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ADMINISTRIVIA

Project #1 is due Sunday Feb 15% @ 11:59pm

— Recitation Video + Slides (@64)

— Perf Recitation on Wednesday Feb 4" @ 6:30pm (@79)

— Special OH on Saturday Feb 14%" @ 3:00-5:00pm (GHC 5207)

Homework #2 is due Sunday Feb 8" @ 11:59pm
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https://piazza.com/class/mjxpbw9kyzv4mo/post/64
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COURSE OUTLINE

We are now going to talk about how
to support the DBMS's execution

engine to read/write data from pages.

Two types of data structures:
— Hash Tables (Unordered)
—> Trees (Ordered)

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager
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TODAY'S AGENDA

Background
Hash Functions
Static Hashing Schemes

Dynamic Hashing Schemes
$DB Flash Talk: YugabyteDB
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DATA STRUCTURES

Internal Meta-data
Core Data Storage
Temporary Data Structures

Table Indexes
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DESIGN DECISIONS

Data Organization

— How we layout data structure in memory/pages and what
information to store to support efficient access.

Concurrency

— How to enable multiple threads to access the data structure at
the same time without causing problems.
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HASH TABLES

A hash table implements an unordered associative
array that maps keys to values.

[t uses a hash function to compute an offset into this
array for a given key, from which the desired value can

be found.

Space Complexity: O(n)

Time Complexity:

— Average: O(1) 4@ Databases care about constants!
— Worst: O(n)
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STATIC HASH TABLE

Allocate a giant array that has one slot
for every element you need to store. hash(key) % N

0| A

110
B

To find an entry, mod the key by the
number of elements to find the offset
in the array.
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STATIC HASH TABLE

Allocate a giant array that has one slot
for every element you need to store. hash(key) % N

number of elements to find the offset

)
To find an entry, mod the key by the 1 :\> Al value
2

Z | value

in the array.

B| value
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UNREALISTIC ASSUMPTIONS

Assumption #1: Number of elements

is known ahead of time and fixed. hash(key) % N
. : : 0
Assumption #2: Each key is unique. 1 :\> Al value
A . 2 Z | value
ssumption #3: Perfect hash
function guarantees no collisions. B|value
— If key1#key2, then n

hash(key1)#hash(key2)
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HASH TABLE

Design Decision #1: Hash Function

— How to map a large key space into a smaller domain.
— Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme

— How to handle key collisions after hashing.

— Trade-off between allocating a large hash table vs. additional
instructions to get/put keys.

10
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HASH FUNCTIONS

For any input key, compute a one-way integer

representation of that key (usually 32 or 64 bits).
— Converts arbitrary byte array into a fixed-length code.

The only two properties of a hash function we care
about in a DBMS is whether it is fast and has a low

collision rate.

— We do not want to use a cryptographic or reversible hash
function for DBMS hash tables (e.g., SHA-2).


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2

HASH FUNCTIONS

CRC-64 (1975)

— Used in networking for error detection.

MurmurHash (2008)

— Designed as a fast, general-purpose hash function.

Google CityHash (2011)
— Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
~ State-of-the-art
Google FarmHash (2014)

— Newer version of CityHash with better collision rates.

RapidHash (2019)

— Fast hash function without architecture-specific instructions.

12
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STATIC HASHING SCHEMES

Approach #1: Linear Probe Hashing .
Approach #2: Cuckoo Hashing ¢ Qe A R
There are several other schemes covered in the

Advanced DB course:
— Robin Hood Hashing
— Hopscotch Hashing
— Swiss Tables

— Concise Hash Tables

13
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LINEAR PROBE HASHING

Single giant table of fixed-length slots.

Resolve collisions by linearly searching for the next free

slot in the table.

— To determine whether an element is present, hash to a location
in the table and scan for it.

— Store keys in table to know when to stop scanning.

— Insertions and deletions are generalizations of lookups.

The table's load factor determines when it is becoming

too full and should be resized.

— Load Factor = Active Keys / # of Slots
— Allocate a new table twice as large and rehash entries.
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hash(key) % N

MmO O W

LINEAR PROBE HASHING

.

