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ADMINISTRIVIA

Project #1 is due Sunday Feb 15 @ 11:59pm
— Recitation Video + Slides (@64)
— Perf Recitation on Wednesday Feb 4" @ 6:30pm (@79)

Homework #2 is due Sunday Feb 8" @ 11:59pm
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https://15445.courses.cs.cmu.edu/spring2026
https://piazza.com/class/mjxpbw9kyzv4mo/post/64
https://piazza.com/class/mjxpbw9kyzv4mo/post/79

UPCOMING DATABASE TALKS

Redpanda Oxla (DB Seminar) OX | distributed
— Monday Feb 2™ @ 4:30pm ET N\ INA database
— Zoom

Amazon Aurora DSQL (DB Seminar) Amazon
— Monday Feb 9" @ 4:30pm ET ¢ Aurora DSQL

— Zoom
TopK (DB Seminar) TR L
— Monday Feb 16® @ 4:30pm ET E E“E E'“ E'-.

— Zoom
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https://db.cs.cmu.edu/events/pg-vs-world-redpanda-oxla-tyler-akidau-adam-symanski/
https://db.cs.cmu.edu/events/pg-vs-world-aurora-dsql-marc-brooker/
https://db.cs.cmu.edu/events/pg-vs-world-aurora-dsql-marc-brooker/

LAST CLASS

We discussed storage architecture alternatives to the

slotted page storage scheme.
— Log-structured storage
— Index-organized storage

These approaches are ideal for write-heavy
(INSERT/UPDATE/DELETE) workloads.

But the most important query for some workloads may
be read (SELECT ) performance...
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TODAY'S AGENDA

Database Workloads
Storage Models
Data Compression
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DATABASE WORKLOADS

On-Line Transaction Processing (OLTP)

— Fast operations that only read/update a small amount of data
each time.

On-Line Analytical Processing (OLAP)

— Complex queries that read a lot of data to compute aggregates.

Hybrid Transaction + Analytical Processing
— OLTP + OLAP together on the same database instance
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WIKIPEDIA EXAMPLE

CREATE TABLE useracct ( CREATE TABLE pages (
userID INT PRIMARY KEY, pageID INT PRIMARY KEY,
userName VARCHAR UNIQUE, title VARCHAR UNIQUE,
- latest INT
); —® 5 REFERENCES revisions (revID),
A );

A

CREATE TABLE revisions (

revID INT PRIMARY KEY,
® userID INT REFERENCES useracct (userlID),
pageID INT REFERENCES pages (pagelD)®
content TEXT,

updated DATETIME

);
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OBSERVATION

The relational model does not specify that the DBMS
must store all a tuple's attributes together in a single

page.

This may not actually be the best layout for some
workloads...


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

On-line Transaction Processing:

— Simple queries that read/update a small
amount of data that is related to a single
entity in the database.

This is usually the kind of application
that people build first.

SELECT P.*, R.*
FROM pages AS P
INNER JOIN revisions AS R
ON P.latest = R.revID
WHERE P.pagelD = ?

UPDATE useracct
SET lastLogin = NOW(),
hostname = ?
WHERE userID = ?

INSERT INTO revisions
VALUES (?,?2..,7)

10
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On-line Analytical Processing:
— Complex queries that read large portions

of the database spanning multiple entities.

You execute these workloads on the

data you have collected from your
OLTP application(s).

SELECT COUNT(U.lastlLogin),
EXTRACT(month FROM
U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY
EXTRACT(month FROM U.lastlLogin)

11
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STORAGE MODELS -

A DBMS's storage model specifies how it physically

organizes tuples on disk and in memory.

— Can have different performance characteristics based on the
target workload (OLTP vs. OLAP).
— Influences the design choices of the rest of the DBMS.

Choice #1: N-ary Storage Model (NSM)
Choice #2: Decomposition Storage Model (DSM)
Choice #3: Hybrid Storage Model (PAX)
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N-ARY STORAGE MODEL (NSM) z

The DBMS stores (almost) all attributes for a single
tuple contiguously in a single page.
— Also commonly known as a row store

I[deal for OLTP workloads where queries are more
likely to access individual entities and execute write-
heavy workloads.

NSM database page sizes are typically some constant
multiple of 4 KB hardware pages.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a

physical tuple.

Database Page

Row #0  [NEL co |
Row #1 al

Row #2 a2
Row #3 a3
Row #4 a4

Row #5

Slot Array
A

peer 0 1 0 1

14
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NSM: PHYSICAL ORGANIZATION =

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple. A

header

y
header BEX

ad  bo co

Database Page
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NSM: PHYSICAL ORGANIZATION

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

= || header IETA

a5 b5
| header BEEINEI. -
b2 c2 al
cl ad  bo co

14
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NSM: OLTP EXAMPLE

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

NSM Disk Page

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPassjhostname| lastLogin

header = - - - -

Database File
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NSM: OLTP EXAMPLE

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ?

