
DatabaseSystems

Database
Systems

15-445/645 SPRING 2026

15 - 445/645 SPRING 2026ANDY PAVLO

ANDY PAVLOJIGNESH PATEL

JIGNESH PATEL

Static + Dynamic
Hash Tables

Lecture #07

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

ADMINISTRIVIA

Project #1 is due Sunday Feb 15th @ 11:59pm
→ Recitation Video + Slides (@64)
→ Perf Recitation on Wednesday Feb 4th @ 6:30pm (@79)
→ Special OH on Saturday Feb 14th @ 3:00-5:00pm (GHC 5207)

Homework #2 is due Sunday Feb 8th @ 11:59pm

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://piazza.com/class/mjxpbw9kyzv4mo/post/64
https://piazza.com/class/mjxpbw9kyzv4mo/post/79

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

COURSE OUTLINE

We are now going to talk about how
to support the DBMS's execution
engine to read/write data from pages.

Two types of data structures:
→ Hash Tables (Unordered)
→ Trees (Ordered)

3

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

TODAY'S AGENDA

Background

Hash Functions

Static Hashing Schemes

Dynamic Hashing Schemes

DB Flash Talk: YugabyteDB

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.yugabyte.com/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DATA STRUCTURES

Internal Meta-data

Core Data Storage

Temporary Data Structures

Table Indexes

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

DESIGN DECISIONS

Data Organization
→ How we layout data structure in memory/pages and what

information to store to support efficient access.

Concurrency
→ How to enable multiple threads to access the data structure at

the same time without causing problems.

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HASH TABLES

A hash table implements an unordered associative
array that maps keys to values.

It uses a hash function to compute an offset into this
array for a given key, from which the desired value can
be found.

Space Complexity: O(n)
Time Complexity:
→ Average: O(1)
→ Worst: O(n)

7

Databases care about constants!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STATIC HASH TABLE

Allocate a giant array that has one slot
for every element you need to store.

To find an entry, mod the key by the
number of elements to find the offset
in the array.

8

⋮

0

1

2

n

A

B

Z

Ø

hash(key) % N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STATIC HASH TABLE

Allocate a giant array that has one slot
for every element you need to store.

To find an entry, mod the key by the
number of elements to find the offset
in the array.

8

⋮

0

1

2

n

A | value

B | value

Z | value

hash(key) % N

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

UNREALISTIC ASSUMPTIONS

Assumption #1: Number of elements
is known ahead of time and fixed.

Assumption #2: Each key is unique.

Assumption #3: Perfect hash
function guarantees no collisions.
→ If key1≠key2, then

hash(key1)≠hash(key2)

9

hash(key) % N

⋮

0

1

2

n

A | value

B | value

Z | value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HASH TABLE

Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs. additional

instructions to get/put keys.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HASH FUNCTIONS

For any input key, compute a one-way integer
representation of that key (usually 32 or 64 bits).
→ Converts arbitrary byte array into a fixed-length code.

The only two properties of a hash function we care
about in a DBMS is whether it is fast and has a low
collision rate.
→ We do not want to use a cryptographic or reversible hash

function for DBMS hash tables (e.g., SHA-2).

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HASH FUNCTIONS

CRC-64

MurmurHash

Google CityHash

Facebook XXHash

Google FarmHash

RapidHash

CRC-64 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed as a fast, general-purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
→ From the creator of zstd compression.

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.

RapidHash (2019)
→ Fast hash function without architecture-specific instructions.

12

← State-of-the-art

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash
https://github.com/Nicoshev/rapidhash

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

STATIC HASHING SCHEMES

Advanced DB course

Approach #1: Linear Probe Hashing

Approach #2: Cuckoo Hashing

There are several other schemes covered in the
Advanced DB course:
→ Robin Hood Hashing
→ Hopscotch Hashing
→ Swiss Tables
→ Concise Hash Tables

13

← Open Addressing

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15721.courses.cs.cmu.edu/

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING

Single giant table of fixed-length slots.

Resolve collisions by linearly searching for the next free
slot in the table.
→ To determine whether an element is present, hash to a location

in the table and scan for it.
→ Store keys in table to know when to stop scanning.
→ Insertions and deletions are generalizations of lookups.