A|value

<key>|<value>

15
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LINEAR PROBE HASHING

hash(key) % N

/ B|value

A|value

MmO O W

15
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LINEAR PROBE HASHING

hash(key) % N B|value
A
L A|value
C ./
C|value
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LINEAR PROBE HASHING

hash(key) % N B|value
A
g Alvalue
De—" C|value b
E D | value
F



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING

hash(key) % N B|value
A
g A |value
D C|value
E D | value
F E|value

15
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LINEAR PROBE HASHING

hash(key) % N B|value
A
g A |value
D C|value
E D | value
Fo—_ E|value )
F|value
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HASH TABLE: KEY/VALUE ENTRIES

Fixed-length Key/Values: hash key | value
— Store inline within the hash table pages. hash key value
— Optional: Store the key's hash with the hash key value

key for faster comparisons.

Variable-length Key/Values: hash | RecordId
— Insert key/value data in separate a private hash [ RecordId
temporary table. RecordId

— Store the hash as the key and use the
record id pointing to its corresponding
entry in the temporary table as the value.

Temp Table Page

key | value

key | value

key | value
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LINEAR PROBE HASHING: DELETES

hash(key) % N B|value
A
B Alvalue
Delete » C ./ ﬁ
D
E value

D
F E|value
F
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LINEAR PROBE HASHING: DELETES

hash(key) % N B|value
A
1 A|value
Delete » C ./ ﬁ
D
E D|value
F E|value

F|value
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LINEAR PROBE HASHING: DELETES

hash(key) % N B|value
A
g A|value
Ge t » D ._/-’ o@s
E D | value
F E|value
F|value
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LINEAR PROBE HASHING: DELETES

hash(key) % N

A
B

C
Get mp D
E

F

B|value

A|value

D | value

E|value

F|value

Approach #1: Movement

— Rehash keys until you find
the first empty slot.
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LINEAR PROBE HASHING: DELETES

hash(key) % N B|value
A
g A |value
Cet » D D | value
E E|value

F .\I> F|value

Approach #1: Movement

— Rehash keys until you find
the first empty slot.
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LINEAR PROBE HASHING: DELETES

hash(key) % N Approach #1: Movement
A e e — Rehash keys until you find
the first empty slot.

B Alvalue
C

Get » D D value
E E|value
F F|value
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LINEAR PROBE HASHING: DELETES

hash(key) % N Approach #1: Movement

— Rehash keys until you find

i the first empty slot.

B — No DBMS does this.

C — to reorganize the entire table.
Get mp D

E
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LINEAR PROBE HASHING: DELETES

hash(key) % N

MmO O W

value

value

value

value

value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.
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LINEAR PROBE HASHING: DELETES

hash(key) % N
A

B
Delete W) Co/ Alvalue
;

E
F

value

value

value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.
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LINEAR PROBE HASHING: DELETES

18

hash(key) % N
A

B
Delete W) Co—"1 Alvalue
D

E
F

B|value

D | value

E|value

F|value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

18

LINEAR PROBE HASHING: DELETES

hash(key) % N B|value
A
g A|value
Get ip De—1" =
E D|value
F E|value

F|value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.
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LINEAR PROBE HASHING: DELETES

18

hash(key) % N

A
B
C

o Do~ R
:

F

B|value

A|value

E|value

F|value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.
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LINEAR PROBE HASHING: DELETES

hash(key) % N

MmO O W

B|value

A|value

<]

D

value

E

value

F

value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

LINEAR PROBE HASHING: DELETES

B|value

A|value

<]

D | value

E|value

F|value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.
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LINEAR PROBE HASHING: DELETES

18

value

value

value

value

value

Approach #2: Tombstone

— Maintain separate bit map to
indicate that the entry in the
slot is logically deleted.

— Reuse the slot for new keys.

— May need periodic garbage
collection.
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HASH TABLE: NON-UNIQUE KEYS

) . . Value Lists
Choice #1: Separate Linked List —
— Store values in separate storage area for BC

each key.
— Value lists can overflow to multiple pages
if the number of duplicates is large. |:|_
Choice #2: Redundant Keys
— Store duplicate keys entries together in XYZ|value?
the hash table. ABC | valuel
— This is what most systems do. XYZ |value3
XYZ | valuel
ABC | value2
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Source: Maksim Kita
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OPTIMIZATIONS

Specialized impls. based on key type(s) and sizes.
— Example: Maintain multiple hash tables for different string sizes

Store metadata separate in a separate array.

— Use separate offset array (sparse) that points to entries in a data
segment (dense).

