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ADMINISTRIVIA

Project #1 is due Sunday Feb 15th @ 11:59pm
→ Recitation Video + Slides (@64)
→ Perf Recitation on Wednesday Feb 4th @ 6:30pm (@79)
→ Special OH on Saturday Feb 14th @ 3:00-5:00pm (GHC 5207)

Homework #2 is due Sunday Feb 8th @ 11:59pm
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COURSE OUTLINE

We are now going to talk about how 
to support the DBMS's execution 
engine to read/write data from pages.

Two types of data structures:
→ Hash Tables (Unordered)
→ Trees (Ordered)
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Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
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TODAY'S AGENDA

Background

Hash Functions

Static Hashing Schemes

Dynamic Hashing Schemes

DB Flash Talk: YugabyteDB
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https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://www.yugabyte.com/
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DATA STRUCTURES

Internal Meta-data

Core Data Storage

Temporary Data Structures

Table Indexes
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DESIGN DECISIONS

Data Organization
→ How we layout data structure in memory/pages and what 

information to store to support efficient access.

Concurrency
→ How to enable multiple threads to access the data structure at 

the same time without causing problems.
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https://db.cs.cmu.edu/
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HASH TABLES

A hash table implements an unordered associative 
array that maps keys to values.

It uses a hash function to compute an offset into this 
array for a given key, from which the desired value can 
be found.

Space Complexity: O(n)
Time Complexity:
→ Average: O(1)
→ Worst: O(n)
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Databases care about constants!

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
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STATIC HASH TABLE

Allocate a giant array that has one slot 
for every element you need to store.

To find an entry, mod the key by the 
number of elements to find the offset 
in the array.
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STATIC HASH TABLE

Allocate a giant array that has one slot 
for every element you need to store.

To find an entry, mod the key by the 
number of elements to find the offset 
in the array.
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https://15445.courses.cs.cmu.edu/spring2026
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UNREALISTIC ASSUMPTIONS

Assumption #1: Number of elements 
is known ahead of time and fixed.

Assumption #2: Each key is unique.

Assumption #3: Perfect hash 
function guarantees no collisions.
→ If key1≠key2, then

hash(key1)≠hash(key2)
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hash(key) % N

⋮
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n

A | value

B | value

Z | value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
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HASH TABLE

Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs. additional 

instructions to get/put keys.

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
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HASH FUNCTIONS

For any input key, compute a one-way integer 
representation of that key (usually 32 or 64 bits).
→ Converts arbitrary byte array into a fixed-length code.

The only two properties of a hash function we care 
about in a DBMS is whether it is fast and has a low 
collision rate.
→ We do not want to use a cryptographic or reversible hash 

function for DBMS hash tables (e.g., SHA-2).
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https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://en.wikipedia.org/wiki/SHA-2
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HASH FUNCTIONS

CRC-64

MurmurHash

Google CityHash

Facebook XXHash

Google FarmHash

RapidHash

CRC-64 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed as a fast, general-purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
→ From the creator of zstd compression.

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.

RapidHash (2019)
→ Fast hash function without architecture-specific instructions.
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← State-of-the-art

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash
https://github.com/Nicoshev/rapidhash
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STATIC HASHING SCHEMES

Advanced DB course

Approach #1: Linear Probe Hashing

Approach #2: Cuckoo Hashing

There are several other schemes covered in the 
Advanced DB course:
→ Robin Hood Hashing
→ Hopscotch Hashing
→ Swiss Tables
→ Concise Hash Tables

13

← Open Addressing

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://15721.courses.cs.cmu.edu/
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LINEAR PROBE HASHING

Single giant table of fixed-length slots.

Resolve collisions by linearly searching for the next free 
slot in the table.
→ To determine whether an element is present, hash to a location 

in the table and scan for it.
→ Store keys in table to know when to stop scanning.
→ Insertions and deletions are generalizations of lookups.