The table's load factor determines when it is becoming
too full and should be resized.
→ Load Factor = Active Keys / # of Slots
→ Allocate a new table twice as large and rehash entries.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

<key>|<value>

LINEAR PROBE HASHING

15

A
B
C
D

hash(key) % N

| valueA

E
F

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING

15

A
B
C
D

hash(key) % N

| valueA

E
F

| valueB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING

15

A
B
C
D

hash(key) % N

| valueA

| valueC

E
F

| valueB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING

15

A
B
C
D

hash(key) % N

| valueA

| valueC

| valueDE
F

| valueB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING

15

A
B
C
D

hash(key) % N

| valueA

| valueC

| valueDE

| valueEF

| valueB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING

15

A
B
C
D

hash(key) % N

| valueA

| valueC

| valueDE

| valueEF

| valueF

| valueB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HASH TABLE: KEY/VALUE ENTRIES

Fixed-length Key/Values:
→ Store inline within the hash table pages.
→ Optional: Store the key's hash with the

key for faster comparisons.

Variable-length Key/Values:
→ Insert key/value data in separate a private

temporary table.
→ Store the hash as the key and use the

record id pointing to its corresponding
entry in the temporary table as the value.

16

key valuehash

key valuehash

key valuehash

⋮

RecordIdhash

RecordIdhash

RecordIdhash

⋮
Temp Table Page

key | value

key | value

key | value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

17

A
B
C
D

hash(key) % N

| valueA

| valueB

| valueC

E
F

| valueD

| valueE

| valueF

Delete

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

17

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

Delete

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

17

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

Get

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

17

Approach #1: Movement
→ Rehash keys until you find

the first empty slot.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

Get

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

17

Approach #1: Movement
→ Rehash keys until you find

the first empty slot.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

Get

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

17

Approach #1: Movement
→ Rehash keys until you find

the first empty slot.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

Get

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

17

Approach #1: Movement
→ Rehash keys until you find

the first empty slot.
→ No DBMS does this.
→ to reorganize the entire table.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

Get

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

18

Approach #2: Tombstone
→ Maintain separate bit map to

indicate that the entry in the
slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage

collection.

A
B
C
D

hash(key) % N

| valueA

| valueB

| valueC

E
F

| valueD

| valueE

| valueF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

18

Approach #2: Tombstone
→ Maintain separate bit map to

indicate that the entry in the
slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage

collection.

A
B
C
D

hash(key) % N

| valueA

| valueB

| valueC

E
F

| valueD

| valueE

| valueF

Delete

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

18

Approach #2: Tombstone
→ Maintain separate bit map to

indicate that the entry in the
slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage

collection.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

Delete

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

18

Approach #2: Tombstone
→ Maintain separate bit map to

indicate that the entry in the
slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage

collection.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

Get

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

18

Approach #2: Tombstone
→ Maintain separate bit map to

indicate that the entry in the
slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage

collection.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

Get

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

18

Approach #2: Tombstone
→ Maintain separate bit map to

indicate that the entry in the
slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage

collection.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

18

Approach #2: Tombstone
→ Maintain separate bit map to

indicate that the entry in the
slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage

collection.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF
GPut

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING: DELETES

18

Approach #2: Tombstone
→ Maintain separate bit map to

indicate that the entry in the
slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage

collection.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF
G

| valueG

Put

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

HASH TABLE: NON-UNIQUE KEYS

Choice #1: Separate Linked List
→ Store values in separate storage area for

each key.
→ Value lists can overflow to multiple pages

if the number of duplicates is large.

Choice #2: Redundant Keys
→ Store duplicate keys entries together in

the hash table.
→ This is what most systems do.

19

XYZ

ABC

value1
value2
value3

Value Lists

value1
value2

XYZ | value2

ABC | value1

XYZ | value3

XYZ | value1

ABC | value2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OPTIMIZATIONS

Specialized impls. based on key type(s) and sizes.
→ Example: Maintain multiple hash tables for different string sizes

Store metadata separate in a separate array.
→ Use separate offset array (sparse) that points to entries in a data

segment (dense).
→ Packed bitmap to track whether a slot is empty/tombstone.

Use table + slot versioning metadata to quickly
invalidate all entries in the hash table.
→ Example: If table version does not match slot version, then treat

the slot as empty.

20

Maksim Kita

Source: Maksim Kita

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://clickhouse.com/blog/hash-tables-in-clickhouse-and-zero-cost-abstractions

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OPTIMIZATIONS

Specialized impls. based on key type(s) and sizes.
→ Example: Maintain multiple hash tables for different string sizes

Store metadata separate in a separate array.
→ Use separate offset array (sparse) that points to entries in a data

segment (dense).
→ Packed bitmap to track whether a slot is empty/tombstone.

Use table + slot versioning metadata to quickly
invalidate all entries in the hash table.
→ Example: If table version does not match slot version, then treat

the slot as empty.

