
DatabaseSystems

Database
Systems

15-445/645 SPRING 2026

15-445/645 SPRING 2026

ANDY PAVLO

ANDY PAVLO
JIGNESH PATEL

JIGNESH PATEL

Database Storage:

Column Stores +

Data Compression

Lecture #06

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ADMINISTRIVIA

Project #1 is due Sunday Feb 15th @ 11:59pm
→ Recitation Video + Slides (@64)
→ Perf Recitation on Wednesday Feb 4th @ 6:30pm (@79)

Homework #2 is due Sunday Feb 8th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://piazza.com/class/mjxpbw9kyzv4mo/post/64
https://piazza.com/class/mjxpbw9kyzv4mo/post/79

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

UPCOMING DATABASE TALKS

Redpanda Oxla (DB Seminar)
→ Monday Feb 2nd @ 4:30pm ET
→ Zoom

Amazon Aurora DSQL (DB Seminar)
→ Monday Feb 9th @ 4:30pm ET
→ Zoom

TopK (DB Seminar)
→ Monday Feb 16th @ 4:30pm ET
→ Zoom

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/events/pg-vs-world-redpanda-oxla-tyler-akidau-adam-symanski/
https://db.cs.cmu.edu/events/pg-vs-world-redpanda-oxla-tyler-akidau-adam-symanski/
https://db.cs.cmu.edu/events/pg-vs-world-aurora-dsql-marc-brooker/
https://db.cs.cmu.edu/events/pg-vs-world-aurora-dsql-marc-brooker/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LAST CLASS

We discussed storage architecture alternatives to the
slotted page storage scheme.
→ Log-structured storage
→ Index-organized storage

These approaches are ideal for write-heavy
(INSERT/UPDATE/DELETE) workloads.

But the most important query for some workloads may
be read (SELECT) performance…

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TODAY'S AGENDA

Database Workloads

Storage Models

Data Compression

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)
→ Fast operations that only read/update a small amount of data

each time.

On-Line Analytical Processing (OLAP)
→ Complex queries that read a lot of data to compute aggregates.

Hybrid Transaction + Analytical Processing
→ OLTP + OLAP together on the same database instance

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OLTP

OLAP

DATABASE WORKLOADS

7

Write-Heavy Read-Heavy

Simple

Complex

Workload Focus

O
pe

ra
ti

on
 C

om
pl

ex
it

y

Mike Stonebraker

Source: Mike Stonebraker

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
http://cacm.acm.org/magazines/2011/6/108651

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OLTP

OLAP

DATABASE WORKLOADS

7

Write-Heavy Read-Heavy

Simple

Complex

Workload Focus

O
pe

ra
ti

on
 C

om
pl

ex
it

y

Mike Stonebraker

Source: Mike Stonebraker

Codd

Codd

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
http://cacm.acm.org/magazines/2011/6/108651
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OLTP

OLAP

DATABASE WORKLOADS

7

Write-Heavy Read-Heavy

Simple

Complex

Workload Focus

O
pe

ra
ti

on
 C

om
pl

ex
it

y

Mike Stonebraker

Source: Mike Stonebraker

HTAP Codd

Codd

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
http://cacm.acm.org/magazines/2011/6/108651
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

WIKIPEDIA EXAMPLE

8

CREATE TABLE revisions (
 revID INT PRIMARY KEY,
 userID INT REFERENCES useracct (userID),
 pageID INT REFERENCES pages (pageID),
 content TEXT,
 updated DATETIME
);

CREATE TABLE pages (
 pageID INT PRIMARY KEY,
 title VARCHAR UNIQUE,
 latest INT
 ⮱REFERENCES revisions (revID),
);

CREATE TABLE useracct (
 userID INT PRIMARY KEY,
 userName VARCHAR UNIQUE,
 ⋮
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OBSERVATION

The relational model does not specify that the DBMS
must store all a tuple's attributes together in a single
page.

This may not actually be the best layout for some
workloads…

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OLTP

On-line Transaction Processing:
→ Simple queries that read/update a small

amount of data that is related to a single
entity in the database.

This is usually the kind of application
that people build first.

10

UPDATE useracct
 SET lastLogin = NOW(),
 hostname = ?
 WHERE userID = ?

INSERT INTO revisions
 VALUES (?,?…,?)

SELECT P.*, R.*
 FROM pages AS P
 INNER JOIN revisions AS R
 ON P.latest = R.revID
 WHERE P.pageID = ?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OLAP

On-line Analytical Processing:
→ Complex queries that read large portions

of the database spanning multiple entities.

