Carnegie Mellon ‘University:
‘Database
Systems

15-445/645 SPRING 2026 -
ANDY PAVLO | s

JIGNESH PATEL

Lecture #06 | |
Database Storage:
Column Stores + =
Data Compression -

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/

ADMINISTRIVIA

Project #1 is due Sunday Feb 15 @ 11:59pm
— Recitation Video + Slides (@64)
— Perf Recitation on Wednesday Feb 4" @ 6:30pm (@79)

Homework #2 is due Sunday Feb 8" @ 11:59pm

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://piazza.com/class/mjxpbw9kyzv4mo/post/64
https://piazza.com/class/mjxpbw9kyzv4mo/post/79

UPCOMING DATABASE TALKS

Redpanda Oxla (DB Seminar) OX | distributed
— Monday Feb 2™ @ 4:30pm ET N\ INA database
— Zoom

Amazon Aurora DSQL (DB Seminar) Amazon
— Monday Feb 9" @ 4:30pm ET ¢ Aurora DSQL

— Zoom
TopK (DB Seminar) TR L
— Monday Feb 16® @ 4:30pm ET E E“E E'“ E'-.

— Zoom

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://db.cs.cmu.edu/events/pg-vs-world-redpanda-oxla-tyler-akidau-adam-symanski/
https://db.cs.cmu.edu/events/pg-vs-world-redpanda-oxla-tyler-akidau-adam-symanski/
https://db.cs.cmu.edu/events/pg-vs-world-aurora-dsql-marc-brooker/
https://db.cs.cmu.edu/events/pg-vs-world-aurora-dsql-marc-brooker/

LAST CLASS

We discussed storage architecture alternatives to the

slotted page storage scheme.
— Log-structured storage
— Index-organized storage

These approaches are ideal for write-heavy
(INSERT/UPDATE/DELETE) workloads.

But the most important query for some workloads may
be read (SELECT) performance...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

TODAY'S AGENDA

Database Workloads
Storage Models
Data Compression

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)

— Fast operations that only read/update a small amount of data
each time.

On-Line Analytical Processing (OLAP)

— Complex queries that read a lot of data to compute aggregates.

Hybrid Transaction + Analytical Processing
— OLTP + OLAP together on the same database instance

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATABASE WORKLOADS

Complex
>
=
< OLAP
QU
§
O
S
p= OLTP
§~l Simple
- Write-Heavy Read-Heavy

W orkload Focus

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
http://cacm.acm.org/magazines/2011/6/108651

DATABASE WORKLOADS 7

Complex
Cy
=
S OLAP
QU
S
O
S
p= OLTP
§.. Simple
- Write-Heavy Read-Heavy

W orkload Focus

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
http://cacm.acm.org/magazines/2011/6/108651
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

DATABASE WORKLOADS 7

Complex

S
g

S

O

s
-2

S

§.4 Simple |
- Write-Heavy Read-Heavy

W orkload Focus

Source: Mike Stonebraker

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
http://cacm.acm.org/magazines/2011/6/108651
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

WIKIPEDIA EXAMPLE

CREATE TABLE useracct (CREATE TABLE pages (
userID INT PRIMARY KEY, pageID INT PRIMARY KEY,
userName VARCHAR UNIQUE, title VARCHAR UNIQUE,
- latest INT
); —® 5 REFERENCES revisions (revID),
A);

A

CREATE TABLE revisions (

revID INT PRIMARY KEY,
® userID INT REFERENCES useracct (userlID),
pageID INT REFERENCES pages (pagelD)®
content TEXT,

updated DATETIME

);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OBSERVATION

The relational model does not specify that the DBMS
must store all a tuple's attributes together in a single

page.

This may not actually be the best layout for some
workloads...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

On-line Transaction Processing:

— Simple queries that read/update a small
amount of data that is related to a single
entity in the database.

This is usually the kind of application
that people build first.

SELECT P.*, R.*
FROM pages AS P
INNER JOIN revisions AS R
ON P.latest = R.revID
WHERE P.pagelD = ?

UPDATE useracct
SET lastLogin = NOW(),
hostname = ?
WHERE userID = ?

INSERT INTO revisions
VALUES (?,?2..,7)

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

On-line Analytical Processing:
— Complex queries that read large portions

of the database spanning multiple entities.

You execute these workloads on the

data you have collected from your
OLTP application(s).

SELECT COUNT(U.lastlLogin),
EXTRACT(month FROM
U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY
EXTRACT(month FROM U.lastlLogin)

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

STORAGE MODELS -

A DBMS's storage model specifies how it physically

organizes tuples on disk and in memory.

— Can have different performance characteristics based on the
target workload (OLTP vs. OLAP).
— Influences the design choices of the rest of the DBMS.

Choice #1: N-ary Storage Model (NSM)
Choice #2: Decomposition Storage Model (DSM)
Choice #3: Hybrid Storage Model (PAX)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

N-ARY STORAGE MODEL (NSM) z

The DBMS stores (almost) all attributes for a single
tuple contiguously in a single page.
— Also commonly known as a row store

I[deal for OLTP workloads where queries are more
likely to access individual entities and execute write-
heavy workloads.

NSM database page sizes are typically some constant
multiple of 4 KB hardware pages.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a

physical tuple.

Database Page

Row #0 [NEL co |
Row #1 al

Row #2 a2
Row #3 a3
Row #4 a4

Row #5

Slot Array
A

peer 0 1 0 1

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a

physical tuple.

Database Page

Row #0 m co I
Row #1 [N a1 |
row #2 [I [
Row #3 EE -
Row #4 [0 4 |
Row #5 - []

Slot Array
A

\

4

header [BENEN % c0

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a

physical tuple.