The table's load factor determines when it is becoming 
too full and should be resized.
→ Load Factor = Active Keys / # of Slots
→ Allocate a new table twice as large and rehash entries.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
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<key>|<value>

LINEAR PROBE HASHING
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A
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C
D

hash(key) % N

| valueA

E
F

https://db.cs.cmu.edu/
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LINEAR PROBE HASHING
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LINEAR PROBE HASHING

15

A
B
C
D

hash(key) % N

| valueA

| valueC

E
F

| valueB

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

LINEAR PROBE HASHING
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LINEAR PROBE HASHING
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| valueB
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LINEAR PROBE HASHING
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HASH TABLE: KEY/VALUE ENTRIES

Fixed-length Key/Values:
→ Store inline within the hash table pages.
→ Optional: Store the key's hash with the 

key for faster comparisons.

Variable-length Key/Values:
→ Insert key/value data in separate a private 

temporary table.
→ Store the hash as the key and use the 

record id pointing to its corresponding 
entry in the temporary table as the value.

16

key valuehash

key valuehash

key valuehash

⋮

RecordIdhash

RecordIdhash

RecordIdhash

⋮
Temp Table Page

key | value

key | value

key | value

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
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LINEAR PROBE HASHING: DELETES

17
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LINEAR PROBE HASHING: DELETES
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LINEAR PROBE HASHING: DELETES
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LINEAR PROBE HASHING: DELETES

17

Approach #1: Movement
→ Rehash keys until you find 

the first empty slot.
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LINEAR PROBE HASHING: DELETES
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LINEAR PROBE HASHING: DELETES
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LINEAR PROBE HASHING: DELETES

17

Approach #1: Movement
→ Rehash keys until you find 

the first empty slot.
→ No DBMS does this.
→ to reorganize the entire table. 
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LINEAR PROBE HASHING: DELETES

18

Approach #2: Tombstone
→ Maintain separate bit map to 

indicate that the entry in the 
slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage 

collection.
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LINEAR PROBE HASHING: DELETES
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LINEAR PROBE HASHING: DELETES
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LINEAR PROBE HASHING: DELETES
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LINEAR PROBE HASHING: DELETES

18

Approach #2: Tombstone
→ Maintain separate bit map to 

indicate that the entry in the 
slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage 

collection.

A
B
C
D

hash(key) % N

| valueA

| valueB

E
F

| valueD

| valueE

| valueF

Get

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026 )

LINEAR PROBE HASHING: DELETES
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Approach #2: Tombstone
→ Maintain separate bit map to 

indicate that the entry in the 
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→ Reuse the slot for new keys.
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LINEAR PROBE HASHING: DELETES
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Approach #2: Tombstone
→ Maintain separate bit map to 

indicate that the entry in the 
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LINEAR PROBE HASHING: DELETES
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Approach #2: Tombstone
→ Maintain separate bit map to 

indicate that the entry in the 
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→ Reuse the slot for new keys.
→ May need periodic garbage 

collection.
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HASH TABLE: NON-UNIQUE KEYS

Choice #1: Separate Linked List
→ Store values in separate storage area for 

each key.
→ Value lists can overflow to multiple pages 

if the number of duplicates is large.

Choice #2: Redundant Keys
→ Store duplicate keys entries together in

the hash table.
→ This is what most systems do.

19

XYZ

ABC

value1
value2
value3

Value Lists

value1
value2

XYZ | value2

ABC | value1

XYZ | value3

XYZ | value1

ABC | value2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
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OPTIMIZATIONS

Specialized impls. based on key type(s) and sizes.
→ Example: Maintain multiple hash tables for different string sizes

Store metadata separate in a separate array.
→ Use separate offset array (sparse) that points to entries in a data 

segment (dense).
→ Packed bitmap to track whether a slot is empty/tombstone.

Use table + slot versioning metadata to quickly 
invalidate all entries in the hash table.
→ Example: If table version does not match slot version, then treat 

the slot as empty. 
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Maksim Kita

Source: Maksim Kita
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https://15445.courses.cs.cmu.edu/spring2026
https://clickhouse.com/blog/hash-tables-in-clickhouse-and-zero-cost-abstractions
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CUCKOO HASHING

Use multiple hash functions to find multiple locations 
in the hash table to insert records.
→ On insert, check multiple locations and pick the one that is 

empty.
→ If no location is available, evict the element from one of them 

and then re-hash it find a new location.