You execute these workloads on the
data you have collected from your
OLTP application(s).

11

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM
 U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY
 EXTRACT(month FROM U.lastLogin)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STORAGE MODELS

A DBMS's storage model specifies how it physically
organizes tuples on disk and in memory.
→ Can have different performance characteristics based on the

target workload (OLTP vs. OLAP).
→ Influences the design choices of the rest of the DBMS.

Choice #1: N-ary Storage Model (NSM)

Choice #2: Decomposition Storage Model (DSM)

Choice #3: Hybrid Storage Model (PAX)

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

N-ARY STORAGE MODEL (NSM)

The DBMS stores (almost) all attributes for a single
tuple contiguously in a single page.
→ Also commonly known as a row store

Ideal for OLTP workloads where queries are more
likely to access individual entities and execute write-
heavy workloads.

NSM database page sizes are typically some constant
multiple of 4 KB hardware pages.

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

14

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

Slot Array

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

14

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0header

Slot Array

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

14

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0header

Slot Array

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

14

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0headerb1 c1
a1header

Slot Array

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

D
at

ab
as

e
P

ag
e

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

14

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0headerb1 c1
a1header

Slot Array

b2a2 c2header
b3a3 c3headerb4 c4

a4headerb5a5 c5header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk D
at

ab
as

e
F

il
e

NSM: OLTP EXAMPLE

15

SELECT * FROM useracct
 WHERE userName = ?
 AND userPass = ?

Index

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

header

header

header

header

Lectures #8-9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk D
at

ab
as

e
F

il
e

NSM: OLTP EXAMPLE

15

SELECT * FROM useracct
 WHERE userName = ?
 AND userPass = ?

Index
INSERT INTO useracct
 VALUES (?,?,…?)

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

header

header

header

header userID userName userPass lastLoginhostnameheader

Lectures #8-9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk D
at

ab
as

e
F

il
e

NSM: OLAP EXAMPLE

16

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk D
at

ab
as

e
F

il
e

NSM: OLAP EXAMPLE

16

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk D
at

ab
as

e
F

il
e

NSM: OLAP EXAMPLE

16

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk D
at

ab
as

e
F

il
e

NSM: OLAP EXAMPLE

16

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk D
at

ab
as

e
F

il
e

NSM: OLAP EXAMPLE

16

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

Useless Data!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NSM: SUMMARY

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple (OLTP).
→ Can use index-oriented physical storage for clustering.

Disadvantages
→ Not good for scanning large portions of the table and/or a

subset of the attributes.
→ Terrible memory locality in access patterns.
→ Not ideal for compression because of multiple value domains

within a single page.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DECOMPOSITION STORAGE MODEL (DSM)

Store a single attribute for all tuples
contiguously in a block of data.
→ Also known as a "column store"

Ideal for OLAP workloads where
read-only queries perform large scans
over a subset of the table’s attributes.

DBMS is responsible for
combining/splitting a tuple's
attributes when reading/writing.

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://doi.org/10.1145/971699.318923

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-
length values.
→ Most systems identify unique physical

tuples using offsets into these arrays.
→ Need to handle variable-length values…

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

19

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header null bitmap
a0 a1 a2 a3 a4 a5

P
ag

e
 #

1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-
length values.
→ Most systems identify unique physical

tuples using offsets into these arrays.
→ Need to handle variable-length values…

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

19

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header null bitmap
a0 a1 a2 a3 a4 a5

P
ag

e
 #

1

header null bitmap
b0 b1 b2 b3 b4 b5

P
ag

e
 #

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-
length values.
→ Most systems identify unique physical

tuples using offsets into these arrays.
→ Need to handle variable-length values…

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

19

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header null bitmap
a0 a1 a2 a3 a4 a5