INSERT INTO useracct
VALUES (?,?,..7)

NSM Disk Page

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPassjhostname| lastLogin

header | userID JuserName|userPass|hostname| lastlLogin

Database File
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NSM: OLAP EXAMPLE =

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

e | T
b L el L]
[=I=2} = 1] [ ==k == |

e | [
S| | |
(== ] | | == =]

e | | T
Es=E=mllESEEEs
| | [ =]

Database File
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NSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

| NSM Disk Page

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPassjhostname| lastLogin

header | userID JuserName|userPass|hostname| lastlLogin

Database File
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NSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

| NSM Disk Page

header | userID juserName|userPassfjhostname] lastlLogin

header | userID juserNamejuserPassfjhostnamel lastlLogin

header | userID juserNamejuserPassfjhostnamel] lastlLogin

header | userID JuserName|userPassfjhostnamef] lastlLogin

Database File
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NSM: OLAP EXAMPLE

SELECT COUNTdU.lastLoginb,
EXTRACT (month FROM [U.lastlLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]

| NSM Disk Page

header | userID juserName|userPassfjhostnamel] lastlLogin

header | userID juserNamejuserPassfjhostnamel]l lastlLogin

header | userID juserNamejuserPassfjhostnamel] lastlLogin

header | userID JuserName|userPassfjhostnamef] lastlLogin

Database File
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NSM: OLAP EXAMPLE

SELECT COUNTdU.lastLoginb,

EXTRACT (month FROM |U.lastLogin]) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]

I NSM Disk Page

header | userID JuserName hostnamel] lastlLogin

header | userID JuserName hostnamel lastlLogin

header | userID JuserName sfhostnamefl lastlLogin

header W userID JuserName hostname] lastlLogin

*t
Q Useless Data!
oWy

Database File
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NSM: SUMMARY

Advantages

— Fast inserts, updates, and deletes.

— Good for queries that need the entire tuple (OLTP).
— Can use index-oriented physical storage for clustering.

Disadvantages

— Not good for scanning large portions of the table and/or a
subset of the attributes.

— Terrible memory locality in access patterns.

— Not ideal for compression because of multiple value domains
within a single page.

17
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DECOMPOSITION STORAGE MODEL (DSM)

Store a single attribute for all tuples

contiguously in a block of data.
— Also known as a "column store"

Ideal for OLAP workloads where
read-only queries perform large scans
over a subset of the table’s attributes.

DBMS is responsible for
combining/splitting a tuple's
attributes when reading/writing.

A DECOMPOSITION STORAGE MODEL
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DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-

length values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

a3

null bitmap

a4

ab

19
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DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-

length values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

Page #2 Page #1

Row #0
Row #1
Row #2
Row #3
Row i#4
Row #5

header

a0

al a2

a3 a4

null bitmap

ab

header

bo

b1 b2

null bitmap

b3 b4

b5

19


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DSM: PHYSICAL ORGANIZATION

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-

length values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

Page #2 Page #1

Page #3

header null bitmap

a0 al a2 a3 a4 ab
header null bitmap

bo b1l b2 b3 b4 b5
header null bitmap
c0 cl c2 c3 c4
c5

19
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DSM: OLAP EXAMPLE

header | userID JuserName|userPassfhostname| lastlLogin

header | userID juserNamejuserPass|hostname| lastLogin

header | userID juserNamejuserPassjhostname| lastLogin

header | userID JuserName|userPass|hostname| lastlLogin
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DSM: OLAP EXAMPLE

header | userID JuserNamejuserPassfhostnameff lastlLogin

header | userID QuserNamejuserPassfhostnamef lastLogin

header | userID

header | userID IuserName userPassfhostname] lastlLogin
IuserName userPassfhostname] lastlLogin
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DSM: OLAP EXAMPLE

/| DSM Disk Page

header hostname|hostnamehostnamejhostname

hostnamelhostnamefhostnamefhostname|hostnamefhostname

hostname|hostname|hostnamelhostname|hostname|hostname

. hostname|hostname|hostname|hostname|hostnamehostname

userName

Database File

userPass ]
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DSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'

GROUP BY EXTRACT(month FROM U.lastlLogin)

| DSM Disk Page

header hostname|hostnamehostnamejhostname

1aStLOgln ] hostnamelhostnamefhostnamefhostname|hostnamefhostname

hostnamejhostnamefhostnamejhostnamehostnamefhostname

hostnamejhostnamefhostnamefhostnamefhostnamefhostname

Sae
.