Look-ups and deletions are always O(1) because only 
one location per hash table is checked.

Best open-source implementation is from CMU.

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026
https://github.com/efficient/libcuckoo
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CUCKOO HASHING

22

Put A:  hash1(A)

hash2(A)
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CUCKOO HASHING

22

| valueA

Put A:  hash1(A)

hash2(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING
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CUCKOO HASHING
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CUCKOO HASHING
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| valueA
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CUCKOO HASHING
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CUCKOO HASHING
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CUCKOO HASHING
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CUCKOO HASHING

22

| valueC

| valueB

| valueA

Put A:  hash1(A)

hash2(A)

Put B:  hash1(B)

hash2(B)

Put C:  hash1(C)

hash2(C)

hash1(B)

hash2(A)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CUCKOO HASHING

22

| valueC

| valueB

| valueA

Put A:  hash1(A)

hash2(A)

Put B:  hash1(B)

hash2(B)

Put C:  hash1(C)

hash2(C)

hash1(B)

hash2(A)

Get B:  hash1(B)

hash2(B)
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OBSERVATION

The previous hash tables require the DBMS to know 
the number of elements it wants to store.
→ Otherwise, it must rebuild the table if it needs to grow/shrink 

in size.

Dynamic hash tables incrementally resize themselves as 
needed.
→ Chained Hashing
→ Extendible Hashing
→ Linear Hashing

23
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CHAINED HASHING

Maintain a linked list of buckets for each slot in the 
hash table.

Resolve collisions by placing all elements with the same 
hash key into the same bucket.
→ To determine whether an element is present, hash to its bucket 

and scan for it.
→ Insertions and deletions are generalizations of lookups.

24
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CHAINED HASHING

25

hash(key) % N

Buckets

Bucket
Pointers
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CHAINED HASHING

25

Put A

hash(key) % N

| valueA
Buckets

Bucket
Pointers
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CHAINED HASHING

25

Put A
Put B

hash(key) % N

| valueA

| valueB

Buckets

Bucket
Pointers
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CHAINED HASHING

25

Put A
Put B
Put C

hash(key) % N

| valueA

| valueB

Buckets
| valueC

Bucket
Pointers
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CHAINED HASHING

25

Put A
Put B
Put C
Put D

hash(key) % N

| valueA

| valueB

Buckets
| valueC

Bucket
Pointers
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CHAINED HASHING

25

Put A
Put B
Put C
Put D

hash(key) % N

| valueA

| valueB

| valueC

| valueD

Bucket
Pointers
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CHAINED HASHING

25

Put A
Put B
Put C
Put D

hash(key) % N

Put E

| valueA

| valueB

| valueC

| valueD

Bucket
Pointers
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CHAINED HASHING

25

Put A
Put B
Put C
Put D

hash(key) % N

Put E

| valueA

| valueB

| valueC

| valueD

| valueE

Bucket
Pointers
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CHAINED HASHING

25

Put A
Put B
Put C
Put D

hash(key) % N

Put E
Put F

| valueA

| valueB

| valueC

| valueD

| valueE

| valueF

Bucket
Pointers
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CHAINED HASHING

25

hash(key) % N

| valueA

| valueB

| valueC

| valueD

| valueE

| valueF

Bucket
Pointers

Filter

Filter

Filter

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/spring2026


CMU DATABASE SYSTEMS (SPRING 2026)

CMU DATABASE SYSTEMS (SPRING 2026)

CHAINED HASHING

25

hash(key) % N

| valueA

| valueB

| valueC

| valueD

| valueE

| valueF

Bucket
Pointers

Filter

Filter

FilterGet G

Does key 'G' exist?
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EXTENDIBLE HASHING

Chained-hashing approach that splits buckets 
incrementally instead of letting the linked list grow 
forever.

Multiple slot locations can point to the same bucket 
chain.