P
ag

e
 #

1

header null bitmap
b0 b1 b2 b3 b4 b5

P
ag

e
 #

2

header null bitmap

c5
c0 c1 c2 c3 c4

P
ag

e
 #

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DSM: OLAP EXAMPLE

20

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DSM: OLAP EXAMPLE

20

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DSM Disk Page

header

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

Disk D
at

ab
as

e
F

il
e

DSM: OLAP EXAMPLE

20

userID

userName

userPass

lastLogin

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DSM Disk Page

header

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

Disk D
at

ab
as

e
F

il
e

DSM: OLAP EXAMPLE

20

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

userID

userName

userPass

lastLogin

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DSM Disk Page

header

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

Disk D
at

ab
as

e
F

il
e

DSM: OLAP EXAMPLE

20

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

userID

userName

userPass

lastLogin

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk D
at

ab
as

e
F

il
e

DSM: OLAP EXAMPLE

20

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

userID

userName

userPass

lastLogin

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Disk D
at

ab
as

e
F

il
e

DSM: OLAP EXAMPLE

20

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

DSM Disk Page

header

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

userID

userName

userPass

lastLogin

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

21

Offsets

0
1
2
3

A B C D

Embedded Ids

A

0
1
2
3

B

0
1
2
3

C

0
1
2
3

D

0
1
2
3

Don't
Do This!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DSM: VARIABLE-LENGTH DATA

Padding variable-length fields to ensure they are fixed-
length is wasteful, especially for large attributes.

A better approach is to use dictionary compression to
convert repetitive variable-length data into fixed-length
values (typically 32-bit integers).
→ More on this later in this lecture…

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DECOMPOSITION STORAGE MODEL (DSM)

Advantages
→ Reduces the amount wasted I/O per query because the DBMS

only reads the data that it needs.
→ Faster query processing because of increased locality and cached

data reuse (Lecture #14).
→ Better data compression because data from the same domain

are physically collocated.

Disadvantages
→ Slow for point queries, inserts, updates, and deletes because of

tuple splitting/stitching/reorganization.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026/schedule.html#mar-11-2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OBSERVATION

OLAP queries almost never access a single column in a
table by itself.
→ At some point during query execution, the DBMS must get

other columns and stitch the original tuple back together.

But we still need to store data in a columnar format to
get the storage + execution benefits.

We need a columnar scheme that stores attributes
separately but keeps each tuple's attributes physically
close to each other…

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAX STORAGE MODEL

Partition Attributes Across (PAX)
is a hybrid storage model that
vertically partitions attributes within
a database page.
→ Examples: Parquet (2013), ORC (2013),

Arrow (2016), Nimble (2023),
Vortex (2025).

The goal is to get the benefit of faster
processing on columnar storage while
retaining the spatial locality benefits
of row storage.

25

A close-up of a paper

Description automatically generated

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://parquet.apache.org/
https://orc.apache.org/
https://arrow.apache.org/
https://github.com/facebookincubator/nimble
https://vortex.dev/
https://dl.acm.org/doi/10.5555/645927.672367

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAX: PHYSICAL ORGANIZATION

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains
offsets to the file's row groups.
→ This is stored in the footer if the file is

immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

26

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

File Meta-Data

P
A

X
 F

il
e

a0 a1 a2 b0 b1 b2

c0 c1 c2

Row Group Meta-Data

R
ow

 G
rou

p

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAX: PHYSICAL ORGANIZATION

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains
offsets to the file's row groups.
→ This is stored in the footer if the file is

immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

26

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

File Meta-Data

P
A

X
 F

il
e

a0 a1 a2 b0 b1 b2

c0 c1 c2

Row Group Meta-Data

R
ow

 G
rou

p

Column
Chunk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAX: PHYSICAL ORGANIZATION

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains
offsets to the file's row groups.
→ This is stored in the footer if the file is

immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

26

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

File Meta-Data

P
A

X
 F

il
e

a0 a1 a2 b0 b1 b2

c0 c1 c2

Row Group Meta-Data

R
ow

 G
rou

p

a3 a4 a5 b3 b4 b5

c3 c4 c5

Row Group Meta-Data

R
ow

 G
rou

p

Column
Chunk

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PAX: PHYSICAL ORGANIZATION

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains
offsets to the file's row groups.
→ This is stored in the footer if the file is

immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

26

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

File Meta-Data

P
A

X
 F

il
e

a0 a1 a2 b0 b1 b2

c0 c1 c2

Row Group Meta-Data

R
ow

 G
rou

p

a3 a4 a5 b3 b4 b5

c3 c4 c5

Row Group Meta-Data

R
ow

 G
rou

p

Column
Chunk

149

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://youtu.be/1j8SdS7s_NY?t=705

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OBSERVATION

I/O is the main bottleneck if the DBMS fetches data
from disk during query execution.

The DBMS can compress pages to increase the utility
of the data moved per I/O operation.

Key trade-off is speed vs. compression ratio
→ Compressing the database reduces DRAM requirements.
→ It may decrease CPU costs during query execution.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATABASE COMPRESSION

Goal #1: Must produce fixed-length values.
→ Only exception is var-length data stored in separate pool.

