Carnegie Mellon .University:
‘Database
Systems

15-445/645 SPRING 2026 I
ANDY PAVLO ~

JIGNESH PATEL
I_Aectu‘re #07

Static + Dynamic
Hash Tables

https://15445.courses.cs.cmu.edu/spring2026
https://15445.courses.cs.cmu.edu/spring2026
https://www.cs.cmu.edu/~pavlo/
https://jigneshpatel.org/

ADMINISTRIVIA

Project #1 is due Sunday Feb 15% @ 11:59pm

— Recitation Video + Slides (@64)

— Perf Recitation on Wednesday Feb 4" @ 6:30pm (@79)

— Special OH on Saturday Feb 14%" @ 3:00-5:00pm (GHC 5207)

Homework #2 is due Sunday Feb 8" @ 11:59pm

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://piazza.com/class/mjxpbw9kyzv4mo/post/64
https://piazza.com/class/mjxpbw9kyzv4mo/post/79

COURSE OUTLINE

We are now going to talk about how
to support the DBMS's execution

engine to read/write data from pages.

Two types of data structures:
— Hash Tables (Unordered)
—> Trees (Ordered)

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

TODAY'S AGENDA

Background
Hash Functions
Static Hashing Schemes

Dynamic Hashing Schemes
$DB Flash Talk: YugabyteDB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.yugabyte.com/

DATA STRUCTURES

Internal Meta-data
Core Data Storage
Temporary Data Structures

Table Indexes

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

DESIGN DECISIONS

Data Organization

— How we layout data structure in memory/pages and what
information to store to support efficient access.

Concurrency

— How to enable multiple threads to access the data structure at
the same time without causing problems.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HASH TABLES

A hash table implements an unordered associative
array that maps keys to values.

[t uses a hash function to compute an offset into this
array for a given key, from which the desired value can

be found.

Space Complexity: O(n)

Time Complexity:

— Average: O(1) 4@ Databases care about constants!
— Worst: O(n)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

STATIC HASH TABLE

Allocate a giant array that has one slot
for every element you need to store. hash(key) % N

0| A

110
B

To find an entry, mod the key by the
number of elements to find the offset
in the array.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

STATIC HASH TABLE

Allocate a giant array that has one slot
for every element you need to store. hash(key) % N

number of elements to find the offset

)
To find an entry, mod the key by the 1 :\> Al value
2

Z | value

in the array.

B| value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

UNREALISTIC ASSUMPTIONS

Assumption #1: Number of elements

is known ahead of time and fixed. hash(key) % N
. : : 0
Assumption #2: Each key is unique. 1 :\> Al value
A . 2 Z | value
ssumption #3: Perfect hash
function guarantees no collisions. B|value
— If key1#key2, then n

hash(key1)#hash(key2)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HASH TABLE

Design Decision #1: Hash Function

— How to map a large key space into a smaller domain.
— Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme

— How to handle key collisions after hashing.

— Trade-off between allocating a large hash table vs. additional
instructions to get/put keys.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

11

HASH FUNCTIONS

For any input key, compute a one-way integer

representation of that key (usually 32 or 64 bits).
— Converts arbitrary byte array into a fixed-length code.

The only two properties of a hash function we care
about in a DBMS is whether it is fast and has a low

collision rate.

— We do not want to use a cryptographic or reversible hash
function for DBMS hash tables (e.g., SHA-2).

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2

HASH FUNCTIONS

CRC-64 (1975)

— Used in networking for error detection.

MurmurHash (2008)

— Designed as a fast, general-purpose hash function.

Google CityHash (2011)
— Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
~ State-of-the-art
Google FarmHash (2014)

— Newer version of CityHash with better collision rates.

RapidHash (2019)

— Fast hash function without architecture-specific instructions.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash
https://github.com/Nicoshev/rapidhash

STATIC HASHING SCHEMES

Approach #1: Linear Probe Hashing .
Approach #2: Cuckoo Hashing ¢ Qe A R
There are several other schemes covered in the

Advanced DB course:
— Robin Hood Hashing
— Hopscotch Hashing
— Swiss Tables

— Concise Hash Tables

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15721.courses.cs.cmu.edu/

14

LINEAR PROBE HASHING

Single giant table of fixed-length slots.

Resolve collisions by linearly searching for the next free

slot in the table.

— To determine whether an element is present, hash to a location
in the table and scan for it.