userName [E-=—

Database File |

userPass
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DSM: OLAP EXAMPLE

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM U.lastLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

| DSM Disk Page

header hostname hostnameIhostname hostname

1aStLOgln ] hostnamefjhostnamefhostnamefhostnamefhostnamefhostname

hostname|hostname

hostnamefhostnamefjhostnamefhostnamefhostnamefhostname

hostname|hostname|hostnamg

Sae
.

userName [E-=—

Database File |

userPass
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DSM: OLAP EXAMPLE =

SELECT COUNTdU.lastLoginb,
EXTRACT (month FROM [U.lastlLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]

userName [E=

Database File |

userPass ]
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DSM: OLAP EXAMPLE =

SELECT COUNTdU.lastLoginb,
EXTRACT (month FROM [U.lastlLogin) AS month
FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM |U.lastLogin]

DSM Disk Page

header lastLogin lastLoginllastLogin lastLogin

].aStLOgln ] lastLogin j§ lastLogin | lastLogin | lastLogin | lastLogin | lastlLogin

lastLoginf lastlLogin | lastlLogin

lastLogin | lastlLogin | lastLogin

lastlLogin § lastLogin § lastLogin | lastlLogin | lastLogin | lastLogin

userName [E=

Database File |

userPass
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DSM: TUPLE IDENTIFICATION

Choice #1: Fixed-length Offsets

— Each value is the same length for an attribute.

\ R
D, ® Choice #2: Embedded Tuple Ids

, — Each value is stored with its tuple id in a column.
Don't

Do This!
Offsets Embedded Ids

A e fc]o

wl\)—‘®h
wm—xsh
wmash
wm—\sh

W N O

21
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DSM: VARIABLE-LENGTH DATA =

Padding variable-length fields to ensure they are fixed-
length is wasteful, especially for large attributes.

A better approach is to use dictionary compression to
convert repetitive variable-length data into fixed-length
values (typically 32-bit integers).

— More on this later in this lecture...
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DECOMPOSITION STORAGE MODEL (DSM)

Advantages

— Reduces the amount wasted I/O per query because the DBMS
only reads the data that it needs.

— Faster query processing because of increased locality and cached
data reuse (Lecture #14).

— Better data compression because data from the same domain
are physically collocated.

Disadvantages

— Slow for point queries, inserts, updates, and deletes because of
tuple splitting/stitching/reorganization.

23


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026/schedule.html#mar-11-2026

O0BSERVATION

OLAP queries almost never access a single column in a

table by itself.

— At some point during query execution, the DBMS must get
other columns and stitch the original tuple back together.

But we still need to store data in a columnar format to

get the storage + execution benefits.

W e need a columnar scheme that stores attributes
separately but keeps each tuple's attributes physically
close to each other...

24
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PAX STORAGE MODEL

Partition Attributes Across (PAX
is a hybrid storage model that
vertically partitions attributes within

a database page.

— Examples: Parquet (2013), ORC (2013
Arrow (2016), Nimble (2023
Vortex (2025

The goal is to get the benefit of faster
processing on columnar storage while
retaining the spatial locality benefits
of row storage.

Weaving Relations for Cache Performance

Anastassia Aflamaki*  David J. DeWitt

on University  Univ, of Wisconsin-Madison
matrsa® cx.cmu oy dewinn@cs,wisc.ody
Abstract

Relationual duiicbuse systenes fave sradtionally oprimzed for
B performance and arganized vecans sequentially on disk
pages wsing the N-ary Storage Model (NSH (o b sfoned
pases) Recent reserch, however, indicates that coche uriliation
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fup PAX exibits superior cuche and memory bandwidih wiliza
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1b) nmge selection queries ond upstates on memory
resident relations execie 17-25% faster. and (c) TRC-H queries
wlving Y exevuie (AR fusier

1 Introduction

‘The communication between CPU and the secondary
storage (U0) has been traditionally recognized us the
mujor dusabase performance houleneck. Te uptimize daty
wramsfer s and from mass swrage, relugonal DBMSs have
lomg organized records in slowcd disk pages sing the N-
ury Storage Model (NSM). NSM stores reconds contigu-
ously starting from the beginning of each disk page, and
uses an offset (slot) table at the end of the page 1o locae
the beginning of each record [27].

