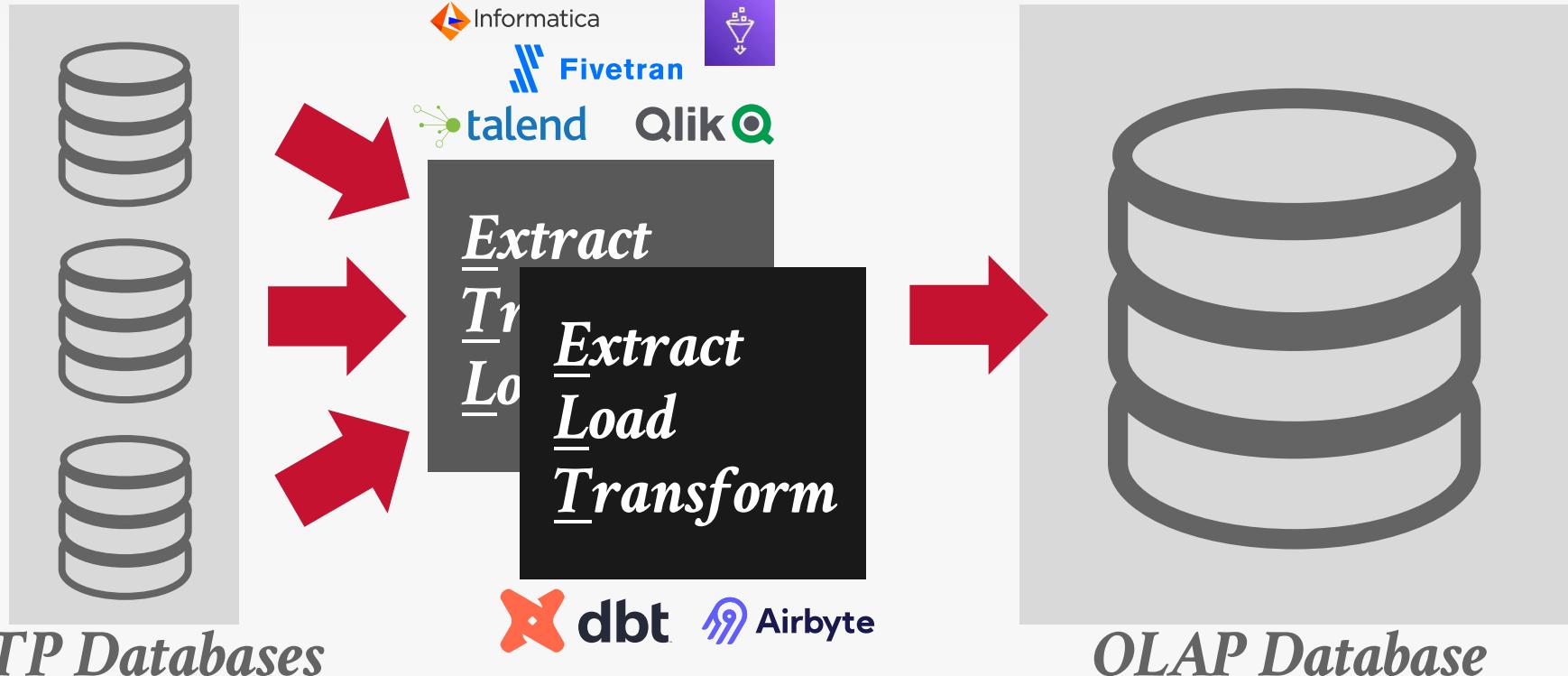
BIFURCATED ENVIRONMENT



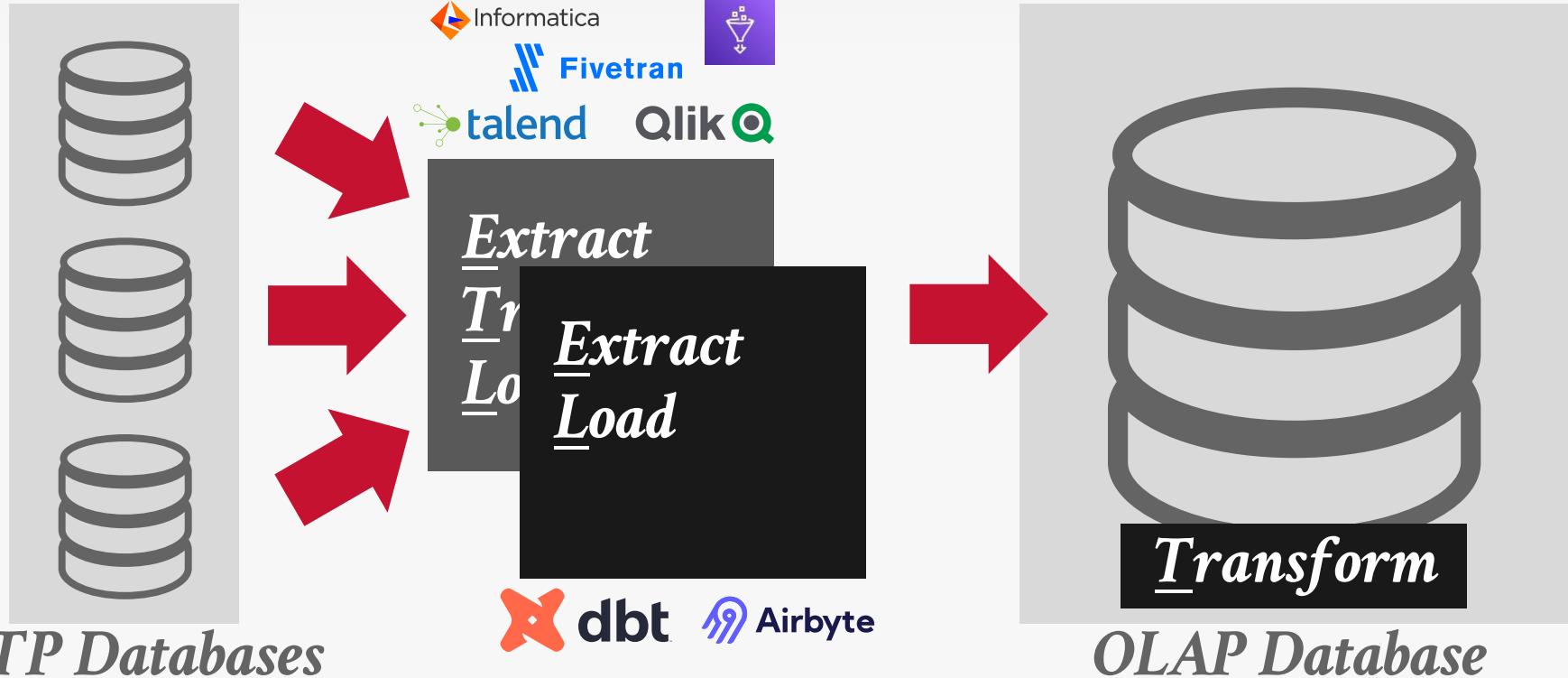
OLTP Databases

OLAP Database

BIFURCATED ENVIRONMENT



BIFURCATED ENVIRONMENT



OBSERVATION

Instead of maintaining two separate DBMSs, a single DBMS could support both OLTP and OLAP workloads if it exploits the temporal nature of data.

- Data is "hot" when it enters the database
- As a tuple ages, it is updated less frequently.

HYBRID STORAGE MODEL

Use separate execution engines that are optimized for either NSM or DSM databases.

- Store new data in NSM for fast OLTP.
- Migrate data to DSM for more efficient OLAP.
- Combine query results from both engines to appear as a single logical database to the application.