— Store keys in table to know when to stop scanning.

— Insertions and deletions are generalizations of lookups.

The table's load factor determines when it is becoming

too full and should be resized.

— Load Factor = Active Keys / # of Slots
— Allocate a new table twice as large and rehash entries.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

hash(key) % N

MmO O W

LINEAR PROBE HASHING

.

A|value

<key>|<value>

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING

hash(key) % N

/ B|value

A|value

MmO O W

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING

hash(key) % N B|value
A
L A|value
C ./
C|value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING

hash(key) % N B|value
A
g Alvalue
De—" C|value b
E D | value
F

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING

hash(key) % N B|value
A
g A |value
D C|value
E D | value
F E|value

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING

hash(key) % N B|value
A
g A |value
D C|value
E D | value
Fo—_ E|value)
F|value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HASH TABLE: KEY/VALUE ENTRIES

Fixed-length Key/Values: hash key | value
— Store inline within the hash table pages. hash key value
— Optional: Store the key's hash with the hash key value

key for faster comparisons.

Variable-length Key/Values: hash | RecordId
— Insert key/value data in separate a private hash [RecordId
temporary table. RecordId

— Store the hash as the key and use the
record id pointing to its corresponding
entry in the temporary table as the value.

Temp Table Page

key | value

key | value

key | value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

hash(key) % N B|value
A
B Alvalue
Delete » C ./ ﬁ
D
E value

D
F E|value
F

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

hash(key) % N B|value
A
1 A|value
Delete » C ./ ﬁ
D
E D|value
F E|value

F|value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

hash(key) % N B|value
A
g A|value
Ge t » D ._/-’ o@s
E D | value
F E|value
F|value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

hash(key) % N

A
B

C
Get mp D
E

F

B|value

A|value

D | value

E|value

F|value

Approach #1: Movement

— Rehash keys until you find
the first empty slot.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

hash(key) % N B|value
A
g A |value
Cet » D D | value
E E|value

F .\I> F|value

Approach #1: Movement

— Rehash keys until you find
the first empty slot.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

hash(key) % N Approach #1: Movement
A e e — Rehash keys until you find
the first empty slot.

B Alvalue
C

Get » D D value
E E|value
F F|value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

17

LINEAR PROBE HASHING: DELETES

hash(key) % N Approach #1: Movement

— Rehash keys until you find

i the first empty slot.

B — No DBMS does this.

C — to reorganize the entire table.
Get mp D

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

18

LINEAR PROBE HASHING: DELETES

hash(key) % N

MmO O W

value

value

value

value

value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

18

LINEAR PROBE HASHING: DELETES

hash(key) % N
A

B
Delete W) Co/ Alvalue
;

E
F

value

value

value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

18

hash(key) % N
A

B
Delete W) Co—"1 Alvalue
D

E
F

B|value

D | value

E|value

F|value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

18

LINEAR PROBE HASHING: DELETES

hash(key) % N B|value
A
g A|value
Get ip De—1" =
E D|value
F E|value

F|value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

18

hash(key) % N

A
B
C

o Do~ R
:

F

B|value

A|value

E|value

F|value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

18

LINEAR PROBE HASHING: DELETES

hash(key) % N

MmO O W

B|value

A|value

<]

D

value

E

value

F

value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

B|value

A|value

<]

D | value

E|value

F|value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

18

value

value

value

value

value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

HASH TABLE: NON-UNIQUE KEYS

) . . Value Lists
Choice #1: Separate Linked List —
— Store values in separate storage area for BC

each key.
— Value lists can overflow to multiple pages
if the number of duplicates is large. |:|_
Choice #2: Redundant Keys
— Store duplicate keys entries together in XYZ|value?
the hash table. ABC | valuel
— This is what most systems do. XYZ |value3
XYZ | valuel
ABC | value2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Source: Maksim Kita

20

OPTIMIZATIONS

Specialized impls. based on key type(s) and sizes.
— Example: Maintain multiple hash tables for different string sizes

Store metadata separate in a separate array.

— Use separate offset array (sparse) that points to entries in a data
segment (dense).

— Packed bitmap to track whether a slot is empty/tombstone.