Goal #2: Postpone decompression for as long as
possible during query execution.
→ Also known as late materialization.

Goal #3: Must be a lossless scheme.
→ People (typically) don't like losing data.
→ Any lossy compression must be performed by application.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

COMPRESSION GRANULARITY

Choice #1: Block-level
→ Compress a block of tuples for the same table.

Choice #2: Tuple-level
→ Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
→ Compress a single attribute within one tuple (overflow).
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes stored for

multiple tuples (DSM-only).

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NAÏVE COMPRESSION

Compress data using a general-purpose algorithm.
Scope of compression is based on input provided.
→ Examples: Deflate (1990), LZO (1996), LZ4 (2011), Snappy

(2011), Oracle OZIP (2014), Zstd (2015), Lizard (2017)

Considerations
→ Computational overhead
→ Compress vs. decompress speed.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Deflate
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard
https://github.com/inikep/lizard

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MYSQL INNODB COMPRESSION

31

MySQL 5.7 Documentation

Source: MySQL 5.7 Documentation

Compressed Page0

mod log

Compressed Page1

mod log

Compressed Page2

mod log

Database FileBuffer Pool

[1,2,4,8] KB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MYSQL INNODB COMPRESSION

31

MySQL 5.7 Documentation

Source: MySQL 5.7 Documentation

Compressed Page0

mod log

Compressed Page0

mod log

Compressed Page1

mod log

Compressed Page2

mod log

Write

Database FileBuffer Pool

[1,2,4,8] KB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MYSQL INNODB COMPRESSION

31

MySQL 5.7 Documentation

Source: MySQL 5.7 Documentation

Compressed Page0

mod log

Compressed Page0

mod log

Compressed Page1

mod log

Compressed Page2

mod log

Database FileBuffer Pool

[1,2,4,8] KBRead

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MYSQL INNODB COMPRESSION

31

16 KB

MySQL 5.7 Documentation

Source: MySQL 5.7 Documentation

Uncompressed
Page0

Compressed Page0

mod log

Compressed Page0

mod log

Compressed Page1

mod log

Compressed Page2

mod log

Database FileBuffer Pool

[1,2,4,8] KBRead

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

MYSQL INNODB COMPRESSION

31

16 KB

MySQL 5.7 Documentation

Source: MySQL 5.7 Documentation

Uncompressed
Page0

Compressed Page0

mod log

Compressed Page0

mod log

Compressed Page1

mod log

Compressed Page2

mod log

Database FileBuffer Pool

[1,2,4,8] KB

Read

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NAÏVE COMPRESSION

Compressed data is an opaque box to the DBMS and
thus the system must decompress data first before it can
be read and (potentially) modified.
→ This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OBSERVATION

Ideally, the DBMS can operate on compressed data
without decompressing it first.

33

SELECT * FROM users
 WHERE name = 'Andy'

SELECT * FROM users
 WHERE name = XX

NAME SALARY

Andy 99999

Jignesh 88888

NAME SALARY

XX AA
YY BB

Database Magic!

Compress

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

COMPRESSION GRANULARITY

Choice #1: Block-level
→ Compress a block of tuples for the same table.

Choice #2: Tuple-level
→ Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
→ Compress a single attribute within one tuple (overflow).
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes stored for

multiple tuples (DSM-only).

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

COLUMNAR COMPRESSION

Run-length Encoding

Bit-Packing Encoding

Bitmap Encoding

Delta / Frame-of-Reference Encoding

Incremental Encoding

Dictionary Encoding

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

RUN-LENGTH ENCODING

Compress runs of the same value in a single column
into triplets:
→ The value of the attribute.
→ The start position in the column segment.
→ The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

RUN-LENGTH ENCODING

37

Original Data

id

2

1

4

3

7

6

9

8

isDead

Y

Y

N

Y

N

Y

Y

Y

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

RUN-LENGTH ENCODING

37

Compressed Data

id

2

1

4

3

7

6

9

8

isDead

(N,3,1)

(Y,0,3)

(N,5,1)

(Y,4,1)

(Y,6,2)

Original Data

id

2

1

4

3

7

6

9

8

isDead

Y

Y

N

Y

N

Y

Y

Y
RLE Triplet
 - Value
 - Offset
 - Length

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

RUN-LENGTH ENCODING

37

Compressed Data

id

2

1

4

3

7

6

9

8

isDead

(N,3,1)

(Y,0,3)

(N,5,1)

(Y,4,1)