Database Page

Row #0 m co I
Row #1 [N a1 |
row #2 [I [
Row #3 EE -
Row #4 [0 4 |
Row #5 - []

Slot Array
A

\

a

y
header [BENEN % c0

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: PHYSICAL ORGANIZATION =

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple. A

header

y
header BEX

ad bo co

Database Page

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

= || header IETA

a5 b5
| header BEEINEI. -
b2 c2 al
cl ad bo co

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: OLTP EXAMPLE

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

NSM Disk Page

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPassjhostname| lastLogin

header = - - - -

Database File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: OLTP EXAMPLE

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

INSERT INTO useracct
VALUES (?,?,..7)

NSM Disk Page

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPassjhostname| lastLogin

header | userID JuserName|userPass|hostname| lastlLogin

Database File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: OLAP EXAMPLE =

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

e | T
b L el L]
[=I=2} = 1] [==k == |

e | [
S| | |
(==] | | == =]

e | | T
Es=E=mllESEEEs
| | [=]

Database File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

| NSM Disk Page

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPassjhostname| lastLogin

header | userID JuserName|userPass|hostname| lastlLogin

Database File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

| NSM Disk Page

header | userID juserName|userPassfjhostname] lastlLogin

header | userID juserNamejuserPassfjhostnamel lastlLogin

header | userID juserNamejuserPassfjhostnamel] lastlLogin

header | userID JuserName|userPassfjhostnamef] lastlLogin

Database File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: OLAP EXAMPLE

SELECT COUNTdU.lastLoginb,
EXTRACT (month FROM [U.lastlLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]

| NSM Disk Page

header | userID juserName|userPassfjhostnamel] lastlLogin

header | userID juserNamejuserPassfjhostnamel]l lastlLogin

header | userID juserNamejuserPassfjhostnamel] lastlLogin

header | userID JuserName|userPassfjhostnamef] lastlLogin

Database File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: OLAP EXAMPLE

SELECT COUNTdU.lastLoginb,

EXTRACT (month FROM |U.lastLogin]) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]

I NSM Disk Page

header | userID JuserName hostnamel] lastlLogin

header | userID JuserName hostnamel lastlLogin

header | userID JuserName sfhostnamefl lastlLogin

header W userID JuserName hostname] lastlLogin

*t
Q Useless Data!
oWy

Database File

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: SUMMARY

Advantages

— Fast inserts, updates, and deletes.

— Good for queries that need the entire tuple (OLTP).
— Can use index-oriented physical storage for clustering.

Disadvantages

— Not good for scanning large portions of the table and/or a
subset of the attributes.

— Terrible memory locality in access patterns.

— Not ideal for compression because of multiple value domains
within a single page.

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DECOMPOSITION STORAGE MODEL (DSM)

Store a single attribute for all tuples

contiguously in a block of data.
— Also known as a "column store"

Ideal for OLAP workloads where
read-only queries perform large scans
over a subset of the table’s attributes.

DBMS is responsible for
combining/splitting a tuple's
attributes when reading/writing.

A DECOMPOSITION STORAGE MODEL

Microelectranics And Tec)
w430

R
Austin,

Abstract

This report examines the relstive sdvantages
of & storage | based om decomponition (of
commanity view relatios foto binary relstioos
contalning 8 surropate ome attribute) over
coaventional n-ary storage models

be

alaplicity, generality, w requiresents,
“piate perTaraante and rairieval perforsene

1 INTRODUCTION

example, the conceptunl schema relation

[aap s el
| w2 wia w2l via|
1531 w13l vial)

tagate for bosmct Utity end toree
Aetribates per racord NSH would stors i,
Vi1, w21 and w31 togerhor or ceeh revord |

Pesmasion 1o copy wiahoss ee sl or pat of ths el w grashd
primded i €363 7 it made or dcmhuted for Gmeet
Commereal sdvuncag. e ACM copynh notc aad th 1k of (e
etaton e 4 Gae AppEaT, 38 i 5 e tht Copyg by
Peremnan of the Asceision 3¢ Computang Macksnery

Seherese, o 1 repubich, s o o specfe SO

© 1885 ACM 0-89791-160-1/85/005/0268 $00 75

ogy Cosputer Corporation
arch Bivd
a0

Jome ntabmse svstems we o fully trsapessd

starage model. for RN (Lorie and Syaonds
IOTIT 700, (Hiageraeld ot Al 19751. HAPID (rerner
«t a1 10781, ALDS [Barsact. and Thouas 16611, Delsn

et al 1882) mod (Tanaka 1963) s

aperonch viores w11 valves of che sume driribus of
evern

binary relation For exaple, the above Teiation
would be storsd as

alleur| val| sdisur| valj a
Parl vl el er]val
[z vzl | m2| va2i | =2 vaZ|
fa3l w3l) asly) (a3l e

In addition, the DSN stores two gopies of each
attribate relation
value while the sther I
sucrogate These statements
fie. extessioanl)

aa o-ary ce
mods] than noreal
Interaedinte
correspondingly clcher cepressatation

This report compares thess two starage medels
based on several criteris | Section 3 compares

compares their retrieval
ectien B provides ey
ta some refinemsats for the DX

2 SINPLIGITY AND GENERALITY

s Section comparas the two storage wodels
to illustrate their relative wisplicity and
generality otkers (Abrial 1874, Geliyanai

represent ing
The Concomtunl scheas o4 the DN dous miihln the
atornge scheas

18

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://doi.org/10.1145/971699.318923

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-

length values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

a3

null bitmap

a4

ab

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-

length values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

Page #2 Page #1

Row #0
Row #1
Row #2
Row #3
Row i#4
Row #5

header

a0

al a2

a3 a4

null bitmap

ab

header

bo

b1 b2

null bitmap

b3 b4

b5

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-

length values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

Page #2 Page #1

Page #3

header null bitmap

a0 al a2 a3 a4 ab
header null bitmap

bo b1l b2 b3 b4 b5
header null bitmap
c0 cl c2 c3 c4
c5

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: OLAP EXAMPLE

header | userID JuserName|userPassfhostname| lastlLogin

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPassjhostname| lastLogin

header | userID JuserName|userPass|hostname| lastlLogin

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: OLAP EXAMPLE

header | userID JuserNamejuserPassfhostnameff lastlLogin

header | userID QuserNamejuserPassfhostnamef lastLogin

header | userID

header | userID IuserName userPassfhostname] lastlLogin
IuserName userPassfhostname] lastlLogin