Use table + slot versioning metadata to quickly

invalidate all entries in the hash table.
— Example: If table version does not match slot version, then treat
the slot as empty.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://clickhouse.com/blog/hash-tables-in-clickhouse-and-zero-cost-abstractions

OPTIMIZA Tyt

Blog / Engineering

Specialized impls. based on key {RaEERETI LY NI T AN and

: - ~ CH Zero-cost Abstractions
— Example: Maintain multiple hash

!_i% Maksim Kita

May 16, 2023

Store metadata separate in a sep|

— Use separate offset array (sparse) i o
segment (dense). |

I track whether a { Ha_Sh tables in T
— Packed bitmap to trac N ClickHoie,

14 221-8676

Use table + slot versioning met

invalidate all entries in the hasiuuui
— Example: If table version does notjs

s. No other data structure offers the same
opportunity for bugs to be introduc

ed during optimization. In this blog post, we explore how
t hash tables are used in ClickHouse.
the slot as empty.

We'll show how zero-cost abstractions work in modern C+
+and how to get a variety of data structures from a common

tables are the diva of data structure

codebase with a few little tricks.

Source: Maksim Kita

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://clickhouse.com/blog/hash-tables-in-clickhouse-and-zero-cost-abstractions
https://clickhouse.com/blog/hash-tables-in-clickhouse-and-zero-cost-abstractions

21

CUCKOO HASHING

Use multiple hash functions to find multiple locations

in the hash table to insert records.

— On insert, check multiple locations and pick the one that is
empty.

— If no location is available, evict the element from one of them
and then re-hash it find a new location.

Look-ups and deletions are always O(1) because only
one location per hash table is checked.

Best open-source implementation is from CMU.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo

CUCKOO HASHING

Put A: hash(A)
hash,(A)

/

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CUCKOO HASHING

Put A: hash(A)
hash,(A)

A|value

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CUCKOO HASHING

- hash(A)

hash,(A)

- hash(B)

hash,(B)

A|value

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CUCKOO HASHING

- hash(A)

hash,(A)

- hash(B)

hash,(B)

B|value

A|value

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CUCKOO HASHING

Put A: hash(A)

hash,(A)
Put B: hash(B)

hash,(B) A|value

Put C: hash(C)
hash,(C)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Put B:

Put C:

CUCKOO HASHING

- hash(A)

hash,(A)

hash (B)
hash,(B)

hash(C)
hash,(C)

A|value

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CUCKOO HASHING

Put A: hash(A)

hash,(A) C|value
Put B: hash(B)

hash,(B)
Put C: hash(C)

hash,(C)

hash(B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CUCKOO HASHING

Put A: hash(A)

hash,(A) C|value
Put B: hash(B)

hash,(B)
Put C: hash(C)

hash,(C)

hash(B)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CUCKOO HASHING

Put A: hash(A)

hash,(A) C|value
Put B: hash(B)

hash,(B)
Put C: hash/(C)

hash,(C)

hash(B)

Al value
hash,(A) /

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Get B:

CUCKOO HASHING

- hash(A)

hash,(A)

- hash(B)

hash,(B)

- hash(C)

hash,(C)
hash(B)
hash,(A)

hash(B)
hash,(B)

B|value

Al value

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OBSERVATION

The previous hash tables require the DBMS to know

the number of elements it wants to store.

— Otherwise, it must rebuild the table if it needs to grow/shrink
in size.

Dynamic hash tables incrementally resize themselves as

needed.

— Chained Hashing
— Extendible Hashing
— Linear Hashing

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

24

CHAINED HASHING

Maintain a linked list of buckets for each slot in the

hash table.

Resolve collisions by placing all elements with the same

hash key into the same bucket.

— To determine whether an element is present, hash to its bucket
and scan for it.

— Insertions and deletions are generalizations of lookups.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CHAINED HASHING

hash(key) % N
Bucket
Pointers

- Buckets

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

hash(key) % N

CHAINED HASHING

Bucket

Put A ’\l:ointers
M

Al value

- Buckets

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CHAINED HASHING

hash(key) % N
Bucket
Put A Pointers

Put B &——,

B|value

Al value

- Buckets

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CHAINED HASHING

hash(key) % N B|value
Bucket

Put A Pointers

Put B

Put CO——y odl—> Alvalue

C|value

- Buckets

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CHAINED HASHING

hash(key) % N B value
Bucket
Put A Pointers
Put B
ot—" Al value

Put C
Put D /

C|value

- Buckets

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

hash(key) % N

Bucket
Put A Pointers
Put B

CHAINED HASHING

B|value

o— "