20

Maksim Kita

Source: Maksim Kita

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://clickhouse.com/blog/hash-tables-in-clickhouse-and-zero-cost-abstractions
https://clickhouse.com/blog/hash-tables-in-clickhouse-and-zero-cost-abstractions

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

Use multiple hash functions to find multiple locations
in the hash table to insert records.
→ On insert, check multiple locations and pick the one that is

empty.
→ If no location is available, evict the element from one of them

and then re-hash it find a new location.

Look-ups and deletions are always O(1) because only
one location per hash table is checked.

Best open-source implementation is from CMU.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

Put A: hash1(A)

hash2(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

| valueA

Put A: hash1(A)

hash2(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

| valueA

Put A: hash1(A)

hash2(A)

Put B: hash1(B)

hash2(B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

| valueA

| valueB
Put A: hash1(A)

hash2(A)

Put B: hash1(B)

hash2(B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

| valueA

| valueB
Put A: hash1(A)

hash2(A)

Put B: hash1(B)

hash2(B)

Put C: hash1(C)

hash2(C)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

| valueA

| valueC
Put A: hash1(A)

hash2(A)

Put B: hash1(B)

hash2(B)

Put C: hash1(C)

hash2(C)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

| valueA

| valueC
Put A: hash1(A)

hash2(A)

Put B: hash1(B)

hash2(B)

Put C: hash1(C)

hash2(C)

hash1(B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

| valueC

| valueB

Put A: hash1(A)

hash2(A)

Put B: hash1(B)

hash2(B)

Put C: hash1(C)

hash2(C)

hash1(B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

| valueC

| valueB

| valueA

Put A: hash1(A)

hash2(A)

Put B: hash1(B)

hash2(B)

Put C: hash1(C)

hash2(C)

hash1(B)

hash2(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

| valueC

| valueB

| valueA

Put A: hash1(A)

hash2(A)

Put B: hash1(B)

hash2(B)

Put C: hash1(C)

hash2(C)

hash1(B)

hash2(A)

Get B: hash1(B)

hash2(B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

OBSERVATION

The previous hash tables require the DBMS to know
the number of elements it wants to store.
→ Otherwise, it must rebuild the table if it needs to grow/shrink

in size.

Dynamic hash tables incrementally resize themselves as
needed.
→ Chained Hashing
→ Extendible Hashing
→ Linear Hashing

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

Maintain a linked list of buckets for each slot in the
hash table.

Resolve collisions by placing all elements with the same
hash key into the same bucket.
→ To determine whether an element is present, hash to its bucket

and scan for it.
→ Insertions and deletions are generalizations of lookups.

24

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

hash(key) % N

Buckets

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

Put A

hash(key) % N

| valueA
Buckets

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

Put A
Put B

hash(key) % N

| valueA

| valueB

Buckets

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

Put A
Put B
Put C

hash(key) % N

| valueA

| valueB

Buckets
| valueC

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

Put A
Put B
Put C
Put D

hash(key) % N

| valueA

| valueB

Buckets
| valueC

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

Put A
Put B
Put C
Put D

hash(key) % N

| valueA

| valueB

| valueC

| valueD

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

Put A
Put B
Put C
Put D

hash(key) % N

Put E

| valueA

| valueB

| valueC

| valueD

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

Put A
Put B
Put C
Put D

hash(key) % N

Put E

| valueA

| valueB

| valueC

| valueD

| valueE

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

Put A
Put B
Put C
Put D

hash(key) % N

Put E
Put F

| valueA

| valueB

| valueC

| valueD

| valueE

| valueF

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

hash(key) % N

| valueA

| valueB

| valueC

| valueD

| valueE

| valueF

Bucket
Pointers

Filter

Filter

Filter

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

hash(key) % N

| valueA

| valueB

| valueC

| valueD

| valueE

| valueF

Bucket
Pointers

Filter

Filter

FilterGet G

Does key 'G' exist?

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

Chained-hashing approach that splits buckets
incrementally instead of letting the linked list grow
forever.

Multiple slot locations can point to the same bucket
chain.

Reshuffle bucket entries on split and increase the
number of bits to examine.
→ Data movement is localized to just the split chain.

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

10101…

10011…
2

11010… 2

Max number of bits to examine in hashes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

H
as

h
B

it
s

Max number of bits to examine in hashes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

H
as

h
B

it
s

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

H
as

h
B

it
s

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

10111…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C10111…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C10111… Overflow!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

3

10111… Overflow!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2 local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11

0 01

1 01

1 11

3

10111…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11

0 01

1 01

1 11

3

10011…
3

10101…

10111…

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11

0 01

1 01

1 11

3

10011…
3

10101…

10111…

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11

0 01

1 01

1 11

3

10011…
3

10101…

10111…

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11

0 01

1 01

1 11

3

10011…
3

10101…

10111…

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11

0 01

1 01

1 11

3

10011…
3

10101…

10111…

3
10100…

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

The hash table maintains a pointer that tracks the next
bucket to split.
→ When any bucket overflows, split the bucket at the pointer

location.