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: OLAP EXAMPLE

/| DSM Disk Page

header hostname|hostnamehostnamejhostname

hostnamelhostnamefhostnamefhostname|hostnamefhostname

hostname|hostname|hostnamelhostname|hostname|hostname

. hostname|hostname|hostname|hostname|hostnamehostname

userName

Database File

userPass]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'

GROUP BY EXTRACT(month FROM U.lastlLogin)

| DSM Disk Page

header hostname|hostnamehostnamejhostname

1aStLOgln] hostnamelhostnamefhostnamefhostname|hostnamefhostname

hostnamejhostnamefhostnamejhostnamehostnamefhostname

hostnamejhostnamefhostnamefhostnamefhostnamefhostname

Sae
.

userName [E-=—

Database File |

userPass

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

| DSM Disk Page

header hostname hostnameIhostname hostname

1aStLOgln] hostnamefjhostnamefhostnamefhostnamefhostnamefhostname

hostname|hostname

hostnamefhostnamefjhostnamefhostnamefhostnamefhostname

hostname|hostname|hostnamg

Sae
.

userName [E-=—

Database File |

userPass

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: OLAP EXAMPLE =

SELECT COUNTdU.lastLoginb,
EXTRACT (month FROM [U.lastlLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]

userName [E=

Database File |

userPass]

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: OLAP EXAMPLE =

SELECT COUNTdU.lastLoginb,
EXTRACT (month FROM [U.lastlLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]

DSM Disk Page

header lastLogin lastLoginllastLogin lastLogin

].aStLOgln] lastLogin j§ lastLogin | lastLogin | lastLogin | lastLogin | lastlLogin

lastLoginf lastlLogin | lastlLogin

lastLogin | lastlLogin | lastLogin

lastlLogin § lastLogin § lastLogin | lastlLogin | lastLogin | lastLogin

userName [E=

Database File |

userPass

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets

— Each value is the same length for an attribute.

\ R
D, ® Choice #2: Embedded Tuple Ids

, — Each value is stored with its tuple id in a column.
Don't

Do This!
Offsets Embedded Ids

A e fc]o

wl\)—‘®h
wm—xsh
wmash
wm—\sh

W N O

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: VARIABLE-LENGTH DATA =

Padding variable-length fields to ensure they are fixed-
length is wasteful, especially for large attributes.

A better approach is to use dictionary compression to
convert repetitive variable-length data into fixed-length
values (typically 32-bit integers).

— More on this later in this lecture...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DECOMPOSITION STORAGE MODEL (DSM)

Advantages

— Reduces the amount wasted I/O per query because the DBMS
only reads the data that it needs.

— Faster query processing because of increased locality and cached
data reuse (Lecture #14).

— Better data compression because data from the same domain
are physically collocated.

Disadvantages

— Slow for point queries, inserts, updates, and deletes because of
tuple splitting/stitching/reorganization.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026/schedule.html#mar-11-2026

O0BSERVATION

OLAP queries almost never access a single column in a

table by itself.

— At some point during query execution, the DBMS must get
other columns and stitch the original tuple back together.

But we still need to store data in a columnar format to

get the storage + execution benefits.

W e need a columnar scheme that stores attributes
separately but keeps each tuple's attributes physically
close to each other...

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PAX STORAGE MODEL

Partition Attributes Across (PAX
is a hybrid storage model that
vertically partitions attributes within

a database page.

— Examples: Parquet (2013), ORC (2013
Arrow (2016), Nimble (2023
Vortex (2025

The goal is to get the benefit of faster
processing on columnar storage while
retaining the spatial locality benefits
of row storage.

Weaving Relations for Cache Performance

Anastassia Aflamaki* David J. DeWitt

on University Univ, of Wisconsin-Madison
matrsa® cx.cmu oy dewinn@cs,wisc.ody
Abstract

Relationual duiicbuse systenes fave sradtionally oprimzed for
B performance and arganized vecans sequentially on disk
pages wsing the N-ary Storage Model (NSH (o b sfoned
pases) Recent reserch, however, indicates that coche uriliation
ana perfarmance is beconing increasingly important an modern
plitformis. I his papes, we first demiuistnite that in-page data
igh cache perfarmance and that NSW
iom om moderr: platforas. Ne
s onginizaion msdl cutled PAX. {Pariion
Adributes Avevss). thal significanily impreves cache pedfor
mance by growping ogether all values of cack wrribute within
cach page. Breause PAX oty affecis layoud fusi s, if
fncur o torase el nd s o ies 4O bl
Accarding 10 aur experimental resilts. when compured ta NSH
fup PAX exibits superior cuche and memory bandwidih wiliza
tian, sanving at lewst 5% of NSW's siell vime dhue 1o dhia cache
1b) nmge selection queries ond upstates on memory
resident relations execie 17-25% faster. and (c) TRC-H queries
wlving Y exevuie (AR fusier

1 Introduction

‘The communication between CPU and the secondary
storage (U0) has been traditionally recognized us the
mujor dusabase performance houleneck. Te uptimize daty
wramsfer s and from mass swrage, relugonal DBMSs have
lomg organized records in slowcd disk pages sing the N-
ury Storage Model (NSM). NSM stores reconds contigu-
ously starting from the beginning of each disk page, and
uses an offset (slot) table at the end of the page 1o locae
the beginning of each record [27].