Al value

Put C
Put D /

D | value

C|value

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

hash(key) % N
Put A
Put B
Put C
Put D

Put E

CHAINED HASHING

Bucket
Pointers

B|value

Al value

C|value

D | value

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CHAINED HASHING

hash(key) % N B|value
Bucket

Put A Pointers

Put B

Put C ..f A | value

Put b / C|value

Put E

D | value

E|value

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CHAINED HASHING

hash(key) % N B|value
Bucket

Put A Pointers

Put B

Put C Alvalue

Put D C|value

Put E

utr F|value

D | value

E|value

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

hash(key) % N

CHAINED HASHING

B|value
Bucket
Pointers
? Filter
v o Alvalue
C|value

F|value

D | value

E|value

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CHAINED HASHING

hash(key) % N
Bucket
Pointers
? Filter

Get G \ Y il
= x

Does key 'G' exist?

B|value

Al value

C|value

F|value

D | value

E|value

25

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

Chained-hashing approach that splits buckets
incrementally instead of letting the linked list grow
forever.

Multiple slot locations can point to the same bucket
chain.

Reshuffle bucket entries on split and increase the

number of bits to examine.
— Data movement is localized to just the split chain.

@5 Asterixcs

GDBM

26

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

:Max number of bits to examine in hashes

global | 9 00010.. | 1
01110...
10101... | 2
10011...

11010.. | 2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

:Max number of bits to examine in hashes

global | 9 00010.. | 1 local
01110..
2 00
Q | 01 10101.. | 2 local
2] 10 10011..
= _11

11010.. | 2 local

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

00010.. | 1 local

%/V
01110...
- 010 /
9|1
—

10101.. | 2 local
10011...

Hash Bits
[

11010.. | 2 local

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Hash Bits
[

EXTENDIBLE HASHING

00010...

01110...

10101...

10011...

11010...

2 local

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

Ot | 1001 1.

3\» 11010

1 local

2 local

2 local

Get A
hash(A) =

0

110...

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

00010...

01110...

10101...

10011...

11010...

2 local

Get A
hash(A)=01110...

Put B
hash(B)=10111...

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

00010...

01110...

10101...

10011...

10111...

11010...

2 local

Get A

hash(A) =01110...

Put B

hash(B) =

10

111...

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

00010...

01110...

10101...

10011...

10111...

11010...

2 local

Get A

hash(A) =01110...

Put B

hash(B)=10111...

Put C

hash(C) =(10[100...

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

00010...

01110...

10101...

10011...

10111...

11010...

2 local
Overflow!

2 local

Get A
hash(A)=01110...

Put B

hash(B)=10111...

Put C

hash(C) =

10

100...

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

00010...

01110...

10101...

10011...

10111...

11010...

2 local
Overflow!

2 local

Get A
hash(A)=01110...

Put B

hash(B)=10111...

Put C

hash(C) =

10

100...

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

00010...

01110...

10101...

10011...

10111...

11010...

2 local

Get A

hash(A) =01110...

Put B

hash(B)=10111...

Put C

hash(C) =(10[100...

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

00010...

01110...

10011...

10101...

10111...

11010...

Get A

hash(A) =01110...

Put B

hash(B)=10111...

Put C

hash(C) =10100...

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

Get A
global %/ 00010.. | 1 hash(A)=01110...
01110..
000 / Put B
o[10 3 hash(B)=10111...
100 10011...
201 — 3 hash(C)=10100...
g 10111...
101
111 11010.. | 2

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

7

00010...

01110...

10011...

10101...

10111...

11010...

Get A

hash(A) =01110...

Put B

hash(B)=10111...

Put C

hash(C) =10100...

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

00010...

01110...

10011...

10101...

10111...

11010...

Get A

hash(A) =01110...

Put B

hash(B)=10111...

Put C

hash(C) =10100...

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

EXTENDIBLE HASHING

00010...

Get A

hash(A) =01110...

Put B

hash(B)=10111...

Put C

hash(C) =({101/00...

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

28

LINEAR HASHING

The hash table maintains a pointer that tracks the next

bucket to split.

— When any bucket overflows, split the bucket at the pointer
location.

Use multiple hashes to find the right bucket for a given
key.

Can use different overflow criterion:
— Space Utilization
— Average Length of Overflow Chains

PostgreSQL ““}’ﬁﬂ%@ Day'ngﬁgDB

Makers of Berkeley DB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Split
Pointer .