Reshuffle bucket entries on split and increase the 
number of bits to examine.
→ Data movement is localized to just the split chain.

26
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EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

10101…

10011…
2

11010… 2

Max number of bits to examine in hashes
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EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

H
as

h 
B

it
s

Max number of bits to examine in hashes
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EXTENDIBLE HASHING
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global 2

0 1

0 0

1 0

1 1

local

local

local
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01110…
1
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11010… 2
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EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

H
as

h 
B

it
s
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EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A
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EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B
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EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

10111…
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EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C10111…
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EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C10111… Overflow!
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EXTENDIBLE HASHING

27

global 2

0 1

0 0

1 0

1 1

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

3

10111… Overflow!
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EXTENDIBLE HASHING

27

global 2 local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11

0 01

1 01

1 11

3

10111…
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EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11

0 01

1 01

1 11

3

10011…
3

10101…

10111…

3
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EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00
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0 11

0 01

1 01

1 11

3

10011…
3
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EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11
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1 11

3

10011…
3
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EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11

0 01

1 01

1 11

3

10011…
3

10101…

10111…
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EXTENDIBLE HASHING

27

global 2 00010…

01110…
1

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

0 10

0 00

1 00

1 10

0 11

0 01

1 01

1 11

3

10011…
3

10101…

10111…

3
10100…
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LINEAR HASHING

The hash table maintains a pointer that tracks the next 
bucket to split.
→ When any bucket overflows, split the bucket at the pointer 

location.

Use multiple hashes to find the right bucket for a given 
key.

Can use different overflow criterion:
→ Space Utilization
→ Average Length of Overflow Chains

28
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LINEAR HASHING

29

1

0

2

3

8

5

9

13

6

7

11

Split 
Pointer

hash1(key) = key % n

20
Bucket

Pointers
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LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split 
Pointer

hash1(key) = key % n

20
Bucket

Pointers
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LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split 
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

20
Bucket

Pointers
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LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split 
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

20

Overflow!

Bucket
Pointers
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LINEAR HASHING
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8 hash1(6) = 6 % 4 = 2
Get 6
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9
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7

11

Split 
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17
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20

Overflow!
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LINEAR HASHING

29

1

0
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8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split 
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

4

hash2(key) = key % 2n

20

Overflow!

Bucket
Pointers
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LINEAR HASHING
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8 hash1(6) = 6 % 4 = 2
Get 6
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Split 
Pointer
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LINEAR HASHING

29

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split 
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

17

4

hash2(key) = key % 2n

20

hash2(8)   = 8 % 8 = 0

Bucket
Pointers
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LINEAR HASHING
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8 hash1(6) = 6 % 4 = 2
Get 6
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Split 
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17
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LINEAR HASHING
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LINEAR HASHING
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LINEAR HASHING
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LINEAR HASHING
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LINEAR HASHING
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LINEAR HASHING
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LINEAR HASHING: RESIZING 

Splitting buckets based on the split pointer will 
eventually get to all overflowed buckets.
→ When the pointer reaches the last slot, remove the first hash 

function and move pointer back to beginning.

If the "highest" bucket below the split pointer is empty, 
the hash table could remove it and move the splinter 
pointer in reverse direction.

30
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LINEAR HASHING: DELETES
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LINEAR HASHING: DELETES
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LINEAR HASHING: DELETES
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LINEAR HASHING: DELETES
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Split 
Pointer

hash1(key) = key % n

17

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

hash1(21) = 21 % 4 = 1
Put 21

Overflow!
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CONCLUSION

Fast data structures that support O(1) look-ups that are 
used all throughout DBMS internals.
→ Trade-off between speed and flexibility.
→ Some DBMSs store all data in hash tables (key/value stores).

Hash tables are usually not what you want to use for a 
table index…

32

CREATE INDEX ON xxx USING BTREE (val);

CREATE INDEX ON xxx (val);

CREATE INDEX ON xxx USING HASH (val);
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NEXT CLASS

Order-Preserving Indexes ft. B+Trees
→ aka "The Greatest Data Structure of All Time"

33
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