Unfortunately. most queries use only o fraction of
carh record. To minimise unnecessary 1O, the Decompo-
g Model (DSM) was proposed in 1985 [10]
ribute relation vertically inko o
sub-relations, each of which is accessed only when the
comesponding aitribuie is needed. Queries hat nvolve
mulliple afiribules from a relation, however, must spend

F Wk o while sthar was o the Usiversity of Wisconsas-Mdison
Persissian o copy withous fee il ar part of this moterial s granted o
vided thoe she copics ave ot made or diswibated for direct coanserciol
advanage. dhe VLD capyrigh narkce and she st of e publicaston and

—
Proceedings of the 27th VLB Canference,
Rasna, Haly, 2001

\lm’k D. Hill Marios Skounakis
i Mackon Ui of Wiscomsiedison
markhi s wie ol wiarias

tremendous additional fime to join the participating sub-
relations wgether. Except for Sybuse-1Q (331, today's rela-
tional DBMSs use NSM for gencral-purpose data place-
ment [201129)[32].

Recent research has demonsirated that modem data-

processor and the m rather than 1O
1201[51126]. When running commercial database systems
on a modern processor, data requests that miss in the cache
hierarchy (ie.. requests for data that are not found in any
af the caches and are transferred from main memoey) are 3

action of
¢ cacho b usciul o the query
s and the

with uscless
data () wastes bandwidth, (b) pollutes and (<)
possibly forces replacement of information that may be

the future, incurring even more delays. The
is to repair NSM’s cache behavior without com-
1g its advantages over DSM.

This paper intruduces amd evaluates Partition
Adiributes Across (PAX), o new layout for dat records
ihat combines the best of the e worlds and exhibits per-
formance superior (o both placement schemes by eliminal-
ing unnecessary accesses to main memory. For a given
relation, PAX stores the sume data on cach page as NSM.
Within cach page. however, PAX groups all the values of a
pamicular atribute together on a minipage. During a
sequential scan (¢.2.. 10 apply a predicate on a feaction of
the record), PAX fully wilizes the cache resources,
bute’s val

because on each miss o namber of a si

5 are Roaded into the cache together, At the same time,
all parts of the record are on e same page. To reconstnuct
a recond one needs to perform a minijoin among
minipages, which incurs il cost beca i docs ack
have o look beyond the page.

We evaluated PAX against NSM and DSM using (a)
predicate selection queries on numeric data and (b) a vari-
ety of queries on TPC-H datasets on top of th
age manager |7). We vary query parameters including
sekctivity, projecti uimber of predicates, distance
betwesn the projected attsibute and the aliibue in the
predicate, and degree of the relation, The experimental
results show that, when compared 1o NSM, PAX (a) incurs
50-75% fewer sccond-level cache misses due to data

Shore stor-

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://parquet.apache.org/
https://orc.apache.org/
https://arrow.apache.org/
https://github.com/facebookincubator/nimble
https://vortex.dev/
https://dl.acm.org/doi/10.5555/645927.672367

PAX: PHYSICAL ORGANIZATION =

Col A Col B Col C

Horizontally partition data into row Row #0
groups. Then vertically partition their o 4 a1 b1
1 - Row #2 a2
-
_c4 |
5|

attributes into column chunks.

Row #3
Row #4
Global meta-data directory contains 0
offsets to the file's row groups.
— This is stored in the footer if the file is | Row Group Meta-Data | g’
immutable (Parquet, Orc). . bo_b1 b2 A
E co cl c2 S
Each row group contains its own :
meta-data header about its contents. ~

| File Meta-Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PAX: PHYSICAL ORGANIZATION

ColA ColB ColC

Horizontally partition data into row Row #0
groups. Then vertically partition their o 4 a1 b1
1 - Row #2 a2
-
_c4 |
5|

attributes into column chunks.

Row #3
Row #4
Global meta-data directory contains Row #5
offsets to the file's row groups.
— This is stored in the footer if the file is Column__ B Row Group Meta-Data | g’
immutable (Parquet, Orc). o
£

Each row group contains its own
meta-data header about its contents.

PAX File

| File Meta-Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PAX: PHYSICAL ORGANIZATION =

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains
offsets to the file's row groups.

— This is stored in the footer if the file is Column__ B Row Group Meta-Data | g’
immutable (Parquet, Orc). bo__ b1 b2 JH
= co cl c2 5

<Y
Each row group contains its own : [ow Group Hetabata__] 3
meta-data header about its contents. R 'fs e]
S

| File Meta-Data |

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PAX: PHYSICAL ORGANIZATION

26

Horizontally partitio
groups. Then vertica
attributes into colum,

Global meta-data dil{

offsets to the file's rq
— This is stored in the
immutable (Parquet,

Each row group co

Parquet: data organization
« Data organization
© Row-groups (default 128MB)
o Column chunks
o Pages (default 1MB) — e -
® Metadata ”C’ e ﬁT ’
o Min
: in C==)
e Count L)| SR
m Rep/deflevels m——
® Encoded values = ; = J =D —]
—— — =]
@databricks = —
=] T
c3 c4 S S

meta-data header about its contents.

| File Meta-Data

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://youtu.be/1j8SdS7s_NY?t=705

OBSERVATION

I/0 is the main bottleneck if the DBMS fetches data
from disk during query execution.

The DBMS can compress pages to increase the utility
of the data moved per I/O operation.

Key trade-off is speed vs. compression ratio
— Compressing the database reduces DRAM requirements.
— [t may decrease CPU costs during query execution.

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DATABASE COMPRESSION

Goal #1: Must produce fixed-length values.
— Only exception is var-length data stored in separate pool.

Goal #2: Postpone decompression for as long as

possible during query execution.
— Also known as late materialization.

Goal #3: Must be a lossless scheme.
— People (typically) don't like losing data.
— Any lossy compression must be performed by application.

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

COMPRESSION GRANULARITY =

Choice #1: Block-level

— ComPress a block of tuPIes for the same table.

Choice #2: Tuple-level
— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

— Compress a single attribute within one tuple (overflow).
— Can target multiple attributes for the same tuple.

Choice #4: Column-level

— Compress multiple values for one or more attributes stored for
multiple tuples (DSM-only).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NAIVE COMPRESSION :

Compress data using a general-purpose algorithm.