— Packed bitmap to track whether a slot is empty/tombstone.

Use table + slot versioning metadata to quickly

invalidate all entries in the hash table.
— Example: If table version does not match slot version, then treat
the slot as empty.
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OPTIMIZA Tyt

Blog / Engineering

Specialized impls. based on key {RaEERETI LY NI T AN and

: - ~ CH Zero-cost Abstractions
— Example: Maintain multiple hash

!_i% Maksim Kita

May 16, 2023

Store metadata separate in a sep|

— Use separate offset array (sparse) i o
segment (dense). |

I track whether a { Ha_Sh tables in T
— Packed bitmap to trac N ClickHoie,

14 221-8676

Use table + slot versioning met

invalidate all entries in the hasiuuui
— Example: If table version does notjs

s. No other data structure offers the same
opportunity for bugs to be introduc

ed during optimization. In this blog post, we explore how
t hash tables are used in ClickHouse.
the slot as empty.

We'll show how zero-cost abstractions work in modern C+
+and how to get a variety of data structures from a common

tables are the diva of data structure

codebase with a few little tricks.

Source: Maksim Kita
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CUCKOO HASHING

Use multiple hash functions to find multiple locations

in the hash table to insert records.

— On insert, check multiple locations and pick the one that is
empty.

— If no location is available, evict the element from one of them
and then re-hash it find a new location.

Look-ups and deletions are always O(1) because only
one location per hash table is checked.

Best open-source implementation is from CMU.
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CUCKOO HASHING

Put A: hash(A)
hash,(A)

/

22
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CUCKOO HASHING

Put A: hash(A)
hash,(A)

A|value

22
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CUCKOO HASHING

- hash(A)

hash,(A)

- hash(B)

hash,(B)

A|value

22
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CUCKOO HASHING

- hash(A)

hash,(A)

- hash(B)

hash,(B)

B|value

A|value

22
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CUCKOO HASHING

Put A: hash(A)

hash,(A)
Put B: hash(B)

hash,(B) A|value

Put C: hash(C)
hash,(C)
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Put B:

Put C:

CUCKOO HASHING

- hash(A)

hash,(A)

hash (B)
hash,(B)

hash(C)
hash,(C)

A|value

22
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CUCKOO HASHING

Put A: hash(A)

hash,(A) C|value
Put B: hash(B)

hash,(B)
Put C: hash(C)

hash,(C)

hash(B)
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CUCKOO HASHING

Put A: hash(A)

hash,(A) C|value
Put B: hash(B)

hash,(B)
Put C: hash(C)

hash,(C)

hash(B)



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CUCKOO HASHING

Put A: hash(A)

hash,(A) C|value
Put B: hash(B)

hash,(B)
Put C: hash/(C)

hash,(C)

hash(B)

Al value
hash,(A) /
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Get B:

CUCKOO HASHING

- hash(A)

hash,(A)

- hash(B)

hash,(B)

- hash(C)

hash,(C)
hash(B)
hash,(A)

hash(B)
hash,(B)

B|value

Al value

22


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

OBSERVATION

The previous hash tables require the DBMS to know

the number of elements it wants to store.

— Otherwise, it must rebuild the table if it needs to grow/shrink
in size.

Dynamic hash tables incrementally resize themselves as

needed.

— Chained Hashing
— Extendible Hashing
— Linear Hashing

23
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CHAINED HASHING

Maintain a linked list of buckets for each slot in the

hash table.

Resolve collisions by placing all elements with the same

hash key into the same bucket.

— To determine whether an element is present, hash to its bucket
and scan for it.

— Insertions and deletions are generalizations of lookups.
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CHAINED HASHING

hash(key) % N
Bucket
Pointers

- Buckets

25
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hash(key) % N

CHAINED HASHING

Bucket

Put A ’\l:ointers
M

Al value

- Buckets

25
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CHAINED HASHING

hash(key) % N
Bucket
Put A Pointers

Put B &——,

B|value

Al value

- Buckets

25
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CHAINED HASHING

hash(key) % N B|value
Bucket

Put A Pointers

Put B

Put CO——y odl—> Alvalue

C|value

- Buckets

25
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CHAINED HASHING

hash(key) % N B value
Bucket
Put A Pointers
Put B
ot—" Al value

Put C
Put D /

C|value

- Buckets

25
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hash(key) % N

Bucket
Put A Pointers
Put B

CHAINED HASHING

B|value

o— "