Unfortunately. most queries use only o fraction of
carh record. To minimise unnecessary 1O, the Decompo-
g Model (DSM) was proposed in 1985 [10]
ribute relation vertically inko o
sub-relations, each of which is accessed only when the
comesponding aitribuie is needed. Queries hat nvolve
mulliple afiribules from a relation, however, must spend

F Wk o while sthar was o the Usiversity of Wisconsas-Mdison
Persissian o copy withous fee il ar part of this moterial s granted o
vided thoe she copics ave ot made or diswibated for direct coanserciol
advanage. dhe VLD capyrigh narkce and she st of e publicaston and

—
Proceedings of the 27th VLB Canference,
Rasna, Haly, 2001

\lm’k D. Hill Marios Skounakis
i Mackon Ui of Wiscomsiedison
markhi s wie ol wiarias

tremendous additional fime to join the participating sub-
relations wgether. Except for Sybuse-1Q (331, today's rela-
tional DBMSs use NSM for gencral-purpose data place-
ment [201129)[32].

Recent research has demonsirated that modem data-

processor and the m rather than 1O
1201[51126]. When running commercial database systems
on a modern processor, data requests that miss in the cache
hierarchy (ie.. requests for data that are not found in any
af the caches and are transferred from main memoey) are 3

action of
¢ cacho b usciul o the query
s and the

with uscless
data () wastes bandwidth, (b) pollutes and (<)
possibly forces replacement of information that may be

the future, incurring even more delays. The
is to repair NSM’s cache behavior without com-
1g its advantages over DSM.

This paper intruduces amd evaluates Partition
Adiributes Across (PAX), o new layout for dat records
ihat combines the best of the e worlds and exhibits per-
formance superior (o both placement schemes by eliminal-
ing unnecessary accesses to main memory. For a given
relation, PAX stores the sume data on cach page as NSM.
Within cach page. however, PAX groups all the values of a
pamicular atribute together on a minipage. During a
sequential scan (¢.2.. 10 apply a predicate on a feaction of
the record), PAX fully wilizes the cache resources,
bute’s val

because on each miss o namber of a si

5 are Roaded into the cache together, At the same time,
all parts of the record are on e same page. To reconstnuct
a recond one needs to perform a minijoin among
minipages, which incurs il cost beca i docs ack
have o look beyond the page.

We evaluated PAX against NSM and DSM using (a)
predicate selection queries on numeric data and (b) a vari-
ety of queries on TPC-H datasets on top of th
age manager |7). We vary query parameters including
sekctivity, projecti uimber of predicates, distance
betwesn the projected attsibute and the aliibue in the
predicate, and degree of the relation, The experimental
results show that, when compared 1o NSM, PAX (a) incurs
50-75% fewer sccond-level cache misses due to data

Shore stor-
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PAX: PHYSICAL ORGANIZATION =

Col A Col B Col C

Horizontally partition data into row Row #0
groups. Then vertically partition their o 4 a1 b1
1 - Row #2 a2
-
_c4 |
5|

attributes into column chunks.

Row #3
Row #4
Global meta-data directory contains 0
offsets to the file's row groups.
— This is stored in the footer if the file is | Row Group Meta-Data | g’
immutable (Parquet, Orc). . bo_b1 b2 A
E co cl c2 S
Each row group contains its own :
meta-data header about its contents. ~

| File Meta-Data
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PAX: PHYSICAL ORGANIZATION

ColA ColB ColC

Horizontally partition data into row Row #0
groups. Then vertically partition their o 4 a1 b1
1 - Row #2 a2
-
_c4 |
5|

attributes into column chunks.

Row #3
Row #4
Global meta-data directory contains Row #5
offsets to the file's row groups.
— This is stored in the footer if the file is Column__ B Row Group Meta-Data | g’
immutable (Parquet, Orc). o
£

Each row group contains its own
meta-data header about its contents.

PAX File

| File Meta-Data
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PAX: PHYSICAL ORGANIZATION =

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains
offsets to the file's row groups.

— This is stored in the footer if the file is Column__ B Row Group Meta-Data | g’
immutable (Parquet, Orc). bo__ b1 b2 JH
= co cl c2 5

<Y
Each row group contains its own : [ ow Group Hetabata__] 3
meta-data header about its contents. R 'fs e ]
S

| File Meta-Data |
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PAX: PHYSICAL ORGANIZATION

26

Horizontally partitio
groups. Then vertica
attributes into colum,

Global meta-data dil{

offsets to the file's rq
— This is stored in the
immutable (Parquet,

Each row group co

Parquet: data organization
« Data organization
©  Row-groups (default 128MB)
o Column chunks
o Pages (default 1MB) — e -
®  Metadata ”C’ e ﬁT ’
o Min
: in C==)
e Count L )| SR
m  Rep/deflevels m——
®  Encoded values = ; = J =D —]
—— — = ]
@databricks = —
=] T
c3 c4 S S

meta-data header about its contents.

| File Meta-Data
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OBSERVATION

I/0 is the main bottleneck if the DBMS fetches data
from disk during query execution.