Scope of compression is based on input provided.
— Examples: Deflate (1990), LZO (1996), LZ4 (2011), Snappy
(2011), Oracle OZIP (2014), Zstd (2015), Lizard (2017)

Considerations
— Computational overhead
— Compress vs. decompress speed.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/Deflate
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard
https://github.com/inikep/lizard

Source : MySQL 5.7 Documen tation

MYSQL INNODB COMPRESSION =

I

mod log

)
Compressed- Page,

mod log

Compressed Page,

Compressed Page,

[1,2,4,8] KB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

MYSQL INNODB COMPRESSION =

B Buffer Pool @ Database File
W rite IR

Compressed- Page,

mod log

>[1,2,4,8] KB

Compressed- Page,

I

mod log

Compressed Page,

Compressed Page,

Source : MySQL 5.7 Documen tation

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

MYSQL INNODB COMPRESSION =

B Buffer Pool @ Database File
Read p TR

Compressed- Page,

mod log

>[1,2,4,8] KB

Compressed- Page,

I

mod log

Compressed Page,

Compressed Page,

Source : MySQL 5.7 Documen tation

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

Read sy CSRCT

Source : MySQL 5.7 Documen tation

MYSQL INNODB COMPRESSION =

B Buffer Pool

Compressed- Page,

4

Uncompressed
Page,

16 KB

mod log

)
Compressed- Page,

I

mod log

Compressed Page,

Compressed Page,

[1,2,4,8] KB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

MYSQL INNODB COMPRESSION =

B Buffer Pool

Compressed- Page,

4

Read * Uncompressed

Source : MySQL 5.7 Documen tation

Page,

16 KB

mod log

)
Compressed- Page,

I

mod log

Compressed Page,

Compressed Page,

[1,2,4,8] KB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

NAIVE COMPRESSION

Compressed data is an opaque box to the DBMS and
thus the system must decompress data first before it can
be read and (potentially) modified.

— This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OBSERVATION

[deally, the DBMS can operate on compressed data
without decompressing it first.

Database Magic!
SELECT * FROM users

SELECT * FROM users
WHERE name = 'Andy' WHERE name = XX

NAME SALARY NAME SALARY
e s T e

Andy 99999 XX AA
Jignesh 88888 L YY BB
oy

Compress

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

COMPRESSION GRANULARITY

Choice #1: Block-level

— Compress a block of tuples for the same table.

Choice #2: Tuple-level
— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

— Compress a single attribute within one tuple (overflow).
— Can target multiple attributes for the same tuple.

Choice #4: Column-level

— Compress multiple values for one or more attributes stored for
multiple tuples (DSM-only).

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

COLUMNAR COMPRESSION =

Run-length Encoding

Bit-Packing Encoding

Bitmap Encoding

Delta / Frame-of-Reference Encoding
Incremental Encoding

Dictionary Encoding

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RUN-LENGTH ENCODING

Compress runs of the same value in a single column

into triplets:

— The value of the attribute.

— The start position in the column segment.
— The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RUN-LENGTH ENCODING .

Ol |IVN|old]J]w]IN]|—-
< I<I1IZI<|IZ2|IKIK<]|I<

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RUN-LENGTH ENCODING -

Original Data

.
o

isDead

Y

Ol |IVN|old]J]w]IN]|—-

»

Compressed Data
1 (Y,0,3)
2 (N,3,1)
3 (Y,4,1)
4 (N,5,1)
6 (Y,6,2)
’__| RLE Triplet
8 | -Value
g | - Offset

- Length

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RUN-LENGTH ENCODING .

SELECT isDead, COUNT(*)
FROM users
GROUP BY isDead

Compressed Data

(Y,0,3)

(N,3,1)

(Y,4,1)

(N,5,1)

(Y,6,2)

Ol |IN|oldJlwWw]INMN]|—-

RLE Triplet
- Value

- Offset
- Length

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RUN-LENGTH ENCODING -

Original Data Compressed Data

.
o

isDead

: Y :
2 Y 2 (N,3,1)

3 Y 3 (Y,4,1)

4 N 4 (N,5,1)

6 Y 6 (Y,6,2)

! . ’_| RLE Triplet
8 Y 8 - Value

9 Y g | - Offset

- Length

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RUN-LENGTH ENCODING

Sorted Data

Y

N | hhjJOJoo|loojw |IN]—

Z 1 Z2I<Ix<IKIK]I

Compressed Data

(Y,0,6)

(N,7,2)

N | hhjJ]OJOo OO Jw [IN]—

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BIT PACKING

[f the values for an integer attribute is Original Data
smaller than the range of its given
data type size, then reduce the 13
number of bits to represent each 191
value. >

92

81
Use bit-shifting tricks to operate on o
multiple values in a single word. 231

172

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BIT PACKING

[f the values for an integer attribute is

Original Data

smaller than the range of its given

data type size, then reduce the

Original:

8 X 32-bits =

256 bits

number of bits to represent each
value.

Use bit-shifting tricks to operate on

multiple values in a single word.

=

13 00000000 00000000 00000000 00001101
>

191 00000000 00000000 00000000 10111111
>

56 00000000 00000000 00000000 00111000
=

92 00000000 00000000 00000000 01011100
>

81 00000000 00000000 00000000f 01010001
=

120 00000000 00000000 00000000 01111000
=

231 00000000 00000000 00000000 11100111
—

172 00000000 00000000 00000000 10101100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BIT PACKING

[f the values for an integer attribute is
smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.

Original Data Original:
8 X 32-bits =

256 bits
13 | 00000000 00000000 00000000] 00001101
191 I~ 00000000 00000000 00000000 10111111
56 = 00111000
9?2 = 01011100
81 | 01010001
120 = 01111000
231 — 00000000 00000000 00000000 11100111
172 | oo000cce cssosooo oooooood] 10101100

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BIT PACKING

. . . Original Data loinal:
[f the values for an integer attribute is & gf}‘?gflblits _
smaller than the range of its given 256 bits
data type size, then reduce the 13 [oseorro
number of bits to represent each 191 : o
56 00111000
value.
9?2] 01011100
. o~ . 81] 01010001
Use bit-shifting tricks to operate on o Plomm
multiple values in a single word. 231 []imeon
|
172 10101100
Compressed:
8 x 8-bits =

64 bits

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

PATCHING / MOSTLY ENCODING -

A variation of bit packing for when an attribute's values

are "mostly" less than the largest size, store them with
smaller data type.