Choice #1: Fractured Mirrors

- Examples: Oracle, IBM DB2 Blu, Microsoft SQL Server

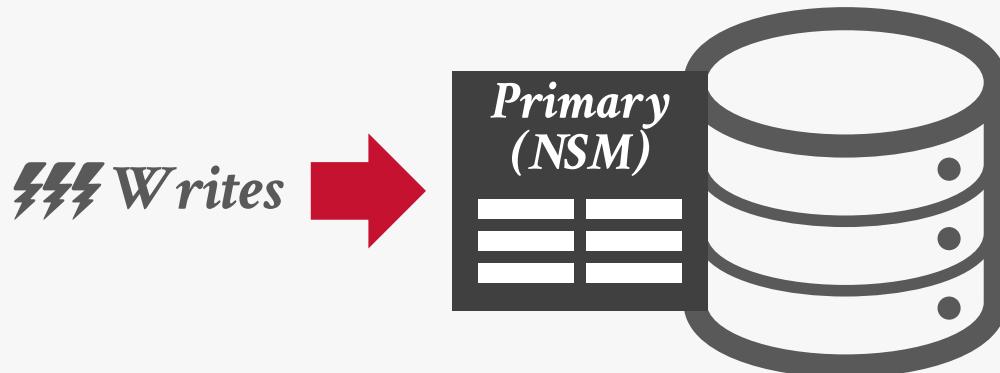
Choice #2: Delta Store

- Examples: SAP HANA, Vertica, SingleStore, Databricks, Google Napa

FRACTURED MIRRORS

DBMS automatically maintains a second copy of the database in a DSM layout.

- All updates are first entered in NSM then eventually copied into DSM mirror.
- If the DBMS supports updates, it must invalidate tuples in the DSM mirror.



ORACLE®

Microsoft®
SQL Server®

IBM DB2

FRACTURED MIRRORS

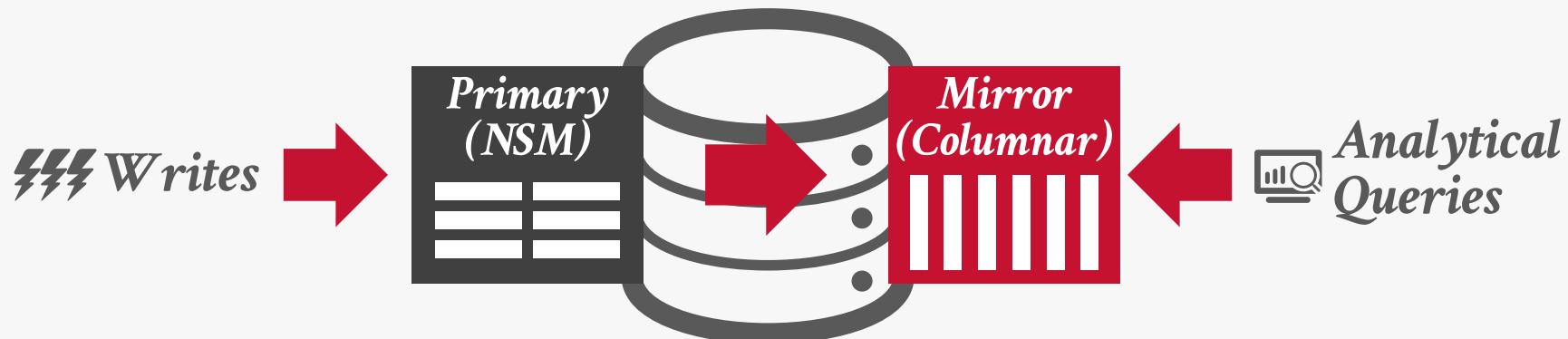
ORACLE®

Microsoft®
SQL Server®

IBM DB2

DBMS automatically maintains a second copy of the database in a DSM layout.

- All updates are first entered in NSM then eventually copied into DSM mirror.
- If the DBMS supports updates, it must invalidate tuples in the DSM mirror.



DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta store and applies them to DSM data.

- Batch large chunks and then write them out as a PAX file.
- Delete records in the delta store once they are in column store.

VERTICA
SingleStore

SAP HANA

DELTA LAKE

DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta store and applies them to DSM data.

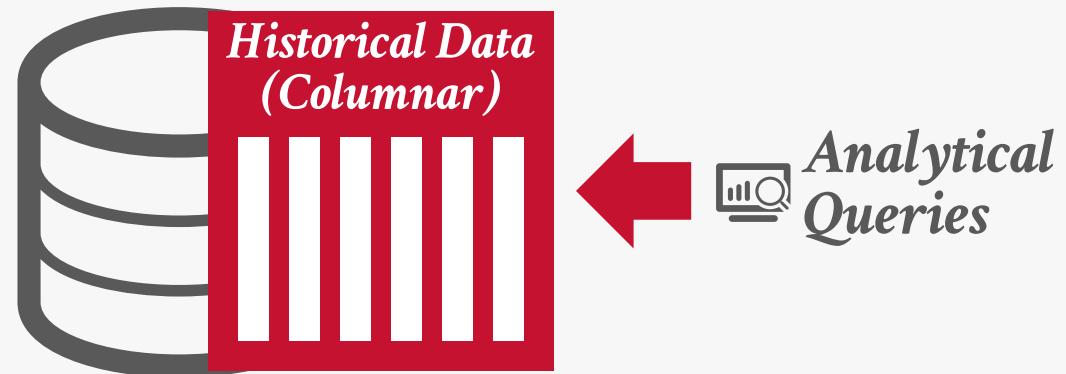
- Batch large chunks and then write them out as a PAX file.
- Delete records in the delta store once they are in column store.