The DBMS can compress pages to increase the utility
of the data moved per I/O operation.

Key trade-off is speed vs. compression ratio
— Compressing the database reduces DRAM requirements.
— [t may decrease CPU costs during query execution.

27
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DATABASE COMPRESSION

Goal #1: Must produce fixed-length values.
— Only exception is var-length data stored in separate pool.

Goal #2: Postpone decompression for as long as

possible during query execution.
— Also known as late materialization.

Goal #3: Must be a lossless scheme.
— People (typically) don't like losing data.
— Any lossy compression must be performed by application.

28
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COMPRESSION GRANULARITY =

Choice #1: Block-level

— ComPress a block of tuPIes for the same table.

Choice #2: Tuple-level
— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

— Compress a single attribute within one tuple (overflow).
— Can target multiple attributes for the same tuple.

Choice #4: Column-level

— Compress multiple values for one or more attributes stored for
multiple tuples (DSM-only).
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NAIVE COMPRESSION :

Compress data using a general-purpose algorithm.

Scope of compression is based on input provided.
— Examples: Deflate (1990), LZO (1996), LZ4 (2011), Snappy
(2011), Oracle OZIP (2014), Zstd (2015), Lizard (2017)

Considerations
— Computational overhead
— Compress vs. decompress speed.
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Source : MySQL 5.7 Documen tation

MYSQL INNODB COMPRESSION =

I

mod log

)
Compressed- Page,

mod log

Compressed Page,

Compressed Page,

[1,2,4,8] KB
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MYSQL INNODB COMPRESSION =

B Buffer Pool @ Database File
W rite IR

Compressed- Page,

mod log

>[1,2,4,8] KB

Compressed- Page,

I

mod log

Compressed Page,

Compressed Page,

Source : MySQL 5.7 Documen tation
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MYSQL INNODB COMPRESSION =

B Buffer Pool @ Database File
Read p TR

Compressed- Page,

mod log

>[1,2,4,8] KB

Compressed- Page,

I

mod log

Compressed Page,

Compressed Page,

Source : MySQL 5.7 Documen tation
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Read sy CSRCT

Source : MySQL 5.7 Documen tation

MYSQL INNODB COMPRESSION =

B Buffer Pool

Compressed- Page,

4

Uncompressed
Page,

16 KB

mod log

)
Compressed- Page,

I

mod log

Compressed Page,

Compressed Page,

[1,2,4,8] KB
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MYSQL INNODB COMPRESSION =

B Buffer Pool

Compressed- Page,

4

Read * Uncompressed

Source : MySQL 5.7 Documen tation

Page,

16 KB

mod log

)
Compressed- Page,

I

mod log

Compressed Page,

Compressed Page,

[1,2,4,8] KB
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NAIVE COMPRESSION

Compressed data is an opaque box to the DBMS and
thus the system must decompress data first before it can
be read and (potentially) modified.

— This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.
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OBSERVATION

[deally, the DBMS can operate on compressed data
without decompressing it first.

Database Magic!
SELECT * FROM users

SELECT * FROM users
WHERE name = 'Andy' WHERE name = XX

NAME SALARY NAME SALARY
e s T e

Andy 99999 XX AA
Jignesh 88888 L YY BB
oy

Compress
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COMPRESSION GRANULARITY

Choice #1: Block-level

— Compress a block of tuples for the same table.

Choice #2: Tuple-level
— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

— Compress a single attribute within one tuple (overflow).
— Can target multiple attributes for the same tuple.

Choice #4: Column-level

— Compress multiple values for one or more attributes stored for
multiple tuples (DSM-only).
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COLUMNAR COMPRESSION =

Run-length Encoding

Bit-Packing Encoding

Bitmap Encoding

Delta / Frame-of-Reference Encoding
Incremental Encoding

Dictionary Encoding


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

RUN-LENGTH ENCODING

Compress runs of the same value in a single column

into triplets:

— The value of the attribute.

— The start position in the column segment.
— The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.
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RUN-LENGTH ENCODING .

Ol |IVN|old]J]w]IN]|—-
< I<I1IZI<|IZ2|IKIK<]|I<
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RUN-LENGTH ENCODING -

Original Data

.
o

isDead

Y

Ol |IVN|old]J]w]IN]|—-

»

Compressed Data
1 (Y,0,3)
2 (N,3,1)
3 (Y,4,1)
4 (N,5,1)
6 (Y,6,2)
’__| RLE Triplet
8 | -Value
g | - Offset

- Length
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RUN-LENGTH ENCODING .