(Y,6,2)

RLE Triplet
 - Value
 - Offset
 - Length

SELECT isDead, COUNT(*)
 FROM users
 GROUP BY isDead

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

RUN-LENGTH ENCODING

37

Compressed Data

id

2

1

4

3

7

6

9

8

isDead

(N,3,1)

(Y,0,3)

(N,5,1)

(Y,4,1)

(Y,6,2)

Original Data

id

2

1

4

3

7

6

9

8

isDead

Y

Y

N

Y

N

Y

Y

Y
RLE Triplet
 - Value
 - Offset
 - Length

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

RUN-LENGTH ENCODING

37

Compressed DataSorted Data

id

2

1

6

3

9

8

7

4

isDead

Y

Y

Y

Y

Y

Y

N

N

id

2

1

6

3

9

8

7

4

isDead

(N,7,2)

(Y,0,6)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BIT PACKING

If the values for an integer attribute is
smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.

38

Original Data

int32

191

13

92

56

120

81

172

231

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BIT PACKING

If the values for an integer attribute is
smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.

38

Original Data

int32

191

13

92

56

120

81

172

231

00000000 00000000 00000000 10111111

00000000 00000000 00000000 00001101

00000000 00000000 00000000 01011100

00000000 00000000 00000000 00111000

00000000 00000000 00000000 01111000

00000000 00000000 00000000 01010001

00000000 00000000 00000000 10101100

00000000 00000000 00000000 11100111

Original:
8 × 32-bits =
256 bits

10111111

00001101

01011100

00111000

01111000

01010001

10101100

11100111

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BIT PACKING

If the values for an integer attribute is
smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.

38

Original Data

int32

191

13

92

56

120

81

172

231

00000000 00000000 00000000 10111111

00000000 00000000 00000000 00001101

00000000 00000000 00000000 01011100

00000000 00000000 00000000 00111000

00000000 00000000 00000000 01111000

00000000 00000000 00000000 01010001

00000000 00000000 00000000 10101100

00000000 00000000 00000000 11100111

Original:
8 × 32-bits =
256 bits

10111111

00001101

01011100

00111000

01111000

01010001

10101100

11100111

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BIT PACKING

If the values for an integer attribute is
smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.

38

Original Data

int32

191

13

92

56

120

81

172

231

Original:
8 × 32-bits =
256 bits

Compressed:
8 × 8-bits =
64 bits

10111111

00001101

01011100

00111000

01111000

01010001

10101100

11100111

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

PATCHING / MOSTLY ENCODING

A variation of bit packing for when an attribute's values
are "mostly" less than the largest size, store them with
smaller data type.
→ The remaining values that cannot be compressed are stored in

their raw form.

39

Redshift Documentation

Source: Redshift Documentation

Original Data Compressed Data

offset
3

value
99999999Original:

8 × 32-bits =
256 bits

Compressed:
(8 × 8-bits) +
16-bits + 32-bits
= 112 bits

int32

191
13

92
99999999

81
120
231
172

mostly8

181
13

XXX
92
81
120
231
172

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BITMAP ENCODING

Store a separate bitmap for each unique value for an
attribute where an offset in the vector corresponds to a
tuple.
→ The ith position in the Bitmap corresponds to the ith tuple in the

table.
→ Typically segmented into chunks to avoid allocating large

blocks of contiguous memory.

Only practical if the value cardinality is low.

Some DBMSs provide bitmap indexes.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dbdb.io/browse?indexes=bitmap

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Original Data

BITMAP ENCODING

41

Compressed Data

id

2

1

4

3

7

6

9

8

isDead

Y

Y

N

Y

N

Y

Y

Y

id

2

1

4

3

7

6

9

8

Y

1

1

0

1

0

1

1

1

N

0

0

1

0

1

0

0

0

isDead

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Original Data

BITMAP ENCODING

41

Compressed Data

id

2

1

4

3

7

6

9

8

isDead

Y

Y

N

Y

N

Y

Y

Y

id

2

1

4

3

7

6

9

8

Y

1

1

0

1

0

1

1

1

N

0

0

1

0

1

0

0

0

isDead

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

Original Data

BITMAP ENCODING

41

Compressed Data

id

2

1

4

3

7

6

9

8

isDead

Y

Y

N

Y

N

Y

Y

Y

id

2

1

4

3

7

6

9

8

Y

1

1

0

1

0

1

1

1

N

0

0

1

0

1

0

0

0

isDead

Original:
8 × 8-bits =
64 bits

8 × 2-bits =
16 bits

2 × 8-bits =
16 bits

Compressed:
16 bits + 16 bits =
32 bits

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BITMAP ENCODING: EXAMPLE

42

CREATE TABLE customer (
 id INT PRIMARY KEY,
 name VARCHAR(32),
 email VARCHAR(64),
 address VARCHAR(64),
 zip_code INT
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://roaringbitmap.org/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BITMAP ENCODING: EXAMPLE