Use multiple hashes to find the right bucket for a given
key.

Can use different overflow criterion:
→ Space Utilization
→ Average Length of Overflow Chains

28

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

20
Bucket

Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

20
Bucket

Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

20
Bucket

Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

20

Overflow!

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

20

Overflow!

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

4

hash2(key) = key % 2n

20

Overflow!

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

4

hash2(key) = key % 2n

20

Overflow!

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

4

hash2(key) = key % 2n

20

hash2(8) = 8 % 8 = 0

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

4

hash2(key) = key % 2n

20

hash2(8) = 8 % 8 = 0
hash2(20) = 20 % 8 = 4

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

4

hash2(key) = key % 2n

hash2(8) = 8 % 8 = 0
hash2(20) = 20 % 8 = 4

20

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

4

hash2(key) = key % 2n

hash2(8) = 8 % 8 = 0
hash2(20) = 20 % 8 = 4

20

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

hash1(20) = 20 % 4 = 0
Get 20

17

4

hash2(key) = key % 2n

hash2(8) = 8 % 8 = 0
hash2(20) = 20 % 8 = 4

20

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

hash1(20) = 20 % 4 = 0
Get 20

17

4

hash2(key) = key % 2n

hash2(20) = 20 % 8 = 4

hash2(8) = 8 % 8 = 0
hash2(20) = 20 % 8 = 4

20

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

hash1(20) = 20 % 4 = 0
Get 20

17

4

hash2(key) = key % 2n

hash2(20) = 20 % 8 = 4

hash1(9) = 9 % 4 = 1
Get 9

hash2(8) = 8 % 8 = 0
hash2(20) = 20 % 8 = 4

20

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

hash1(20) = 20 % 4 = 0
Get 20

17

4

hash2(key) = key % 2n

hash2(20) = 20 % 8 = 4

hash1(9) = 9 % 4 = 1
Get 9

hash2(8) = 8 % 8 = 0
hash2(20) = 20 % 8 = 4

20

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING: RESIZING

Splitting buckets based on the split pointer will
eventually get to all overflowed buckets.
→ When the pointer reaches the last slot, remove the first hash

function and move pointer back to beginning.

If the "highest" bucket below the split pointer is empty,
the hash table could remove it and move the splinter
pointer in reverse direction.

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING: DELETES

31

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

20hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20Bucket

Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING: DELETES

31

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

20hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20Bucket

Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING: DELETES

31

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

20hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING: DELETES

31

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

20hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING: DELETES

31

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING: DELETES

31

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR HASHING: DELETES

31

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

hash1(21) = 21 % 4 = 1
Put 21

Overflow!

21

Bucket
Pointers

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CONCLUSION

Fast data structures that support O(1) look-ups that are
used all throughout DBMS internals.
→ Trade-off between speed and flexibility.
→ Some DBMSs store all data in hash tables (key/value stores).

Hash tables are usually not what you want to use for a
table index…

32

CREATE INDEX ON xxx USING BTREE (val);

CREATE INDEX ON xxx (val);

CREATE INDEX ON xxx USING HASH (val);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

NEXT CLASS

Order-Preserving Indexes ft. B+Trees
→ aka "The Greatest Data Structure of All Time"

33

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

	Introduction
	Slide 1: Static + Dynamic Hash Tables
	Slide 2: ADMINISTRIVIA
	Slide 3: COURSE OUTLINE
	Slide 4: TODAY'S AGENDA

	Background
	Slide 5: DATA STRUCTURES
	Slide 6: DESIGN DECISIONS
	Slide 7: HASH TABLES
	Slide 8: STATIC HASH TABLE
	Slide 9: STATIC HASH TABLE
	Slide 10: UNREALISTIC ASSUMPTIONS
	Slide 11: HASH TABLE

	Hash Functions
	Slide 12: HASH FUNCTIONS
	Slide 13: HASH FUNCTIONS
	Slide 14: STATIC HASHING SCHEMES