— The remaining values that cannot be compressed are stored in
their raw form.

Original Data Compressed Data
" SiToer | vele
Original: 13 13 3 |99999999| Compressed:
8 x 32-bits = 191 181 (8 x 8-bits) +
256 bits ST o 16-bits + 32-bits
120 120
231 231
172 172

Source: Redshift Documentation

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

BITMAP ENCODING

Store a separate bitmap for each unique value for an
attribute where an offset in the vector corresponds to a

tuple.

— The i* position in the Bitmap corresponds to the i tuple in the
table.

— Typically segmented into chunks to avoid allocating large
blocks of contiguous memory.

Only practical if the value cardinality is low.
Some DBMSs provide bitmap indexes.

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://dbdb.io/browse?indexes=bitmap

BITMAP ENCODING

Original Data Compressed Data

: deead isDead
9 1 1110
3 2 11| 0
4 3 1110
6 4 011
7 6 1110
8 7 911
9 8 11| 0

9 11]0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BITMAP ENCODING

Original Data Compressed Data

isDead

9 Y 1 1110

3 Y 2 11| 0

4 N 3 1110

6 Y 4 011

7 N 6 1110

8 Y 7 911

9 Y 8 11| 0

9 11]0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Original Data

BITMAP ENCODING

1 Y
2 Y
3 Y
4 N
6 Y
7 N
8 Y
9 Y

)

|

Original:
8 x 8-bits =
64 bits

Compressed Data

isDead
Em k-

Ol IN|oldJw]IN]|—-

1
1
1
0
1
0
1
1

0
0
0
1
0
1
0
0

Compressed:
16 bits + 16 bits =
32 bits

|

2 x 8-bits =
16 bits

8 X 2-bits =
16 bits

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BITMAP ENCODING: EXAMPLE =

CREATE TABLE customer (
id INT PRIMARY KEY,
name VARCHAR(32),
email VARCHAR(64),
address VARCHAR(64),

|zip_code INT |

¥

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://roaringbitmap.org/

BITMAP ENCODING: EXAMPLE =

Assume we have 10 million tuples.

43,000 zip codes in the US. CngTENFEEEMf\;\S(tEEir (
— 10000000 x 32-bits = 40 MB ’

name VARCHAR(32),
— 10000000 x 43000 = 53.75 GB email VARCHAR(64),

: .. address VARCHAR(64),
Every time the application inserts a [Zip_code INT |

new tuple, the DBMS must extend)}
43,000 different bitmaps.

Compressed data structures for sparse

data sets avoid this problem:
— Roaring Bitmaps

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://roaringbitmap.org/

ROARING BITMAPS =

Bitmap index that switches which data structure to use

for a range of values based local density of bits.
— Dense chunks are stored using uncompressed bitmaps.
— Sparse chunks use bitpacked arrays of 16-bit integers.

Dense chunks can be further compressed with RLE.

There are many open-source implementations that are
widely used in different DBMSs.

APACHE o N pACHE

ClickHouse @ influxdb SOQFK™ sLUEENE M DORIS
SirixDBﬁ@ G Weaviate Q M) FeatureBase 9 pi“()il

~SHIVE

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Store 1000

1000

Chunk Partitions

ROARING BITMAPS =

AN

001
001
110
100
000
000
100
001
000
000

Containers

For each value k, assign it to a
chunk based on k/2,

— Store k in the chunk's container.

[f # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

k=1000
1000/216=0
1000%21°=1000

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ROARING BITMAPS =

For each value k, assign it to a

chunk based on k/2,

— Store k in the chunk's container.

Chunk Partitions

Store 100(/ / \

If # of values in container is less
1000 207 than 4096, store as array.
001

110 Otherwise, store as Bitmap.
100
000

000 k=1000 k=199658

100

001 1000/216=0 199658/216=3
— 1000%219=1000 199658%216=50

Set bit #50 to 1

Containers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DELTA ENCODING

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.

Original Data Compressed Data
12:00 99.5 12:00 99.5
12:01 99.4 +1 -0.1
12:02 99.5 +1 +0.1
12:03 | [99.6 +1 0.1
12:04 99.4 +1 -0.2

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DELTA ENCODING

Recording the difference between values that follow

each other in the same column.

— Store base value in-line or in a separate look-up table.
— Combine with RLE to get even better compression ratios.

Original Data Compressed Data
12:00 99.5 12:00 99.5
12:01 99.4 +1 -0.1
12:02 99.5 +1 +0.1
12:03 | [99.6 +1 0.1
12:04 99.4 +1 -0.2

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DELTA ENCODING

45

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.
— Combine with RLE to get even better compression ratios.

Original Data

..‘

12:00

12:01

12:02

12:03

[Ye]) (Vo] [Ne} [Te} (Vo]

[Co]) (Vo] (o] (Vo) [Von (D
HNljojor | O ke

12:04

»

Compressed Data
12:00 | [99.5
+ 0.1
+1 +0.1
+1 0.1
+1 -0.2

»

Compressed Data
12:00 | [99.5
(+1,4) || -0.1

+0.1
0.1
0.2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DELTA ENCODING =

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.
— Combine with RLE to get even better compression ratios.

Frame-of-Reference Variant: Use global min value.