Roaring Bitmap

Assume we have 10 million tuples.
43,000 zip codes in the US.
→ 10000000 × 32-bits = 40 MB
→ 10000000 × 43000 = 53.75 GB

Every time the application inserts a
new tuple, the DBMS must extend
43,000 different bitmaps.

Compressed data structures for sparse
data sets avoid this problem:
→ Roaring Bitmaps

42

CREATE TABLE customer (
 id INT PRIMARY KEY,
 name VARCHAR(32),
 email VARCHAR(64),
 address VARCHAR(64),
 zip_code INT
);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://roaringbitmap.org/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ROARING BITMAPS

Bitmap index that switches which data structure to use
for a range of values based local density of bits.
→ Dense chunks are stored using uncompressed bitmaps.
→ Sparse chunks use bitpacked arrays of 16-bit integers.

Dense chunks can be further compressed with RLE.

There are many open-source implementations that are
widely used in different DBMSs.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.
→ Store k in the chunk's container.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

44

Chunk Partitions

0 1 2 3

k=1000
1000/216=0
1000%216=1000

001
001
110
100
000
000
100
001
000
000

1000

Containers

Store 1000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ROARING BITMAPS

For each value k, assign it to a
chunk based on k/216.
→ Store k in the chunk's container.

If # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

44

Chunk Partitions

0 1 2 3

k=1000
1000/216=0
1000%216=1000

001
001
110
100
000
000
100
001
000
000

k=199658
199658/216=3
199658%216=50

1000

Set bit #50 to 1

Containers

Store 1000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DELTA ENCODING

Recording the difference between values that follow
each other in the same column.
→ Store base value in-line or in a separate look-up table.

45

Original Data

time64

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time64

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DELTA ENCODING

Recording the difference between values that follow
each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

45

Original Data

time64

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time64

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DELTA ENCODING

Recording the difference between values that follow
each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

45

Original Data

time64

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time64

(+1,4)
12:00

temp

-0.1
99.5

+0.1
+0.1

-0.2

Compressed Data

time64

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DELTA ENCODING

Recording the difference between values that follow
each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

Frame-of-Reference Variant: Use global min value.

45

Original Data

time64

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data

time64

(+1,4)
12:00

temp

-0.1
99.5

+0.1
+0.1

-0.2

Compressed Data

time64

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

64-bits + (4 × 16-bits)
= 128 bits

5 × 64-bits
= 320 bits

64-bits + (2 × 16-bits)
= 96 bits

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DICTIONARY COMPRESSION

Replace frequent values with smaller fixed-length codes
and then maintain a mapping (dictionary) from the
codes to the original values
→ Typically, one code per attribute value.
→ Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding and
decoding for both point and range queries.
→ Encode/Locate: For a given uncompressed value, convert it

into its compressed form.
→ Decode/Extract: For a given compressed value, convert it

back into its original form.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DICTIONARY: ORDER-PRESERVING

The encoded values need to support the same collation
as the original values.

47

SELECT * FROM users
 WHERE name LIKE 'And%'

Original Data Compressed Data

SELECT * FROM users
 WHERE name BETWEEN 10 AND 20

name

Andrea

Mr.Pickles

Andy

Jignesh

Mr.Pickles

code
10

20

30

40

value
Andrea

Andy

Jignesh

Mr.Pickles

name
10

40

20

30

40

Sorted
D

iction
ary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ORDER-PRESERVING ENCODING

48

SELECT name FROM users
 WHERE name LIKE 'And%'

SELECT DISTINCT name
 FROM users
 WHERE name LIKE 'And%'

Still must perform scan on column

Only need to access dictionary

Original Data Compressed Data

name

Andrea

Mr.Pickles

Andy

Jignesh

Mr.Pickles

code
10

20

30

40

value
Andrea

Andy

Jignesh

Mr.Pickles

name
10

40

20

30

40

Sorted
D

iction
ary

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OBSERVATION

Since an OLAP DBMS is superior for analytical queries
than an OLTP DBMSs, one should always use an OLAP
DBMS for them.