VERTICA

SingleStore

SAP HANA

DELTA LAKE

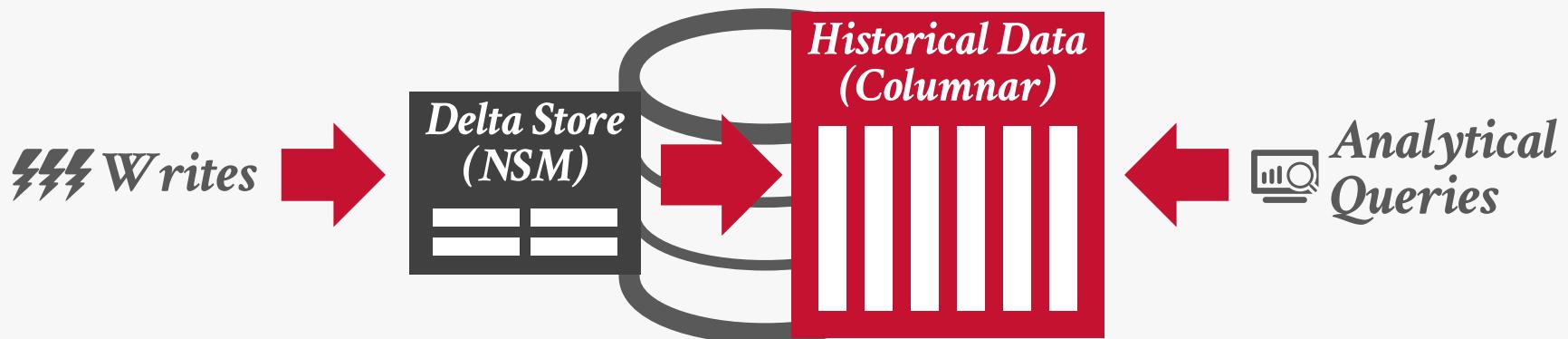


DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta store and applies them to DSM data.

- Batch large chunks and then write them out as a PAX file.
- Delete records in the delta store once they are in column store.



VERTICA

SingleStore

SAP HANA

DELTA LAKE

CONCLUSION

It is important to choose the right storage model for the target workload:

- OLTP = Row Store
- OLAP = Column Store

DBMSs can combine different approaches for even better compression.

Dictionary encoding is probably the most useful scheme because it does not require pre-sorting.

Column Storage for the AI Era

Dec 11, 2025 • Julien Le Dem

It is important to consider the target workload:
→ OLTP = Row Storage
→ OLAP = Column Storage

DBMSs can combine better compression

Dictionary encoding because it does not

In the past few years, we've seen a Cambrian explosion of new columnar formats, challenging the hegemony of Parquet: Lance, Fastlanes, Nimble, Vortex, AnyBlox, F3 (File Format for the Future). The thinking is that the context has changed so much that the design of yore (the previous decade) is not going to cut it moving forward. This seemed a bit intriguing to me, especially since the main contribution of Parquet has been to provide a standard for columnar storage. Parquet is not simply a file format. As an open source project hosted by the ASF, it acts as a consensus building machine for the industry. Creating six new formats is not going to help with interoperability. I spent some time to understand a bit better how things actually changed and how Parquet needs to adapt to meet the demands of this new era. In this post I'll discuss my findings.

Whether we like it or not, we're living in an AI-dominated era. Some argue that the main consumer of data will become AI and not humans, yet much of our data infrastructure was designed for a very different time.

I'm the chair for the Parquet PMC at the ASF. As any participant in this ecosystem, my perspective here is biased. However, that gives me a useful vantage point to talk about both what we got right and where the format can be improved.

NEXT CLASS

Data Structures: Hash Tables!
→ We must build our own...