Original Data Compressed Data Compressed Data
12:00 | [99.5 12:00 | [99.5 12:00_|[99.5
12:01 | [99.4 +1 0.1 (+1.4) [0
12:02 | [99.5 +1 +0. 1 +0. 1
12:03 | [99.6 +1 0.1 0.1
12:04 | [99.4 1 0.2 -0.2

5 x 64-bits 64-bits + (4 x 16-bits) 64-bits + (2 x 16-bits)

=320 bits = 128 bits = 96 bits

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DICTIONARY COMPRESSION =

Replace frequent values with smaller fixed-length codes
and then maintain a mapping (dictionary) from the

codes to the original values

— Typically, one code per attribute value.
— Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding and

decoding for both point and range queries.

— Encode/Locate: For a given uncompressed value, convert it
into its compressed form.

— Decode/Extract: For a given compressed value, convert it
back into its original form.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DICTIONARY: ORDER-PRESERVING

The encoded values need to support the same collation
as the original values.

SELECT * FROM users
WHERE name LIKE 'And%'

Original Data

Andrea
Mr.Pickles
Andy
Jignesh
Mr.Pickles

»

»

SELECT * FROM users

WHERE name BETWEEN 10 AND 20

Compressed Data

name value code

10 Andrea 10
40 Andy 20
20 Jignesh 30
30 Mr.Pickles | 40
40

Cavuorpon(g

pa1iog

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

ORDER-PRESERVING ENCODING =

ELECT FROM :
Swnege 2223 LIEE lfiﬁg;o- » Still must perform scan on column

SELECT DISTINCT name

FROM users » Only need to access dictionary
WHERE name LIKE 'And%’

Original Data Compressed Data
_name S
Andrea 10 Andrea 10 3 g3
Mr.Pickles » 40 Andy 20 0.2
Andy 20 Jignesh 30 g g_
Jignesh 30 Mr.Pickles | 40 Q
Mr.Pickles 40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OBSERVATION

Since an OLAP DBMS is superior for analytical queries
than an OLTP DBMSs, one should always use an OLAP
DBMS for them.

But if new data arrives at the OLTP DBMS, then we
need a way to transfer data between them...

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BIFURCATED ENVIRONMENT .

talend Qllk@
Extract

@ » Transform
Load

OLTP Databases OLAP Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BIFURCATED ENVIRONMENT =

(‘ Informatica

\\\ Fivetran

talend Qlik@

Extract

T
7 Extract

— Load
Transform

OLAP Database

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BIFURCATED ENVIRONMENT =

(‘ Informatica

‘\\\‘ Fivetran

talend Qlik@

Extract

T
7 Extract

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OBSERVATION

Instead of maintaining two separate DBMSs, a single
DBMS could support both OLTP and OLAP workloads

if it exploits the temporal nature of data.
— Data is "hot" when it enters the database
— As a tuple ages, it is updated less frequently.

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HYBRID STORAGE MODEL =

Use separate execution engines that are optimized for

either NSM or DSM databases.

— Store new data in NSM for fast OLTP.

— Migrate data to DSM for more efficient OLAP.

— Combine query results from both engines to appear as a single
logical database to the application.

Choice #1: Fractured Mirrors
— Examples: Oracle, IBM DB2 Blu, Microsoft SQL Server

Choice #2: Delta Store

— Examples: SAP HANA, Vertica, SingleStore, Databricks,
Google Napa

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

FRACTURED MIRRORS =

automatically maintains a second copy o o it
the database in a DSM layout. < SQL Server

— All updates are first entered in NSM then eventually
copied into DSM mirror.

— [f the DBMS supports updates, it must invalidate tuples
in the DSM miirror.

£4% Writes »

Primary
(NSM)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

FRACTURED MIRRORS =

automatically maintains a second copy o o it
the database in a DSM layout. < SQL Server

— All updates are first entered in NSM then eventually
copied into DSM mirror.

— [f the DBMS supports updates, it must invalidate tuples
in the DSM miirror.

£4% Writes »

Primary Mirror
(NSM) (Columnar)

Analytical
el Queries

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DELTA STORE

. VERTICA
Stage updates to the database in an NSM table. W o
s SingleStore

A background thread migrates updates from delta m ANA
store and applies them to DSM data.

— Batch large chunks and then write them out as a PAX file.
— Delete records in the delta store once they are in column store.

A\ DELTA LAKE

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DELTA STORE

. VERTICA
Stage updates to the database in an NSM table. S,
s SingleStore

A background thread migrates updates from delta
store and applies them to DSM data.

— Batch large chunks and then write them out as a PAX file.
— Delete records in the delta store once they are in column store.

b

A\ DELTA LAKE

Historical Data
(Columnar)

Analytlcal
e Queries

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DELTA STORE

. VERTICA
Stage updates to the database in an NSM table. S,
s SingleStore

A background thread migrates updates from delta
store and applies them to DSM data.

— Batch large chunks and then write them out as a PAX file.
— Delete records in the delta store once they are in column store.

b

A\ DELTA LAKE

Historical Data
S (Columnar)
elta Store
Analytlcal
: A
s Writes I RO B0 Qyeries

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CONCLUSION

[t is important to choose the right storage model for the

target workload:
— OLTP = Row Store
— OLAP = Column Store

DBMSs can combine different approaches for even
better compression.

Dictionary encoding is probably the most useful scheme
because it does not require pre-sorting.

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

[t is important to g

target workload:
— OLTP = Row Stor
— OLAP = Column §

DBMSs can comb
better compressio

Dictionary encodi
because it does no

56

Column Storage for the Al Era

Dec 11, 2025 « Julien Le Dem

In the past few years, we've seen a Cambrian explosion of new columnar formats, challenging the
hegemony of Parquet: Lance, Fastlanes, Nimble, Vortex, AnyBlox, F3 (File Format for the Future).

decade) is not going to cut it moving forward. This seemed a bit intriguing to me, especially since
the main contribution of Parquet has been to provide a standard for columnar storage. Parquet is
not simply a file format. As an Open source project hosted by the ASF, it acts as a consensus
building machine for the industry. Creating six new formats is not going to help with
interoperability. | spent some time to understand a bit better how things actually changed and

how Parquet needs to adapt to meet the demands of this new era. In this post I'll discuss my
findings.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://sympathetic.ink/2025/12/11/Column-Storage-for-the-AI-era.html

NEXT CLASS

Data Structures: Hash Tables!
— We must build our own...