But if new data arrives at the OLTP DBMS, then we
need a way to transfer data between them…

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BIFURCATED ENVIRONMENT

51

Extract
Transform
Load

OLAP DatabaseOLTP Databases

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BIFURCATED ENVIRONMENT

51

Extract
Transform
Load

OLAP DatabaseOLTP Databases

Extract
Load
Transform

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

BIFURCATED ENVIRONMENT

51

Extract
Transform
Load

OLAP DatabaseOLTP Databases

Extract
Load

Transform

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OBSERVATION

Instead of maintaining two separate DBMSs, a single
DBMS could support both OLTP and OLAP workloads
if it exploits the temporal nature of data.
→ Data is "hot" when it enters the database
→ As a tuple ages, it is updated less frequently.

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HYBRID STORAGE MODEL

Use separate execution engines that are optimized for
either NSM or DSM databases.
→ Store new data in NSM for fast OLTP.
→ Migrate data to DSM for more efficient OLAP.
→ Combine query results from both engines to appear as a single

logical database to the application.

Choice #1: Fractured Mirrors
→ Examples: Oracle, IBM DB2 Blu, Microsoft SQL Server

Choice #2: Delta Store
→ Examples: SAP HANA, Vertica, SingleStore, Databricks,

Google Napa

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

FRACTURED MIRRORS

DBMS automatically maintains a second copy of
the database in a DSM layout.
→ All updates are first entered in NSM then eventually

copied into DSM mirror.
→ If the DBMS supports updates, it must invalidate tuples

in the DSM mirror.

54

Writes

Primary
(NSM)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

FRACTURED MIRRORS

DBMS automatically maintains a second copy of
the database in a DSM layout.
→ All updates are first entered in NSM then eventually

copied into DSM mirror.
→ If the DBMS supports updates, it must invalidate tuples

in the DSM mirror.

54

Writes
Analytical
Queries

Primary
(NSM)

Mirror
(Columnar)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta
store and applies them to DSM data.
→ Batch large chunks and then write them out as a PAX file.
→ Delete records in the delta store once they are in column store.

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta
store and applies them to DSM data.
→ Batch large chunks and then write them out as a PAX file.
→ Delete records in the delta store once they are in column store.

55

Historical Data
(Columnar)

Analytical
Queries

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DELTA STORE

Stage updates to the database in an NSM table.

A background thread migrates updates from delta
store and applies them to DSM data.
→ Batch large chunks and then write them out as a PAX file.
→ Delete records in the delta store once they are in column store.

55

Historical Data
(Columnar)

Delta Store
(NSM)Writes

Analytical
Queries

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CONCLUSION

It is important to choose the right storage model for the
target workload:
→ OLTP = Row Store
→ OLAP = Column Store

DBMSs can combine different approaches for even
better compression.

Dictionary encoding is probably the most useful scheme
because it does not require pre-sorting.

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CONCLUSION

It is important to choose the right storage model for the
target workload:
→ OLTP = Row Store
→ OLAP = Column Store

DBMSs can combine different approaches for even
better compression.

Dictionary encoding is probably the most useful scheme
because it does not require pre-sorting.

56
5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://sympathetic.ink/2025/12/11/Column-Storage-for-the-AI-era.html

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NEXT CLASS

Data Structures: Hash Tables!
→ We must build our own…

57

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

	Introduction
	Slide 1: Database Storage: Column Stores + Data Compression
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: TODAY'S AGENDA

	Workloads
	Slide 6: DATABASE WORKLOADS
	Slide 7: DATABASE WORKLOADS
	Slide 8: DATABASE WORKLOADS
	Slide 9: DATABASE WORKLOADS
	Slide 10: WIKIPEDIA EXAMPLE
	Slide 11: OBSERVATION
	Slide 12: OLTP
	Slide 13: OLAP

	Storage Models
	Slide 14: STORAGE MODELS

	NSM
	Slide 15: N-ARY STORAGE MODEL (NSM)
	Slide 16: NSM: PHYSICAL ORGANIZATION
	Slide 17: NSM: PHYSICAL ORGANIZATION
	Slide 18: NSM: PHYSICAL ORGANIZATION
	Slide 19: NSM: PHYSICAL ORGANIZATION
	Slide 20: NSM: PHYSICAL ORGANIZATION
	Slide 21: NSM: OLTP EXAMPLE
	Slide 22: NSM: OLTP EXAMPLE
	Slide 23: NSM: OLAP EXAMPLE
	Slide 24: NSM: OLAP EXAMPLE
	Slide 25: NSM: OLAP EXAMPLE
	Slide 26: NSM: OLAP EXAMPLE
	Slide 27: NSM: OLAP EXAMPLE
	Slide 28: NSM: SUMMARY