.

LINEAR

Bucket
Pointers

0

1
2
3

A

hash (key) = key % n

HASHING

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

Split Bucket 8 Get 6
ph uc _ s
Pointer . Poin%rsfb 20 hash(6)= 6 % 4 = 2
» ;0
)2 9
: 13
: 3
hash (key) = key % n -

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

Split Bucket

Pointer . Poin%rsfb

3
hash (key) = key % n

Get 6
hash(6)= 6 % 4 = 2

Put 17
hash(17)= 17 % 4 =1

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

Split Bucket
Pointer . Pointers
» . o
2
3
hash (key) = key % n

Overflow!

Get 6
hash(6)= 6 % 4 = 2

Put 17
hash(17)= 17 % 4 =1

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

Split Bucket Get 6

ph uc C coa
Pointer . P hash1(6)= 6%4=2
» ° Put 17

8

20
T~ = 7] hash(17)= 17 % 4=1
5 5 |=»
3

6 Overflow!
hash (key) = key % n -
11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

Split Bucket 8
Pointer . Pointers 20
B o

hash (key) = key % n
hash,(key) = key % 2n

£ W NN =

—

17

Overflow!

Get 6
hash(6)= 6 % 4 = 2

Put 17
hash(17)= 17 % 4 =1

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

Split Bucket 8
Pointer . Pointers 20
B o

hash (key) = key % n
hash,(key) = key % 2n

£ W NN =

—

17

Overflow!

Get 6
hash(6)= 6 % 4 = 2

Put 17
hash(17)= 17 % 4 =1

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

Split Bucket

Pointer : Pm'n%rsfb
» o

hash (key) = key % n

hash,(key) = key % 2n

£ W NN =

17

Get 6
hash(6)= 6 % 4 = 2

Put 17
hash(17)= 17 % 4 =
hash,(8) = 8% 8=0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

29

Split Bucket

Pointer : Pm'n%rsf-b
» o

hash (key) = key % n

hash,(key) = key % 2n

£ W NN =

17

Get 6
hash(6)= 6 % 4 = 2

Put 17

hash(17)= 17 % 4 =1

hash,(8) = 8% 8=0

hash,(20)= 20 %8 = 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

29

Split Bucket

Pointer : Pm'n%rsf-b
» o

hash (key) = key % n

hash,(key) = key % 2n

£ W NN =

17

20

Get 6
hash(6)= 6 % 4 = 2

Put 17

hash(17)= 17 % 4 =1

hash,(8) = 8% 8=0

hash,(20)= 20 %8 = 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

29

Split Bucket

Pointer . Poin%rsf-b
: 0

RS

hash (key) = key % n
hash,(key) = key % 2n

£ W NN =

17

20

Get 6
hash(6)= 6 % 4 = 2

Put 17

hash(17)= 17 % 4 =1

hash,(8) = 8% 8=0

hash,(20)= 20 %8 = 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

29

Split Bucket

Pointer . Poin%rsfb
: 0

hash (key) = key % n
hash,(key) = key % 2n

17

20

Get 6
hash(6)= 6 % 4 = 2

Put 17

hash(17)= 17 % 4 =1

hash,(8) = 8% 8=0

hash,(20)= 20 %8 = 4

Get 20
hash(20)= 20% 4 =0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

29

Split Bucket

Pointer . Poin%rsfb
: 0

hash (key) = key % n
hash,(key) = key % 2n

17

20

Get 6
hash(6)= 6 % 4 = 2

Put 17

hash(17)= 17 % 4 =1

hash,(8) = 8% 8=0

hash,(20)= 20 %8 = 4
Get 20

hash(20)= 20% 4 =0
hash,(20)= 20% 8 = 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

29

Split Bucket

Pointer . Poin%rsfb
: 0

hash (key) = key % n
hash,(key) = key % 2n

17

20

Get 6
hash(6)= 6 % 4 = 2

Put 17

hash(17)= 17 % 4 =1

hash,(8) = 8% 8=0

hash,(20)= 20 %8 = 4
Get 20

hash(20)= 20% 4 =0
hash,(20)= 20 %8 = 4

Get 9
hash(9)= 9% 4 =1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR HASHING

29

Split Bucket 8

Pointer . Poin%rsfb

* »Z

4 6
hash (key) = key % n -
hash,(key) = key % 2n 1

17

20

Get 6
hash(6)= 6 % 4 = 2

Put 17

hash(17)= 17 % 4 =1

hash,(8) = 8% 8=0

hash,(20)= 20 %8 = 4
Get 20

hash(20)= 20% 4 =0
hash,(20)= 20 %8 = 4

Get 9
hash(9)= 9% 4 =1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

30

LINEAR HASHING: RESIZING

Splitting buckets based on the split pointer will

eventually get to all overflowed buckets.
— When the pointer reaches the last slot, remove the first hash
function and move pointer back to beginning.