57

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

	Introduction
	Slide 1: Database Storage: Column Stores + Data Compression
	Slide 2: ADMINISTRIVIA
	Slide 3: UPCOMING DATABASE TALKS
	Slide 4: LAST CLASS
	Slide 5: TODAY'S AGENDA

	Workloads
	Slide 6: DATABASE WORKLOADS
	Slide 7: DATABASE WORKLOADS
	Slide 8: DATABASE WORKLOADS
	Slide 9: DATABASE WORKLOADS
	Slide 10: WIKIPEDIA EXAMPLE
	Slide 11: OBSERVATION
	Slide 12: OLTP
	Slide 13: OLAP

	Storage Models
	Slide 14: STORAGE MODELS

	NSM
	Slide 15: N-ARY STORAGE MODEL (NSM)
	Slide 16: NSM: PHYSICAL ORGANIZATION
	Slide 17: NSM: PHYSICAL ORGANIZATION
	Slide 18: NSM: PHYSICAL ORGANIZATION
	Slide 19: NSM: PHYSICAL ORGANIZATION
	Slide 20: NSM: PHYSICAL ORGANIZATION
	Slide 21: NSM: OLTP EXAMPLE
	Slide 22: NSM: OLTP EXAMPLE
	Slide 23: NSM: OLAP EXAMPLE
	Slide 24: NSM: OLAP EXAMPLE
	Slide 25: NSM: OLAP EXAMPLE
	Slide 26: NSM: OLAP EXAMPLE
	Slide 27: NSM: OLAP EXAMPLE
	Slide 28: NSM: SUMMARY

	DSM
	Slide 29: DECOMPOSITION STORAGE MODEL (DSM)
	Slide 30: DSM: PHYSICAL ORGANIZATION
	Slide 31: DSM: PHYSICAL ORGANIZATION
	Slide 32: DSM: PHYSICAL ORGANIZATION
	Slide 33: DSM: OLAP EXAMPLE
	Slide 34: DSM: OLAP EXAMPLE
	Slide 35: DSM: OLAP EXAMPLE
	Slide 36: DSM: OLAP EXAMPLE
	Slide 37: DSM: OLAP EXAMPLE
	Slide 38: DSM: OLAP EXAMPLE
	Slide 39: DSM: OLAP EXAMPLE
	Slide 40: DSM: TUPLE IDENTIFICATION
	Slide 41: DSM: VARIABLE-LENGTH DATA
	Slide 42: DECOMPOSITION STORAGE MODEL (DSM)

	PAX
	Slide 43: OBSERVATION
	Slide 44: PAX STORAGE MODEL
	Slide 45: PAX: PHYSICAL ORGANIZATION
	Slide 46: PAX: PHYSICAL ORGANIZATION
	Slide 47: PAX: PHYSICAL ORGANIZATION
	Slide 48: PAX: PHYSICAL ORGANIZATION

	Compression
	Slide 49: OBSERVATION
	Slide 50: DATABASE COMPRESSION
	Slide 51: COMPRESSION GRANULARITY

	Naive Compression
	Slide 52: NAÏVE COMPRESSION
	Slide 53: MYSQL INNODB COMPRESSION
	Slide 54: MYSQL INNODB COMPRESSION
	Slide 55: MYSQL INNODB COMPRESSION
	Slide 56: MYSQL INNODB COMPRESSION
	Slide 57: MYSQL INNODB COMPRESSION
	Slide 58: NAÏVE COMPRESSION
	Slide 59: OBSERVATION

	Columnar Compression
	Slide 60: COMPRESSION GRANULARITY
	Slide 61: COLUMNAR COMPRESSION

	RLE
	Slide 62: RUN-LENGTH ENCODING
	Slide 63: RUN-LENGTH ENCODING
	Slide 64: RUN-LENGTH ENCODING
	Slide 65: RUN-LENGTH ENCODING
	Slide 66: RUN-LENGTH ENCODING
	Slide 67: RUN-LENGTH ENCODING

	Bit Packing
	Slide 68: BIT PACKING
	Slide 69: BIT PACKING
	Slide 70: BIT PACKING
	Slide 71: BIT PACKING
	Slide 72: PATCHING / MOSTLY ENCODING

	BitMap Encoding
	Slide 73: BITMAP ENCODING
	Slide 74: BITMAP ENCODING
	Slide 75: BITMAP ENCODING
	Slide 76: BITMAP ENCODING
	Slide 77: BITMAP ENCODING: EXAMPLE
	Slide 78: BITMAP ENCODING: EXAMPLE
	Slide 79: ROARING BITMAPS
	Slide 80: ROARING BITMAPS
	Slide 81: ROARING BITMAPS

	Delta Encoding
	Slide 82: DELTA ENCODING
	Slide 83: DELTA ENCODING
	Slide 84: DELTA ENCODING
	Slide 85: DELTA ENCODING

	Dictionary Encoding
	Slide 86: DICTIONARY COMPRESSION
	Slide 87: DICTIONARY: ORDER-PRESERVING
	Slide 88: ORDER-PRESERVING ENCODING

	OLTP → OLAP
	Slide 91: OBSERVATION
	Slide 92: BIFURCATED ENVIRONMENT
	Slide 93: BIFURCATED ENVIRONMENT
	Slide 94: BIFURCATED ENVIRONMENT
	Slide 95: OBSERVATION
	Slide 96: HYBRID STORAGE MODEL
	Slide 97: FRACTURED MIRRORS
	Slide 98: FRACTURED MIRRORS
	Slide 99: DELTA STORE
	Slide 100: DELTA STORE
	Slide 101: DELTA STORE

	Conclusion
	Slide 102: CONCLUSION
	Slide 103: CONCLUSION
	Slide 104: NEXT CLASS