	DSM
	Slide 29: DECOMPOSITION STORAGE MODEL (DSM)
	Slide 30: DSM: PHYSICAL ORGANIZATION
	Slide 31: DSM: PHYSICAL ORGANIZATION
	Slide 32: DSM: PHYSICAL ORGANIZATION
	Slide 33: DSM: OLAP EXAMPLE
	Slide 34: DSM: OLAP EXAMPLE
	Slide 35: DSM: OLAP EXAMPLE
	Slide 36: DSM: OLAP EXAMPLE
	Slide 37: DSM: OLAP EXAMPLE
	Slide 38: DSM: OLAP EXAMPLE
	Slide 39: DSM: OLAP EXAMPLE
	Slide 40: DSM: TUPLE IDENTIFICATION
	Slide 41: DSM: VARIABLE-LENGTH DATA
	Slide 42: DECOMPOSITION STORAGE MODEL (DSM)

	PAX
	Slide 43: OBSERVATION
	Slide 44: PAX STORAGE MODEL
	Slide 45: PAX: PHYSICAL ORGANIZATION
	Slide 46: PAX: PHYSICAL ORGANIZATION
	Slide 47: PAX: PHYSICAL ORGANIZATION
	Slide 48: PAX: PHYSICAL ORGANIZATION

	Compression
	Slide 49: OBSERVATION
	Slide 50: DATABASE COMPRESSION
	Slide 51: COMPRESSION GRANULARITY

	Naive Compression
	Slide 52: NAÏVE COMPRESSION
	Slide 53: MYSQL INNODB COMPRESSION
	Slide 54: MYSQL INNODB COMPRESSION
	Slide 55: MYSQL INNODB COMPRESSION
	Slide 56: MYSQL INNODB COMPRESSION
	Slide 57: MYSQL INNODB COMPRESSION
	Slide 58: NAÏVE COMPRESSION
	Slide 59: OBSERVATION

	Columnar Compression
	Slide 60: COMPRESSION GRANULARITY
	Slide 61: COLUMNAR COMPRESSION

	RLE
	Slide 62: RUN-LENGTH ENCODING
	Slide 63: RUN-LENGTH ENCODING
	Slide 64: RUN-LENGTH ENCODING
	Slide 65: RUN-LENGTH ENCODING
	Slide 66: RUN-LENGTH ENCODING
	Slide 67: RUN-LENGTH ENCODING

	Bit Packing
	Slide 68: BIT PACKING
	Slide 69: BIT PACKING
	Slide 70: BIT PACKING
	Slide 71: BIT PACKING
	Slide 72: PATCHING / MOSTLY ENCODING

	BitMap Encoding
	Slide 73: BITMAP ENCODING
	Slide 74: BITMAP ENCODING
	Slide 75: BITMAP ENCODING
	Slide 76: BITMAP ENCODING
	Slide 77: BITMAP ENCODING: EXAMPLE
	Slide 78: BITMAP ENCODING: EXAMPLE
	Slide 79: ROARING BITMAPS
	Slide 80: ROARING BITMAPS
	Slide 81: ROARING BITMAPS

	Delta Encoding
	Slide 82: DELTA ENCODING
	Slide 83: DELTA ENCODING
	Slide 84: DELTA ENCODING
	Slide 85: DELTA ENCODING

	Dictionary Encoding
	Slide 86: DICTIONARY COMPRESSION
	Slide 87: DICTIONARY: ORDER-PRESERVING
	Slide 88: ORDER-PRESERVING ENCODING

	OLTP → OLAP
	Slide 91: OBSERVATION
	Slide 92: BIFURCATED ENVIRONMENT
	Slide 93: BIFURCATED ENVIRONMENT
	Slide 94: BIFURCATED ENVIRONMENT
	Slide 95: OBSERVATION
	Slide 96: HYBRID STORAGE MODEL
	Slide 97: FRACTURED MIRRORS
	Slide 98: FRACTURED MIRRORS
	Slide 99: DELTA STORE
	Slide 100: DELTA STORE
	Slide 101: DELTA STORE

	Conclusion
	Slide 102: CONCLUSION
	Slide 103: CONCLUSION
	Slide 104: NEXT CLASS