[f the "highest" bucket below the split pointer is empty,
the hash table could remove it and move the splinter
pointer in reverse direction.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Split
Pointer .

31

LINEAR HASHING: DELETES

Bucket

= g
%)

hash (key) = key % n
hash,(key) = key % 2n

17

20

Delete 20
hash,(20)= 20% 4 =0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

31

LINEAR HASHING: DELETES

Split Bucket

Pointer . Poin%rsfb
: 0

hash (key) = key % n
hash,(key) = key % 2n

17

20

Delete 20
hash,(20)= 20% 4 =0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Split
Pointer .

31

LINEAR HASHING: DELETES

Bucket

= g
%)

hash (key) = key % n
hash,(key) = key % 2n

17

20

Delete 20
hash,(20)= 20% 4 =0
hash,(20)= 20 %8 = 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

Split
Pointer .

31

LINEAR HASHING: DELETES

Bucket

=i g
%)

hash (key) = key % n
hash,(key) = key % 2n

17

Delete 20
hash,(20)= 20% 4 =0
hash,(20)= 20 %8 = 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

31

LINEAR HASHING: DELETES

Split Bucket

Pointer . Poin%rsfb
: 0

hash (key) = key % n
hash,(key) = key % 2n

17

Delete 20
hash,(20)= 20% 4 =0
hash,(20)= 20 %8 = 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

31

LINEAR HASHING: DELETES

Split Bucket
Pointer . Pointers
» . o
P2
3
hash (key) = key % n

17

Delete 20
hash,(20)= 20% 4 =0
hash,(20)= 20 %8 = 4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

31

LINEAR HASHING: DELETES

Split Bucket
Pointer . Pointers
» . o
2
3
hash (key) = key % n

17
21

Overflow!

Delete 20
hash,(20)= 20% 4 =0
hash,(20)= 20% 8 = 4

Put 21
hash(21)= 21 % 4 =1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CONCLUSION

32

Fast data structures that support O(1) look-ups that are

used all throughout DBMS internals.
— Trade-off between speed and flexibility.

— Some DBMSs store all data in hash tables (key/value stores).

Hash tables are usually not what you want to use for a

table index. ..

CREATE INDEX ON xxx (val);

PostgreSQL

CREATE INDEX ON xxx USING BTREE (val);

)

CREATE INDEX ON xxx USING HASH (val);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NEXT CLASS

Order-Preserving Indexes ft. B+Trees
— aka "The Greatest Data Structure of All Time"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

	Introduction
	Slide 1: Static + Dynamic Hash Tables
	Slide 2: ADMINISTRIVIA
	Slide 3: COURSE OUTLINE
	Slide 4: TODAY'S AGENDA

	Background
	Slide 5: DATA STRUCTURES
	Slide 6: DESIGN DECISIONS
	Slide 7: HASH TABLES
	Slide 8: STATIC HASH TABLE
	Slide 9: STATIC HASH TABLE
	Slide 10: UNREALISTIC ASSUMPTIONS
	Slide 11: HASH TABLE

	Hash Functions
	Slide 12: HASH FUNCTIONS
	Slide 13: HASH FUNCTIONS
	Slide 14: STATIC HASHING SCHEMES