SELECT isDead, COUNT(*)
FROM users
GROUP BY isDead

Compressed Data

(Y,0,3)

(N,3,1)

(Y,4,1)

(N,5,1)

(Y,6,2)

Ol |IN|oldJlwWw]INMN]|—-

RLE Triplet
- Value

- Offset
- Length
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RUN-LENGTH ENCODING -

Original Data Compressed Data

.
o

isDead

: Y :
2 Y 2 (N,3,1)

3 Y 3 (Y,4,1)

4 N 4 (N,5,1)

6 Y 6 (Y,6,2)

! . ’_| RLE Triplet
8 Y 8 - Value

9 Y g | - Offset

- Length
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RUN-LENGTH ENCODING

Sorted Data

Y

N | hhjJOJoo|loojw |IN]—

Z 1 Z2I<Ix<IKIK ]I

Compressed Data

(Y,0,6)

(N,7,2)

N | hhjJ]OJOo OO Jw [IN]—
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BIT PACKING

[f the values for an integer attribute is Original Data
smaller than the range of its given
data type size, then reduce the 13
number of bits to represent each 191
value. >

92

81
Use bit-shifting tricks to operate on o
multiple values in a single word. 231

172
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BIT PACKING

[f the values for an integer attribute is

Original Data

smaller than the range of its given

data type size, then reduce the

Original:

8 X 32-bits =

256 bits

number of bits to represent each
value.

Use bit-shifting tricks to operate on

multiple values in a single word.

=

13 00000000 00000000 00000000 00001101
>

191 00000000 00000000 00000000 10111111
>

56 00000000 00000000 00000000 00111000
=

92 00000000 00000000 00000000 01011100
>

81 00000000 00000000 00000000f 01010001
=

120 00000000 00000000 00000000 01111000
=

231 00000000 00000000 00000000 11100111
—

172 00000000 00000000 00000000 10101100
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BIT PACKING

[f the values for an integer attribute is
smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.

Original Data Original:
8 X 32-bits =

256 bits
13 | 00000000 00000000 00000000] 00001101
191 I~ 00000000 00000000 00000000 10111111
56 = 00111000
9?2 = 01011100
81 | 01010001
120 = 01111000
231 — 00000000 00000000 00000000 11100111
172 | oo000cce cssosooo oooooood] 10101100
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BIT PACKING

. . . Original Data loinal:
[f the values for an integer attribute is & gf}‘?gflblits _
smaller than the range of its given 256 bits
data type size, then reduce the 13 [oseorro
number of bits to represent each 191 : o
56 00111000
value.
9?2 ] 01011100
. o~ . 81 ] 01010001
Use bit-shifting tricks to operate on o Plomm
multiple values in a single word. 231 []imeon
|
172 10101100
Compressed:
8 x 8-bits =

64 bits
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PATCHING / MOSTLY ENCODING -

A variation of bit packing for when an attribute's values

are "mostly" less than the largest size, store them with
smaller data type.

— The remaining values that cannot be compressed are stored in
their raw form.

Original Data Compressed Data
" SiToer | vele
Original: 13 13 3 |99999999| Compressed:
8 x 32-bits = 191 181 (8 x 8-bits) +
256 bits ST o 16-bits + 32-bits
120 120
231 231
172 172

Source: Redshift Documentation
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BITMAP ENCODING

Store a separate bitmap for each unique value for an
attribute where an offset in the vector corresponds to a

tuple.

— The i* position in the Bitmap corresponds to the i tuple in the
table.

— Typically segmented into chunks to avoid allocating large
blocks of contiguous memory.

Only practical if the value cardinality is low.
Some DBMSs provide bitmap indexes.

40
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BITMAP ENCODING

Original Data Compressed Data

: deead isDead
9 1 1110
3 2 11| 0
4 3 1110
6 4 011
7 6 1110
8 7 911
9 8 11| 0

9 11]0



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BITMAP ENCODING

Original Data Compressed Data

isDead

9 Y 1 1110

3 Y 2 11| 0

4 N 3 1110

6 Y 4 011

7 N 6 1110

8 Y 7 911

9 Y 8 11| 0

9 11]0
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Original Data

BITMAP ENCODING

1 Y
2 Y
3 Y
4 N
6 Y
7 N
8 Y
9 Y

)

|

Original:
8 x 8-bits =
64 bits

Compressed Data

isDead
Em k-

Ol IN|oldJw]IN]|—-

1
1
1
0
1
0
1
1

0
0
0
1
0
1
0
0

Compressed:
16 bits + 16 bits =
32 bits

|

2 x 8-bits =
16 bits

8 X 2-bits =
16 bits


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

BITMAP ENCODING: EXAMPLE =

CREATE TABLE customer (
id INT PRIMARY KEY,
name VARCHAR(32),
email VARCHAR(64),
address VARCHAR(64),

|zip_code INT |

¥
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BITMAP ENCODING: EXAMPLE =

Assume we have 10 million tuples.