	Linear Probe Hashing
	Slide 15: LINEAR PROBE HASHING
	Slide 16: LINEAR PROBE HASHING
	Slide 17: LINEAR PROBE HASHING
	Slide 18: LINEAR PROBE HASHING
	Slide 19: LINEAR PROBE HASHING
	Slide 20: LINEAR PROBE HASHING
	Slide 21: LINEAR PROBE HASHING
	Slide 22: HASH TABLE: KEY/VALUE ENTRIES
	Slide 23: LINEAR PROBE HASHING: DELETES
	Slide 24: LINEAR PROBE HASHING: DELETES
	Slide 25: LINEAR PROBE HASHING: DELETES
	Slide 26: LINEAR PROBE HASHING: DELETES
	Slide 27: LINEAR PROBE HASHING: DELETES
	Slide 28: LINEAR PROBE HASHING: DELETES
	Slide 29: LINEAR PROBE HASHING: DELETES
	Slide 30: LINEAR PROBE HASHING: DELETES
	Slide 31: LINEAR PROBE HASHING: DELETES
	Slide 32: LINEAR PROBE HASHING: DELETES
	Slide 33: LINEAR PROBE HASHING: DELETES
	Slide 34: LINEAR PROBE HASHING: DELETES
	Slide 35: LINEAR PROBE HASHING: DELETES
	Slide 36: LINEAR PROBE HASHING: DELETES
	Slide 37: LINEAR PROBE HASHING: DELETES
	Slide 38: HASH TABLE: NON-UNIQUE KEYS
	Slide 39: OPTIMIZATIONS
	Slide 40: OPTIMIZATIONS

	Cuckoo Hashing
	Slide 41: CUCKOO HASHING
	Slide 42: CUCKOO HASHING
	Slide 43: CUCKOO HASHING
	Slide 44: CUCKOO HASHING
	Slide 45: CUCKOO HASHING
	Slide 46: CUCKOO HASHING
	Slide 47: CUCKOO HASHING
	Slide 48: CUCKOO HASHING
	Slide 49: CUCKOO HASHING
	Slide 50: CUCKOO HASHING
	Slide 51: CUCKOO HASHING

	Chained Hash Table
	Slide 52: OBSERVATION
	Slide 53: CHAINED HASHING
	Slide 54: CHAINED HASHING
	Slide 55: CHAINED HASHING
	Slide 56: CHAINED HASHING
	Slide 57: CHAINED HASHING
	Slide 58: CHAINED HASHING
	Slide 59: CHAINED HASHING
	Slide 60: CHAINED HASHING
	Slide 61: CHAINED HASHING
	Slide 62: CHAINED HASHING
	Slide 63: CHAINED HASHING
	Slide 64: CHAINED HASHING

	Extendible Hashing
	Slide 65: EXTENDIBLE HASHING
	Slide 66: EXTENDIBLE HASHING
	Slide 67: EXTENDIBLE HASHING
	Slide 68: EXTENDIBLE HASHING
	Slide 69: EXTENDIBLE HASHING
	Slide 70: EXTENDIBLE HASHING
	Slide 71: EXTENDIBLE HASHING
	Slide 72: EXTENDIBLE HASHING
	Slide 73: EXTENDIBLE HASHING
	Slide 74: EXTENDIBLE HASHING
	Slide 75: EXTENDIBLE HASHING
	Slide 76: EXTENDIBLE HASHING
	Slide 77: EXTENDIBLE HASHING
	Slide 78: EXTENDIBLE HASHING
	Slide 79: EXTENDIBLE HASHING
	Slide 80: EXTENDIBLE HASHING
	Slide 81: EXTENDIBLE HASHING

	Linear Hashing
	Slide 82: LINEAR HASHING
	Slide 83: LINEAR HASHING
	Slide 84: LINEAR HASHING
	Slide 85: LINEAR HASHING
	Slide 86: LINEAR HASHING
	Slide 87: LINEAR HASHING
	Slide 88: LINEAR HASHING
	Slide 89: LINEAR HASHING
	Slide 90: LINEAR HASHING
	Slide 91: LINEAR HASHING
	Slide 92: LINEAR HASHING
	Slide 93: LINEAR HASHING
	Slide 94: LINEAR HASHING
	Slide 95: LINEAR HASHING
	Slide 96: LINEAR HASHING
	Slide 97: LINEAR HASHING
	Slide 98: LINEAR HASHING: RESIZING
	Slide 99: LINEAR HASHING: DELETES
	Slide 100: LINEAR HASHING: DELETES
	Slide 101: LINEAR HASHING: DELETES
	Slide 102: LINEAR HASHING: DELETES
	Slide 103: LINEAR HASHING: DELETES
	Slide 104: LINEAR HASHING: DELETES
	Slide 105: LINEAR HASHING: DELETES

	Conclusion
	Slide 106: CONCLUSION
	Slide 107: NEXT CLASS