	Linear Probe Hashing
	Slide 15: LINEAR PROBE HASHING
	Slide 16: LINEAR PROBE HASHING
	Slide 17: LINEAR PROBE HASHING
	Slide 18: LINEAR PROBE HASHING
	Slide 19: LINEAR PROBE HASHING
	Slide 20: LINEAR PROBE HASHING
	Slide 21: LINEAR PROBE HASHING
	Slide 22: HASH TABLE: KEY/VALUE ENTRIES
	Slide 23: LINEAR PROBE HASHING: DELETES
	Slide 24: LINEAR PROBE HASHING: DELETES
	Slide 25: LINEAR PROBE HASHING: DELETES
	Slide 26: LINEAR PROBE HASHING: DELETES
	Slide 27: LINEAR PROBE HASHING: DELETES
	Slide 28: LINEAR PROBE HASHING: DELETES
	Slide 29: LINEAR PROBE HASHING: DELETES
	Slide 30: LINEAR PROBE HASHING: DELETES
	Slide 31: LINEAR PROBE HASHING: DELETES
	Slide 32: LINEAR PROBE HASHING: DELETES
	Slide 33: LINEAR PROBE HASHING: DELETES
	Slide 34: LINEAR PROBE HASHING: DELETES
	Slide 35: LINEAR PROBE HASHING: DELETES
	Slide 36: LINEAR PROBE HASHING: DELETES
	Slide 37: LINEAR PROBE HASHING: DELETES
	Slide 38: HASH TABLE: NON-UNIQUE KEYS
	Slide 39: OPTIMIZATIONS
	Slide 40: OPTIMIZATIONS

	Cuckoo Hashing
	Slide 41: CUCKOO HASHING
	Slide 42: CUCKOO HASHING
	Slide 43: CUCKOO HASHING
	Slide 44: CUCKOO HASHING
	Slide 45: CUCKOO HASHING
	Slide 46: CUCKOO HASHING
	Slide 47: CUCKOO HASHING
	Slide 48: CUCKOO HASHING
	Slide 49: CUCKOO HASHING
	Slide 50: CUCKOO HASHING
	Slide 51: CUCKOO HASHING

	Chained Hash Table
	Slide 52: OBSERVATION
	Slide 53: CHAINED HASHING
	Slide 54: CHAINED HASHING
	Slide 55: CHAINED HASHING
	Slide 56: CHAINED HASHING
	Slide 57: CHAINED HASHING
	Slide 58: CHAINED HASHING
	Slide 59: CHAINED HASHING
	Slide 60: CHAINED HASHING
	Slide 61: CHAINED HASHING
	Slide 62: CHAINED HASHING
	Slide 63: CHAINED HASHING
	Slide 64: CHAINED HASHING

	Extendible Hashing
	Slide 65: EXTENDIBLE HASHING
	Slide 66: EXTENDIBLE HASHING
	Slide 67: EXTENDIBLE HASHING
	Slide 68: EXTENDIBLE HASHING
	Slide 69: EXTENDIBLE HASHING
	Slide 70: EXTENDIBLE HASHING
	Slide 71: EXTENDIBLE HASHING
	Slide 72: EXTENDIBLE HASHING
	Slide 73: EXTENDIBLE HASHING
	Slide 74: EXTENDIBLE HASHING
	Slide 75: EXTENDIBLE HASHING
	Slide 76: EXTENDIBLE HASHING
	Slide 77: EXTENDIBLE HASHING
	Slide 78: EXTENDIBLE HASHING
	Slide 79: EXTENDIBLE HASHING
	Slide 80: EXTENDIBLE HASHING
	Slide 81: EXTENDIBLE HASHING

	Linear Hashing
	Slide 82: LINEAR HASHING
	Slide 83: LINEAR HASHING
	Slide 84: LINEAR HASHING
	Slide 85: LINEAR HASHING
	Slide 86: LINEAR HASHING
	Slide 87: LINEAR HASHING
	Slide 88: LINEAR HASHING
	Slide 89: LINEAR HASHING
	Slide 90: LINEAR HASHING
	Slide 91: LINEAR HASHING
	Slide 92: LINEAR HASHING
	Slide 93: LINEAR HASHING
	Slide 94: LINEAR HASHING
	Slide 95: LINEAR HASHING
	Slide 96: LINEAR HASHING
	Slide 97: LINEAR HASHING
	Slide 98: LINEAR HASHING: RESIZING
	Slide 99: LINEAR HASHING: DELETES
	Slide 100: LINEAR HASHING: DELETES
	Slide 101: LINEAR HASHING: DELETES
	Slide 102: LINEAR HASHING: DELETES
	Slide 103: LINEAR HASHING: DELETES
	Slide 104: LINEAR HASHING: DELETES
	Slide 105: LINEAR HASHING: DELETES

	Conclusion
	Slide 106: CONCLUSION
	Slide 107: NEXT CLASS