43,000 zip codes in the US. CngTENFEEEMf\;\S(tEEir (
— 10000000 x 32-bits = 40 MB ’

name VARCHAR(32),
— 10000000 x 43000 = 53.75 GB email VARCHAR(64),

: .. address VARCHAR(64),
Every time the application inserts a [Zip_code INT |

new tuple, the DBMS must extend )}
43,000 different bitmaps.

Compressed data structures for sparse

data sets avoid this problem:
— Roaring Bitmaps
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ROARING BITMAPS =

Bitmap index that switches which data structure to use

for a range of values based local density of bits.
— Dense chunks are stored using uncompressed bitmaps.
— Sparse chunks use bitpacked arrays of 16-bit integers.

Dense chunks can be further compressed with RLE.

There are many open-source implementations that are
widely used in different DBMSs.

APACHE o N pACHE

ClickHouse @ influxdb SOQFK™ sLUEENE M DORIS
SirixDBﬁ@ G Weaviate Q M) FeatureBase 9 pi“()il

~SHIVE
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Store 1000

1000

Chunk Partitions

ROARING BITMAPS =

AN

001
001
110
100
000
000
100
001
000
000

Containers

For each value k, assign it to a
chunk based on k/2,

— Store k in the chunk's container.

[f # of values in container is less
than 4096, store as array.
Otherwise, store as Bitmap.

k=1000
1000/216=0
1000%21°=1000
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ROARING BITMAPS =

For each value k, assign it to a

chunk based on k/2,

— Store k in the chunk's container.

Chunk Partitions

Store 100(/ / \

If # of values in container is less
1000 207 than 4096, store as array.
001

110 Otherwise, store as Bitmap.
100
000

000 k=1000 k=199658

100

001 1000/216=0 199658/216=3
— 1000%219=1000 199658%216=50

Set bit #50 to 1

Containers
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DELTA ENCODING

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.

Original Data Compressed Data
12:00 99.5 12:00 99.5
12:01 99.4 +1 -0.1
12:02 99.5 +1 +0.1
12:03 | [99.6 +1 0.1
12:04 99.4 +1 -0.2

45
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DELTA ENCODING

Recording the difference between values that follow

each other in the same column.

— Store base value in-line or in a separate look-up table.
— Combine with RLE to get even better compression ratios.

Original Data Compressed Data
12:00 99.5 12:00 99.5
12:01 99.4 +1 -0.1
12:02 99.5 +1 +0.1
12:03 | [99.6 +1 0.1
12:04 99.4 +1 -0.2

45
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DELTA ENCODING

45

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.
— Combine with RLE to get even better compression ratios.

Original Data

..‘

12:00

12:01

12:02

12:03

[Ye]) (Vo] [Ne} [Te} (Vo]

[Co]) (Vo] (o] (Vo) [Von (D
HNljojor | O ke

12:04

»

Compressed Data
12:00 | [99.5
+ 0.1
+1 +0.1
+1 0.1
+1 -0.2

»

Compressed Data
12:00 | [99.5
(+1,4) || -0.1

+0.1
0.1
0.2
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DELTA ENCODING =

Recording the difference between values that follow

each other in the same column.
— Store base value in-line or in a separate look-up table.
— Combine with RLE to get even better compression ratios.

Frame-of-Reference Variant: Use global min value.

Original Data Compressed Data Compressed Data
12:00 | [99.5 12:00 | [99.5 12:00_|[99.5
12:01 | [99.4 +1 0.1 (+1.4) [0
12:02 | [99.5 +1 +0. 1 +0. 1
12:03 | [99.6 +1 0.1 0.1
12:04 | [99.4 1 0.2 -0.2

5 x 64-bits 64-bits + (4 x 16-bits) 64-bits + (2 x 16-bits)

=320 bits = 128 bits = 96 bits
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DICTIONARY COMPRESSION =

Replace frequent values with smaller fixed-length codes
and then maintain a mapping (dictionary) from the

codes to the original values

— Typically, one code per attribute value.
— Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding and

decoding for both point and range queries.

— Encode/Locate: For a given uncompressed value, convert it
into its compressed form.

— Decode/Extract: For a given compressed value, convert it
back into its original form.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DICTIONARY: ORDER-PRESERVING

The encoded values need to support the same collation
as the original values.