Al value

Put C
Put D /

D | value

C|value

25
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hash(key) % N
Put A
Put B
Put C
Put D

Put E

CHAINED HASHING

Bucket
Pointers

B|value

Al value

C|value

D | value

25
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CHAINED HASHING

hash(key) % N B|value
Bucket

Put A Pointers

Put B

Put C ..f A | value

Put b / C|value

Put E

D | value

E|value

25


https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

CHAINED HASHING

hash(key) % N B|value
Bucket

Put A Pointers

Put B

Put C Alvalue

Put D C|value

Put E

utr F|value

D | value

E|value

25
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hash(key) % N

CHAINED HASHING

B|value
Bucket
Pointers
? Filter
v o Alvalue
C|value

F|value

D | value

E|value

25
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CHAINED HASHING

hash(key) % N
Bucket
Pointers
? Filter

Get G \ Y il
= x

Does key 'G' exist?

B|value

Al value

C|value

F|value

D | value

E|value

25
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EXTENDIBLE HASHING

Chained-hashing approach that splits buckets
incrementally instead of letting the linked list grow
forever.

Multiple slot locations can point to the same bucket
chain.

Reshuffle bucket entries on split and increase the

number of bits to examine.
— Data movement is localized to just the split chain.

@5 Asterixcs

GDBM

26
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EXTENDIBLE HASHING

:Max number of bits to examine in hashes

global | 9 00010.. | 1
01110...
10101... | 2
10011...

11010.. | 2
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EXTENDIBLE HASHING

:Max number of bits to examine in hashes

global | 9 00010.. | 1 local
01110..
2 00
Q | 01 10101.. | 2  local
2] 10 10011..
= _11

11010.. | 2 local
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EXTENDIBLE HASHING

00010.. | 1 local

%/V
01110...
- 010 /
9|1
—

10101.. | 2 local
10011...

Hash Bits
[

11010.. | 2 local
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Hash Bits
[

EXTENDIBLE HASHING

00010...

01110...

10101...

10011...

11010...

2 local
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EXTENDIBLE HASHING

Ot | 1001 1.

3\» 11010

1 local

2 local

2 local

Get A
hash(A) =

0

110...

27
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EXTENDIBLE HASHING

00010...

01110...

10101...

10011...

11010...

2 local

Get A
hash(A)=01110...

Put B
hash(B)=10111...

27
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EXTENDIBLE HASHING

00010...

01110...
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LINEAR HASHING

The hash table maintains a pointer that tracks the next

bucket to split.

— When any bucket overflows, split the bucket at the pointer
location.

Use multiple hashes to find the right bucket for a given
key.

Can use different overflow criterion:
— Space Utilization
— Average Length of Overflow Chains

PostgreSQL ““}’ﬁﬂ%@ Day'ngﬁgDB

Makers of Berkeley DB
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ph uc C coa
Pointer . P hash1( 6)= 6%4=2
» ° Put 17

8

20
T~ = 7] hash(17)= 17 % 4=1
5 5 |=»
3

6 Overflow!
hash (key) = key % n -
11
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LINEAR HASHING: RESIZING

Splitting buckets based on the split pointer will

eventually get to all overflowed buckets.
— When the pointer reaches the last slot, remove the first hash
function and move pointer back to beginning.

[f the "highest" bucket below the split pointer is empty,
the hash table could remove it and move the splinter
pointer in reverse direction.
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LINEAR HASHING: DELETES
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LINEAR HASHING: DELETES

Split Bucket
Pointer . Pointers
» . o
2
3
hash (key) = key % n

17
21

Overflow!

Delete 20
hash,(20)= 20% 4 =0
hash,(20)= 20% 8 = 4

Put 21
hash(21)= 21 % 4 =1
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Fast data structures that support O(1) look-ups that are

used all throughout DBMS internals.
— Trade-off between speed and flexibility.

— Some DBMSs store all data in hash tables (key/value stores).

Hash tables are usually not what you want to use for a

table index. ..

CREATE INDEX ON xxx (val);

PostgreSQL

CREATE INDEX ON xxx USING BTREE (val);

)

CREATE INDEX ON xxx USING HASH (val);



https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026

NEXT CLASS

Order-Preserving Indexes ft. B+Trees
— aka "The Greatest Data Structure of All Time"
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