SELECT * FROM users
WHERE name LIKE 'And%'

Original Data

Andrea
Mr.Pickles
Andy
Jignesh
Mr.Pickles

»

»

SELECT * FROM users

WHERE name BETWEEN 10 AND 20

Compressed Data

name value code

10 Andrea 10
40 Andy 20
20 Jignesh 30
30 Mr.Pickles | 40
40

Cavuorpon(g

pa1iog

47
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ORDER-PRESERVING ENCODING =

ELECT FROM :
Swnege 2223 LIEE lfiﬁg;o- » Still must perform scan on column

SELECT DISTINCT name

FROM users » Only need to access dictionary
WHERE name LIKE 'And%’

Original Data Compressed Data
_name S
Andrea 10 Andrea 10 3 g3
Mr.Pickles » 40 Andy 20 0.2
Andy 20 Jignesh 30 g g_
Jignesh 30 Mr.Pickles | 40 Q
Mr.Pickles 40
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OBSERVATION

Since an OLAP DBMS is superior for analytical queries
than an OLTP DBMSs, one should always use an OLAP
DBMS for them.

But if new data arrives at the OLTP DBMS, then we
need a way to transfer data between them...
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BIFURCATED ENVIRONMENT .

talend Qllk@
Extract

@ » Transform
Load

OLTP Databases OLAP Database
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OBSERVATION

Instead of maintaining two separate DBMSs, a single
DBMS could support both OLTP and OLAP workloads

if it exploits the temporal nature of data.
— Data is "hot" when it enters the database
— As a tuple ages, it is updated less frequently.
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HYBRID STORAGE MODEL =

Use separate execution engines that are optimized for

either NSM or DSM databases.

— Store new data in NSM for fast OLTP.

— Migrate data to DSM for more efficient OLAP.

— Combine query results from both engines to appear as a single
logical database to the application.

Choice #1: Fractured Mirrors
— Examples: Oracle, IBM DB2 Blu, Microsoft SQL Server

Choice #2: Delta Store

— Examples: SAP HANA, Vertica, SingleStore, Databricks,
Google Napa
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FRACTURED MIRRORS =

automatically maintains a second copy o o it
the database in a DSM layout. < SQL Server

— All updates are first entered in NSM then eventually
copied into DSM mirror.

— [f the DBMS supports updates, it must invalidate tuples
in the DSM miirror.

£4% Writes »

Primary
(NSM)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

FRACTURED MIRRORS =

automatically maintains a second copy o o it
the database in a DSM layout. < SQL Server

— All updates are first entered in NSM then eventually
copied into DSM mirror.

— [f the DBMS supports updates, it must invalidate tuples
in the DSM miirror.

£4% Writes »

Primary Mirror
(NSM) (Columnar)

Analytical
el Queries
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DELTA STORE

. VERTICA
Stage updates to the database in an NSM table. W o
s SingleStore

A background thread migrates updates from delta m ANA
store and applies them to DSM data.

— Batch large chunks and then write them out as a PAX file.
— Delete records in the delta store once they are in column store.

A\ DELTA LAKE
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DELTA STORE

. VERTICA
Stage updates to the database in an NSM table. S,
s SingleStore

A background thread migrates updates from delta
store and applies them to DSM data.

— Batch large chunks and then write them out as a PAX file.
— Delete records in the delta store once they are in column store.

b

A\ DELTA LAKE

Historical Data
(Columnar)
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DELTA STORE

. VERTICA
Stage updates to the database in an NSM table. S,
s SingleStore

A background thread migrates updates from delta
store and applies them to DSM data.

— Batch large chunks and then write them out as a PAX file.
— Delete records in the delta store once they are in column store.
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CONCLUSION

[t is important to choose the right storage model for the

target workload:
— OLTP = Row Store
— OLAP = Column Store

DBMSs can combine different approaches for even
better compression.

Dictionary encoding is probably the most useful scheme
because it does not require pre-sorting.
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Column Storage for the Al Era

Dec 11, 2025 « Julien Le Dem

In the past few years, we've seen a Cambrian explosion of new columnar formats, challenging the
hegemony of Parquet: Lance, Fastlanes, Nimble, Vortex, AnyBlox, F3 (File Format for the Future).

decade) is not going to cut it moving forward. This seemed a bit intriguing to me, especially since
the main contribution of Parquet has been to provide a standard for columnar storage. Parquet is
not simply a file format. As an Open source project hosted by the ASF, it acts as a consensus
building machine for the industry. Creating six new formats is not going to help with
interoperability. | spent some time to understand a bit better how things actually changed and

how Parquet needs to adapt to meet the demands of this new era. In this post I'll discuss my
findings.
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NEXT CLASS

Data Structures: Hash Tables!
— We must build our own...
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